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We introduce a Monte Carlo approach to the calculation of more distant renormalized interactions with

higher accuracy than is possible with previous methods. We have applied our method to study the effects of

multispin interactions, which turn out to be far more important than commonly assumed. Even though the

individual multispin interactions usually have smaller coupling constants than two-spin interactions, they can

dominate the effects of two-spin interactions because they are so numerous.
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I. INTRODUCTION

The Monte Carlo ~MC! renormalization group @1# simu-

lations have been used extensively in the study of critical

phenomena. Each such investigation generally approximates

the renormalized Hamiltonian with only a finite number of

coupling constants. For applications to the two- and three-
dimensional Ising model, this number has increased consid-
erably with time, from 3 in 1979 @2# to 99 in 1992 @3#. A
proposed criterion for ordering the couplings according to
their importance was introduced by Blöte et al. @4# As a
general rule, it is believed that couplings tend to become less
important when they involve more spins and when the spins
are more distant of each other. It is just this assumption that
we investigate in this paper, with the conclusion that multi-
spin couplings are far more important than usually believed.

Several methods have been created for the purpose of
calculating the coupling constants of the renormalized sys-
tem @5–7#. Recently we have developed a different approach
that enables the calculation of more interactions with higher
accuracy than the earlier methods. @8# Our method is based
on the Brandt-Ron ~BR! representation @9# of renormaliza-
tion group transformation, which yields useful information
that was not available before. An important contribution of
this calculation is that it provides a stable method for calcu-
lating all couplings that fit within a prechosen distance. This
feature is the basis of the present work. In fact, we are able
to use the BR representation to obtain previously unavailable
information about the importance of more distant multispin
coupling constants, without the necessity of calculating them
individually.

The most similar calculation to ours that we have found in
the literature was carried out by Callaway and Petronizio @7#
in 1984. They showed how to extract individual coupling
constants in a related manner, but suffered from the difficulty
that the isolation of a particular coupling constant is not
unique and different calculations result with different values.
The only consistent way to deal with the problem is to take
all possibilities into account at each level of approximation,
as been done in Ref. @9#.

In this paper, we are showing how we can learn some-
thing about the relationship between two-spin and multispin

couplings without necessarily calculating the values of any
particular coupling constants.

In the following section the Brandt-Ron representation is
reviewed. Its use in determining coupling constants is briefly
described in Sec. III. The method for an indirect estimation
of coupling constants is introduced in Sec. IV. Results for the
two- and three-dimensional Ising models are presented in
Secs. V and VI.

II. THE BRANDT-RON REPRESENTATION

The Brandt-Ron representation was introduced in Ref. @9#
and used for the calculation of coupling constants of renor-
malized systems in Ref. @8#. This representation is based on
the following central idea. The interactions between spins are
described by the conditional probability of a specific spin to
be 11 given explicit values of a set of its neighboring spins.
This set of spins and their values is called a ‘‘neighborhood.’’
Let m be the number of spins in the neighborhood under

consideration, then P
1

m is the table of the conditional prob-

abilities of all possible assignment of the spins in that par-
ticular neighborhood. From a Monte Carlo simulation on a
given lattice, a sequence of renormalized ~block spin! con-
figurations is generated, using the majority-rule transforma-
tion on 232 blocks, from which the P1 table is measured. It
has been shown in Ref. @9#, for the d52 Ising model using
the majority-rule transformation on 232 blocks, that it is
only important to achieve equilibrium at the local scale of
the neighborhood’s size.

Similar results were later obtained also for the d53 case.
In addition, the method can be used equally well with any
other RG transformation as was demonstrated in Ref. @10#.

For the d52 Ising model Brandt and Ron have used their
representation in a sophisticated algorithm that constructed
an appropriate set of growing neighborhoods, based on the
amount of statistics accumulated during the course of an MC
simulation. In this way they were able to systematically re-
duce the truncation error involved in the calculation @9#.

III. CALCULATION OF COUPLINGS FROM P¿’S

Ron and Swendsen have developed a method based on
these P1 tables for a stable calculation of renormalized

PHYSICAL REVIEW E 66, 056106 ~2002!

1063-651X/2002/66~5!/056106~4!/$20.00 ©2002 The American Physical Society66 056106-1



Hamiltonian @8#. The calculation is done systematically for
values of m, the number of spins in the neighborhood. We
identify all possible even interactions that could be placed
within that neighborhood with one spin placed at the center.
All possible orientations are included, as demanded by trans-
lational invariance. The P1 table is then calculated for every
possible arrangement of the m spins. Naturally, the symme-
tries of the model are taken into account to reduce the num-
ber of entries in the table. Finally, each entry j of the P1

table, P j , is translated into its equivalent effective field

Hj52~1/2!ln@~12P j!/P j# . ~1!

The determination of the renormalized couplings follows
by minimizing the sum ~over j) of weighted deviations of
the Hamiltonian from the value of the Hj obtained from the
P j by Eq. 1. This approach allows the computation of more
interactions with higher accuracy than previous methods.

Still, it is clear that as m is increased, the number and
complexity of the possible interactions grow rapidly, and the
size of the P1 tables can quickly become intractable. It was
this observation that has led us to adopt a different approach
to allow us to obtain additional information on the strength
and importance of distant and/or multispin interactions with-
out going through the full procedure of computing every
coupling.

IV. FIXED NEIGHBORHOOD COMPUTATION OF P¿’S

The calculation of the P1 tables as carried out by Brandt
and Ron used a normal Monte Carlo simulation of the spin
system. This means that each neighborhood appears with a
fixed frequency that reflects its probability of appearance in
the canonical distribution. Since the accuracy of each P1

strongly depends on how many samples contribute, rare
neighborhoods necessarily give very poorly approximated
P1 values.

To deal with this problem, we have developed a method
that enables an accurate calculation of the P1 value of any

neighborhood of interest, independent of its thermal prob-
ability. This is achieved as follows.

Denote by Nm a particular neighborhood consisting of m

spins around the central spin. On a slightly larger lattice, fix
the m spins to equal Nm , leaving the central spin and the
spins around that neighborhood undetermined. This is the
given coarse ~block spin! system. The corresponding fine
system of spins is defined on a doubled linear size lattice,
such that each fixed block spin is replaced, for example, by a
2d block of spins of the same sign, where d is the dimension
of the system. The 2d central spins and all those surrounding
the neighborhood may initially assume any value. The initial
fine configuration is thus consistent with Nm .

An MC simulation of the fine system is performed with
the constraint that configurations are restricted to those that
are compatible with Nm . The restriction is actually posed
only on those fine spins which belong upon the renormaliza-
tion transformation to the m spins in Nm . That is, if a pro-
posed spin flip would violate the condition that the majority
of spins in a block has the same sign as the renormalized

spin in Nm , it is rejected. If the spin flip would result in a
block with an equal number of positive and negative spins,
the acceptance probability of the move is 0.5. Brandt and
Ron called a similar process in which the entire renormalized
system is fixed ‘‘compatible Monte Carlo’’ ~CMC! @9# and
showed that the procedure has a very small correlation time,
independent of the lattice size, because of the local nature of
the relaxation, even though the system is at criticality. Since
the demand here is compatibility only with Nm , it will be
referred to as the partial CMC. Observe that the generated
configurations are free to assume all possible combinations
of 11’s and 21’s at the central block of spins. Thus, the P1

value of Nm can be easily calculated to a desired accuracy by
counting the number of 11’s and 21’s appearing at the
center of Nm throughout the simulation.

V. TWO-DIMENSIONAL ISING MODEL

As a first application of the fixed-neighborhood method to
calculate particular P1 values, we have investigated the in-
teractions between two spins that are three lattice constants
apart for the two-dimensional Ising model at criticality.

Denote by A(2) the neighborhood in Fig. 1. Since half of
its m536 spins are up and half down, all arranged in a
symmetric order around the center s0, its P1 value is exactly
.5, i.e., P1@A(2)#50.5. Flipping the spin s3 marked by
s would break that symmetry. To measure the P1 value for
this neighborhood, denoted by A(1), we have placed it on a
92 lattice and performed 53109 partial CMC sweeps on the
corresponding fine spin level of size 182 with periodic
boundary conditions. We obtained P1@A(1)#
50.500 388 7(83). This is in line with normal expectations
in a ferromagnetic model, since an additional positive spin
increased the probability that the central spin was positive.

Now consider the neighborhood in Fig. 2, denoted by
B(2), and the corresponding neighborhood B(1), in which
the circled spin is changed to a positive value. Unexpectedly,
the flipped spin had a qualitatively different effect. The mea-
sured values were P1@B(2)#50.939 413 7(32) and
P1@B(1)#50.939 397 2(28). So that P1@B(1)# turned
out to be smaller than P1@B(2)# . This is somewhat counter
intuitive, since an additional positive spin in its neighbor-
hood reduced the probability that the central spin was posi-
tive.

The difference, of course, reflects the effects of the mul-
tispin couplings in the renormalized Hamiltonians.

FIG. 1. The 36-spin neighborhood surrounding a spin s0, de-

noted by A(2). A(1) is obtained by flipping the 21 marked by a

s .
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On one hand the P1 values can be translated into corre-
sponding effective fields on the central spin using Eq. 1:
H@A(2)#50, H@A(1)#50.000 777 4, H@B(2)#
51.370 558, and H(B(1))51.370 439. On the other hand
the Hamiltonian is usually written in the form

H5(
i

K iS i , ~2!

where the K i’s are the coupling constants and the S i’s are
various sums of products of spins. The differences dH(A)
5H@A(1)#2H@A(2)# and dH(B)5H@B(1)#
2H@B(2)# would only depend on couplings involving the
central spin and the flipped spin s3, so that

0.000 777 45dH~A !52FK31(
a

Kas i
As j

A

1higher2order termsG ~3!

20.000 1195dH~B !52FK31(
a

Kas i
Bs j

B

1higher2order termsG , ~4!

where K3 is the coupling constant of the two-spin coupling
of distance three lattice constants, the Ka’s are all the four-

spin couplings that fit in the neighborhood, while s i
A (s i

B) and

s j
A (s j

B) are spins in the neighborhood A(2) @B(2)# other

than s3. Since the K3 term is identical in Eqs. 3 and ~4!, the
difference must come from the multispin terms. That is, even
if K3 is larger than every one of the multispin-spin coupling
constants, it must be smaller than their sum. In other words,
we may conclude that the two-spin coupling does not domi-
nate the Hamiltonian in this case, but that the sum of the
contributions of the multispin couplings is more important.

This result can even be seen for two-spin correlations at
shorter distances. For example, from the set of 21 couplings

calculated from the P
1

20 table in Ref. @8#, we find that the

two-spin coupling of distance 2 is 20.0087. There are 14
multispin couplings within this set that involve these two
spins. Consider the neighborhood of 20 positive spins and
the one in which a spin two lattice constants from the center
is flipped. The contribution of all multispin couplings sums

up to 0.010 03, so that the net influence is only 0.001 303.
This is significantly smaller, and its sign is opposite to that of
the two-spin coupling constant.

Similarly for a spin two lattice constants over and one up,

at a distance A5. The two-spin coupling is 20.005 993 and
the sum of all other couplings is 0.006 258. These again
largely cancel out each other with a net influence of
0.000 265.

This near cancellation does not happen for the nearest
neighbors or for the next nearest neighbors. In fact, the two-
spin coupling of the nearest neighbors is about as eight times
as stronger than all relevant multispin couplings, with both
having the same sign. The next-nearest-neighbor coupling is
only larger by a factor of about three but still has the same
sign, while for more distant two-spin couplings, we have
observed a change of sign and near cancellation.

It should be pointed out that we also found some limits to
the extent of the effects of multispin interactions. For ex-
ample, we considered a series of neighborhoods generated
form B(2) ~see Fig. 2! in which all the neighbors, similar to
the one marked by s , at a distance of three lattices constants
from the central spin are flipped. The P1’s for zero
through all four of these spins being positive
were: 0.939 413 7(32), 0.939 397 2(28), 0.939 375 0(32),
0.939 360 6(46), and 0.939 344 0(44), which made the cor-
responding differences: 0.000 016 5(43), 0.000 022 2(43),
0.000 014 4(56), and 0.000 016 6~64!. Since these differ-
ences were nearly the same within the statistical errors, there
is no evidence for the influence of significant multispin in-
teractions in this case. The fact that these P1’s keep on de-
creasing as more positive spins are introduced, can possibly
be explained if one remembers that each spin is actually a
block spin that represents the majority of its corresponding
fine spins. Introducing a positive block spin among negative
ones would result in attracting possible positive spins in its
neighborhood, pushing the negative ones away. Thus, the
introduced positive block spins have increased the probabil-
ity of finding more negative spins close to s0.

VI. THREE-DIMENSIONAL ISING MODEL

For the three-dimensional model, consider a neighbor-
hood of 26 spins that form a 33333 cube around its center.
For the neighborhood of all positive spins we obtained
P1(261)50.943 021 8(95). By flipping one of the corner
spins we get P1(251;12)50.941 228 8(75). This prob-
ability is lower, as expected from decreasing the number of
positive neighbors.

Now consider the neighborhood formed by setting the
bottom nine spins of the cube to 11, the top nine to 21 and
assigning 11 to four of the eight spins in the middle layer in
a consecutive manner, P1(131;132)50.5. Flipping the
positive corner that has more positive neighbors than the
others, we find that P1(121;142)50.501 723 9. As in two
dimensions, we again find a case in which making a spin
negative can have a positive effect instead of the more intu-
itively plausible positive effect. This shows that the strange
results found in two dimensions are also found in three di-
mensions, so they should be regarded as a common feature

FIG. 2. The 36-spin neighborhood surrounding a spin s0, de-

noted by B(2). B(1) is obtained by flipping the 21 marked by a

s .
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of renormalization group transformations.
Again we checked on whether we would find linear be-

havior for a sequence of spin reversals at a given distance.
Because of the greater difficulty in obtaining good statistics
in three dimensions, we looked at the third neighbors ~lo-
cated at the corners of the cube!. We considered the sequence
of all spins positive, one corner reversed, two spins on op-
posite corners reversed, and three spins, including two oppo-
site corners. The results were: P1(261)50.943 021 8(95),
P1(251;12)50.941 228 8(75), P1(241;22)
50.939 430 1(131), and P1(231;32)50.937 895 1(165),
with corresponding differences of 0.001 79(1), 0.001 80(2),
and 0.001 54(2). Here, the two opposite spins have indepen-
dent influences, indicating no detectable multispin effects.
However, the third corner spin has an effect that is signifi-
cantly reduced. We believe that this reflects the fact that it is
closer to the previous two spins than the two opposite cor-
ners are to each other. Therefore, this example has given us a
hint of where the boundary is between needing to include
multispin effects, and being able to ignore them.

VII. CONCLUSIONS

In this paper, we have introduced a different method of
investigating more distant renormalized interactions with
high accuracy. Our studies have indicated that multispin in-
teractions are far more important than commonly assumed.
Even though the individual multispin interactions usually
have smaller coupling constants than two-spin interactions,
the fact that they are very numerous can lead to multispin
interactions dominating the effects of two-spin interactions.
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