MANIFOLDS: SPRING 2015 EXERCISE 3

DMITRY NOVIKOV

Problem 1 (Hamiltonian systems). Let M be a smooth 2n-dimensional manifold. A 2-form $\omega \in E^2(M)$ is called a symplectic form on M if it is closed (i.e. $d\omega = 0$) and non-degenerate (i.e. for any $x \in M$ and any $\xi \in T_x M$ there exists $\eta \in T_x M$ such that $\omega(\xi, \eta) \neq 0$).

- (1) Let $H \in C^{\infty}M$ be a smooth function. Define a vector field v_H on M by $\omega(v_H,\xi) = dH(\xi)$ for all $\xi \in TM$ (this is the Hamiltonian vector field corresponding to H). Show that $L_{v_H}\omega = 0$. Deduce that $L_{v_H}\omega^{\wedge^n} = 0$, i.e. that the Hamiltonian flows preserve the volume.
- (2) Define Poisson bracket $\{H_1, H_2\}$ as $\{H_1, H_2\} = dH_1(v_{H_2})$. Show that $\{H_1, H_2\} = -\{H_2, H_1\}$ and Jacobi identity for $\{H_1, H_2\}$.
- (3) A Hamiltonian vector field v_{H_1} is called integrable if there exist functions $H_2, ...H_n$ such that $\{H_i, H_j\} \equiv 0$ for i, j = 1, ..., n and v_{H_i} are linearly independent. Show that H_i are constant on trajectories of v_{H_1} (i.e. that $L_{v_{H_i}}H_i = 0$ for i, j = 1, ..., n).
- (4) Assume that v_{H_i} are linearly independent at each point of some common level set $\cap \{H_i = c_i\}$. Let $p \in \Sigma$, where Σ is a connected component of this common level set, and define $F_p(t_1, ..., t_n) = X_{t_1}^1 \circ ... \circ X_{t_n}^n(p)$, where X_t^i is the flow of v_{H_i} . Show that

 $F(F(p, t_1, ..., t_n), t'_1, ..., t'_n) = F(p, t_1 + t'_1, ..., t_n + t'_n).$

Show that F is a local diffeomorphism, and therefore is a covering $\mathbb{R}^n \to \Sigma = F(\mathbb{R}^n)$, and $F^{-1}(p)$ is a (shift of a) discrete subgroup of \mathbb{R}^n . Deduce that $\Sigma = \mathbb{S}^1 \times \ldots \times \mathbb{S}^1 \times \mathbb{R} \times \ldots \times \mathbb{R}$.

- (1) Show that every smooth manifold admits some Riemannian structure (One way to prove it is as follows: choose some covering by charts, choose some scalar products in each chart and glue them together using partition of unity. The only non-trivial question is why the result is positive-definite).
- (2) Any submanifold of a Riemannian manifold is a Riemannian manifold itself (in particular, this implies the previous claim).
- (3) An orientable Riemannian manifold has a canonical volume form: define ω ∈ Eⁿ(M) by ω(e₁,...,e_n) = 1 for some positively oriented orthonormal (w.r.t. ⟨,⟩) basis of T_xM. Check that this is a well-defined form.

Date: July 6, 2015.

DMITRY NOVIKOV

Problem 3 (* operator). Let M be an oriented Riemannian manifold.

- (1) A scalar product \langle , \rangle_x on the linear space $T_x M$ defines the so-called musical isomorphisms $\flat : T_x M \to T_x^* M$ and $\sharp = \flat^{-1} : T_x^* M \to T_x M$, and therefore an identification $\flat^{\wedge p} : \Lambda^p(T_x^*M) \to \Lambda^p(T_x^*M)$. Prove that it defines a scalar product on $\Lambda^p(T_x^*M)$, with $\{\eta_{i_1} \land ... \land \eta_{i_p}\}$ as an orthonormal basis (where $\{\eta_1, ..., \eta_n\}$ is an orthonormal basis of T_x^*M).
- (2) Let $\{\eta_1, ..., \eta_n\}$ be a positively oriented orthonormal basis of T_x^*M . Define $*: \Lambda(T_x^*M) \to \Lambda(T_x^*M)$ as

$$*(1) = \eta_1 \wedge \dots \wedge \eta_n, \quad *(\eta_1 \wedge \dots \wedge \eta_n) = 1 \tag{1}$$

$$*(\eta_{i_1} \wedge \dots \wedge \eta_{i_k}) = (-1)^{\sigma} \eta_{i_{k+1}} \wedge \dots \wedge \eta_{i_n}, \tag{2}$$

where $\sigma = 1$ if the transposition $i_1...i_n$ is odd and $\sigma = 0$ if it is even. Show that this definition is independent on the choice of η_i and that $** = (-1)^{p(n-p)}$ on $\Lambda^p(T^*_rM)$.

- (3) Alternatively, $\Lambda^p(T_x^*M)$ is dual to $\Lambda^{n-p}(T_x^*M)$: for $\omega \in \Lambda^p(T_x^*M)$, $\eta \in \Lambda^{n-p}(T_x^*M)$ define $\langle \omega, \eta \rangle = \omega \wedge \eta(v_1, ..., v_n)$, where $\{v_i\}$ is some positively oriented orthonormal basis of T_xM . Therefore $\Lambda^p(T_x^*M)$ is isomorphic to $\Lambda^{n-p}(T_x^*M)$, as both are dual to $\Lambda^p(T_x^*M)$. Check that this isomorphism is the * operator defined above.
- (4) Compute *d * d(f) for $f \in \mathfrak{C}^{\infty}(\mathbb{R}^n)$.

Problem 4. Chapter 6.1-6.8 of Warner (without the proof of Hodge theorem).