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Linear ordering problems are combinatorial optimization problems which deal with
the minimization of different functionals in which the graph vertices are mapped onto
(1, 2, ..., n). These problems are widely used and studied in many practical and theoret-
ical applications. In this review we summarize a variety of linear-time algorithms for these
problems inspired by the Algebraic Multigrid approach which is based on weighted edge
contraction. The experimental results for four such problems turned out to be better than ev-
ery known results in almost all cases, while the short running time of the algorithms enables
applications on very large graphs.

1 Introduction
The objective of the class of linear ordering problems is to minimize different functionals
that map the set of the graph vertices onto (1, 2, ..., n). This class contains many graph
(or matrix) layout problems such as : the minimum p-sum (MpSP), the bandwidth, the
workbound reduction, the wavefront, the envelope size, etc. Some problems, such as finding
the minimum linear arrangement [27] or the bandwidth [21], appear in many applications
for solving problems in the large sparse matrix computation. Some other are closely related
to the problem of calculating the envelope size of a symmetric matrix or, more precisely,
to the amount of work needed in the Cholesky factorization of such a matrix [15]. Linear
ordering problems may also be motivated as a model used in VLSI design [10] and may be
used in several biological applications, graph drawing and other fields (see [13,16,21,29]).
Commonly for general graphs (or matrices) these problems are NP-hard and their decision
versions are NP-complete [14].

Since these problems have a practical significance, many heuristic algorithms were de-
veloped in order to achieve near optimal solution. Among the most successful are spectral
sequencing [18], optimally oriented decomposition tree [1], multilevel based [17,20], simu-
lated annealing [22] and others. Some of these algorithms have proven themselves superior
in solution quality while others in execution time.

One of the most popular and exploitable method designed to achieve a suitable lin-
ear ordering for different problems is the spectral sequencing (SS) [18]. This approach
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consists of ordering the graph vertices according to the sorted coordinates of the second
eigenvector of the graph Laplacian. The heuristic argumentation of SS is based on the fact
that the continuous version of the minimum 2-sum problem can be solved by this method
to the optimum [18]. In practice, for the (discrete) minimum 2-sum it was shown in [28]
that the direct application of SS (without additional reinforcement postprocessing) on ”real
world instances” does not achieve good enough results, while the lower bounds based on
SS are very far from the best known ordering costs. Rather poor results of the exact SS
were presented in [11] for the minimum bandwidth problem. Better results were shown
there by using different approximated SS, i.e., by calculating the second eigenvector less
precisely. In fact, they have tested 19 algorithms (17 of which are different versions of SS)
and presented the best achieved results among all. In Section 4 we show the significant im-
provement achieved by our algorithm over all those algorithms: on the average our results
were better by 34%.

In this review we present a general framework of multilevel algorithms especially de-
signed for linear ordering problems. Our strategy is based on the Algebraic MultiGrid
scheme (AMG) [3, 5, 6, 9, 25, 31, 32]. We demonstrate how the building blocks of the gen-
eral multilevel approach can be used in several ways to make it suitable for solving various
functionals. In particular, three approaches are presented: (1) the basic multilevel scheme
for solving the minimum 2-sum problem; (2) a continuation method in which a sequence of
increasingly p-sum problems are involved until a desired p is reached, e.g., the bandwidth
of a graph can be approximated by large enough p that can be considered infinite for prac-
tical purposes; (3) in addition, we propose to use the ordering obtained by the minimum
2-sum problem as a first approximation for other linear ordering problems, which is then
improved by a postprocessing of local minimizations with actual use of the relevant func-
tional. This approach is demonstrated for the workbound reduction problem and for the
wavefront reduction problem.

The main objective of a multilevel based algorithm is to create a hierarchy of problems,
each representing the original problem, but with fewer degrees of freedom. General mul-
tilevel techniques have been successfully applied to various areas of science (e.g. physics,
chemistry, engineering, etc.) [4, 7]. AMG methods were originally developed for solving
linear systems of equations resulting from the discretization of partial differential equations.
Lately they have been applied to various other fields, yielding for example novel methods
for image segmentation [30] and for the linear arrangement problem [27]. In the context
of graphs it is the Laplacian matrix that represents the related set of equations. The main
difference between our approach to most other multilevel approaches (related to various
graph optimization problems) is the coarsening scheme. While the previous approaches
may be viewed as strict aggregation process, the AMG coarsening is actually a weighted
aggregation : each node may be divided into fractions, and different fractions belong to
different aggregates. This enables more freedom in solving the coarser levels and avoids
making hardened local decisions, such as edge contractions, before accumulating the rele-
vant global information.

One of the important achievements of our work is the general coarsening scheme that
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turns out to be suitable for all the different functionals we have tested. This fact can be
explained by the way the hierarchy of problems is constructed: variables are eliminated
within the coarsening phase only and exactly when they show strong dominant connections
to the remaining (non-eliminated) variables, this in turn guarantees that the solution of the
eliminated variables is naturally obtained once the non-eliminated variables are solved. The
various algorithms thus differ only in the disaggregation process which follows by project-
ing to a finer level the final arrangement obtained on a coarser level. This initial fine level
arrangement is being further improved by applying different local reordering methods. We
have developed a simultaneous minimization of several vertices called Window Minimiza-
tion. In its basic application (for the 2-sum problem [28]) it involves the minimization of
a quadratic form. More evolved functionals can be used after quadratization. Also, we
suggest the use of numerical calculation rather than analytic, for instance, in calculating
derivatives. Finally, our postprocessing is intensified by Simulated Annealing (SA) [19]
which is a general stochastic method to escape local minima. In the multilevel framework
SA is aimed at searching only for local changes that guarantee the preservation of large-
scale solution features inherited from coarser levels. This stochastisity turned out to be
important especially for the minimum linear arrangement problem.

The discussion about theoretical complexity issues, such as lower and upper bounds
for the solution cost, is beyond of the scope in this review. We are not interested in worst
possible scenarios nor in random instances. Our focus is on practical high-performance and
low computational cost algorithms that will outperform existing algorithms by providing
better results in less running time. For that purpose we used a known benchmark [12]
from which we took graphs of various origins and sizes including very large instances. Our
multilevel algorithm exhibit linear complexity, i.e., the computational cost is proportional
to |V |+ |E|.

We compared the results obtained by our multilevel algorithms with many previously
described algorithms. In this chapter we summarize the results of the minimum 2-sum, the
bandwidth and the workbound problems and show that our results are on the average better
than previous ones by about 30%, while the running time for graphs with about 104 nodes
and 105 edges is less than one minute on 1.7GHz PC. In general, our experimental results
show that the AMG framework can be used for linear ordering problems to obtain high
quality results in linear time while using the exact same set of parameters. The implemented
algorithm can be downloaded from [26].

The review is arranged as follows. The various functionals and their generalizations
are described in Section 2. The multilevel algorithm along with additional optimization
techniques are presented in Section 3. A comparison of our results with other works is
finally summarized in Section 4.

2 Definitions and generalizations
Given a weighted graph G = (V, E), where V = {1, 2, ..., n}, denote by wij the non-
negative weight of the edge ij between nodes i and j (if ij /∈ E then wij = 0). The MpSP
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is defined by

minimize over π σp(G, π) =
∑

ij

wij|π(i) − π(j)|p , (1)

where π is a permutation over V . During the multilevel solver, each vertex i is as-
signed with a volume vi, thus (1) becomes minπ σp(G, x) =

∑
ij wij |xi − xj|

p, where
xi = vi

2 +
∑

k,π(k)<π(i) vk. The bandwidth problem is defined by

bw(G) = min
π

max
ij
|π(i)− π(j)| = min

π
lim

p→∞
(σp(G, π))1/p, (2)

and the workbound reduction problem by

minimize over π wb(G, π) =
∑

i

max
j,π(j)<π(i)

wij(π(i)− π(j))2 , (3)

where the max function may be approximated by

wb(G, x) ≈
∑

i

( ∑

j:xj<xi

wij(xi − xj)
p
)2/p

. (4)

3 General multilevel scheme
In the multilevel framework a hierarchy of decreasing size graphs : G0, G1, ..., Gk is con-
structed. Starting from G0 = G, create by coarsening the sequence G1, ..., Gk , then solve
the coarsest level directly, and finally uncoarsen the solution back to G. This entire process
is called a V -cycle.

= GG

k

k-1

2

1

0

G
G

G
G

Figure 1: The Scheme of a V-cycle. Solid arrows stand for coarsening, dotted for uncoars-
ening.

Coarsening: Weighted Aggregation. The construction of a coarse graph is divided
into three stages: (a) a subset of the fine nodes is chosen to serve as the seeds of the
aggregates (which form the nodes of the coarser level), (b) the rules for interpolation are
determined, and (c) the weights of the edges between the aggregates are calculated.
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Coarse Nodes. The construction of the set of seeds C and its complement F is
guided by the principle that each F -node should be “strongly coupled” to C . Starting from
C = ∅ and F = V , nodes are transferred from F to C until all remaining i ∈ F satisfy∑

j∈C wij/
∑

j∈V wij ≥ 0.4 .
The Coarse Problem. Define for each i ∈ F a coarse neighborhood Ni consisting of

C-nodes to which i is connected. Let I(j) be the ordinal number in the coarse graph of the
node that represents the aggregate around a seed whose ordinal number at the fine level is
j. The classical AMG interpolation matrix P is defined by

PiI(j) =





wij/
∑

k∈Ni

wik for i ∈ F, j ∈ Ni

1 for i ∈ C, j = i
0 otherwise .

(5)

PiI(j) thus represents the likelihood of i to belong to the I(j)-th aggregate. The edge con-
necting two coarse aggregates p and q, is assigned with the weight wpq =

∑
k 6=l PkpwklPlq.

The volume of the p-th coarse aggregate is
∑

j vjPjp.
The coarsest level. Solving the appropriate functional at the coarsest level is performed

by trying all possible arrangements. Since the amount of work investigated at the coarsest
levels is negligible compared with that of the finest levels, many solutions can in fact be
kept at each level whose graph is relatively small with respect to G.

Disaggregation (uncoarsening). Having solved a coarse problem, the solution to the
next-finer-level problem is initialized by first placing the seeds according to the coarse order
and then adjusting all other F -nodes while aiming at the minimization of the arrangement
cost. This first approximation is subsequently improved by several relaxation sweeps,
first compatible, then regular. Finally, the arrangement is improved by strict minimization.
Details follow below.

Initialization. Given is the arrangement of the coarse level aggregates in its gener-
alized form, put first each seed j ∈ C at yj = xI(j). Next define V ′ ⊂ V to be the
subset of nodes that have already been placed, so we start with V ′ = C . Then proceed
by positioning each fine node i ∈ V \ V ′ at the coordinate yi in which the cost of the
arrangement, at that moment when i is being placed, is minimized. For the MpSP: if
p = 1 then yi ∈ {y : |

∑
yj<y, j∈V ′ wij −

∑
yj>y, j∈V ′ wij | is minimal}; if p = 2 then

yi =
∑

j∈V ′ yjwij/
∑

j∈V ′ wij ; and for a general (even) p yi has to minimize

∑

j∈V ′

wij(yi − yj)
p

(can be achieved by several Newton-Rhapson steps). Then V ′ ← V ′ ∪ {i} and the process
continues until V ′ = V . Finally, in order to take volumes into account, each position yi is
changed to

xi =
vi

2
+

∑

yk<yi

vk . (6)
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Relaxation. The arrangement obtained after the initialization is a first feasible solution
for the MpSP which is then improved by employing several sweeps of relaxation, first
compatible then Gauss-Seidel-like. These two types of relaxation are very similar to the
above initialization: The compatible relaxation, improves the positions of the F -nodes one
by one according to the minimization criteria above (where V ′ = V ), while keeping the
positions of the seeds (C-nodes) unchanged. The Gauss-Seidel-like relaxation is similarly
performed, but for all nodes (including C). Each such sweep is again followed by (6).

Window Minimization (WM). The cost of the arrangement can be further reduced by
strict minimization, a sequence of rearrangement that accepts only changes which decrease
the arrangement cost. We first describe the basic WM involving the quadratic form for
p = 2. Given a current approximation x̃ to the arrangement of the graph, denote by δi

a correction to x̃i. Let W = {π−1(s + 1), ..., π−1(s + q)} be a window of q sequential
vertices in the current arrangement. The local minimization problem of the p = 2 functional
is

minimize σ2(W, x̃, δ) =
∑

i,j∈W

wij(x̃i + δi− x̃j− δj)
2 +

∑

i∈W,j 6∈W

wij(x̃i + δi− x̃j)
2. (7)

To prevent the possible convergence of many coordinates to one point, and, more precisely,
to express the aim of having {xi + δi}i∈W an approximate permutation of {xi}i∈W one
should add constraints of the form

∑

i∈W

(x̃i + δi)
mvi =

∑

i∈W

x̃i
mvi , m = 1, 2 (8)

where for m = 2 we have neglected the quadratic term in δi. Note that the sums∑
i∈W

x̃i
mvi for m = 1, 2 are invariant under permutations. Using Lagrange multipliers

λ1 and λ2, the final formulation of the WM for p = 2 is the following system of equations:




∑
j∈W

wij(δi − δj) + δi
∑

j 6∈W
wij + λ1vi + λ2vix̃i =

∑
j wij(x̃j − x̃i) for i ∈W∑

i δivi = 0∑
i δivix̃i = 0 .

(9)
The use of WM for non-quadratic functional is achieved by quadratization. For p > 2,

define ŵij = wij(x̃i − x̃j)
p−2 and the WM follows by substituting wij with ŵij in (7) and

(9).
For the workbound reduction problem the WM of a concrete W can be approximated

by

wbp(W, x̃, δ) =
∑

i∈W

( ∑

j∈W, x̃j<x̃i

wij(x̃i+δi−x̃j−δj)
p+

∑

j 6∈W, x̃j<x̃i

wij(x̃i+δi−x̃j)
p
)2/p

.

(10)
The quadratization of (10) is achieved by Taylor expansion up to the third term.

Adding stochastisity. A general method to escape false local minima and advance to
lower costs is to replace the strict minimization by a process that still accepts each candi-
date change which lowers the cost, but also assigns a positive probability for accepting a
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candidate step which increases the cost of the arrangement. The probability assigned to a
candidate step is equal to exp(−∆/T ), where ∆ > 0 measures the increase in the arrange-
ment cost and T > 0 is a temperature-like control parameter which is gradually decreased
toward zero. This process, known as Simulated Annealing (SA) [19], in large problems
would usually need to apply very gradual cooling (decrease of temperatures), making it
extremely slow and inefficient for approaching the global optimum.

In the multilevel framework, however, the role of SA is somewhat different. At each
level it is assumed that the global arrangement of aggregates has been inherited from the
coarser levels, and thus only local, small-scale changes are needed. For that purpose, we
have started at relatively high T , lowered it substantially at each subsequent sweep, until
strict minimization is employed.

Repeated heating and cooling is successively employed for better search over the local
landscape. This search is further enhanced by the introduction of a “memory”-like tool
consisting of an additional permutation which stores the Best-So-Far (BSF) observed ar-
rangement, which is being occasionally updated by a procedure called Lowest Common
Configuration (LCC) [8]. LCC enables the systematic accumulation of sub-permutations
over a sequence of different arrangements, such that each BSF sub-permutation exhibits
the best (minimal) sub-order encountered so far. The cost of the obtained BSF is at most
the lowest cost of all the arrangements it has observed, and usually it is lower. The use of
LCC becomes more important for larger graphs, where it is expected that the optimum of
a subgraph is only weakly dependent on other subgraphs. The complete description of the
LCC algorithm is given in [27].

We have tried to apply SA for all mentioned functionals as well as in [24, 27, 28]. The
influence of this method on the bandwidth and workbound functionals was insignificant.
The final results were changed within their standard deviation. However, in our previous
work on the minimum linear arrangement [27] and in [24], we observed quite an impressive
improvement while applying simulated annealing. Thus, we suggest to use it in the general
multilevel scheme for various functionals.

Continuation method. The disaggregation scheme for the minimization of σp(G, x)
is based on continuation in the parameter p, such that p = 2 is used to exactly solve
the coarsest level, then at each subsequent finer level p is increased. Thus, every level l
minimizes σp(Gl, x) by initialization from σp−2(Gl+1, x). The successive increase in p is
continued, if needed, at the end of the V-cycle during the strict minimization.

4 Results and Related Works
The Minimum linear arrangement [27]. We have tested our algorithm on the bench-
marks provided by Petit [22] and Koren [20]. Most successful competitive heuristics were :
Spectral Sequencing, Optimally Oriented Decomposition Tree, Multilevel based, Simulated
Annealing, Genetic Hillclimbing and some of their combinations. The test suite provided
in [22] contains rather small graphs for which our algorithm gave the best costs (in almost
all cases) in comparison to all previously listed heuristics. The running time was so negli-
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gible, that comparison was meaningless. The most interesting result was the comparison of
our AMG-like algorithm with the combination of spectral and multilevel approaches [20]
on very large graphs (introduced there). The fast version of our algorithm which run only
a fifth of the time of [20] exhibited an average improvement of 7%. Our slower but more
evolved (which basically applies more simulated annealing) version improved the costs
of [20] by 12% (for complete list of results see [27]).

Another algorithm that was able to deal with these large-scale instances has been re-
cently published by Rodriguez-Tello et al. [23]. This algorithm is based on a sophisticated
evaluation of the σ1 functional that was used in a two-stage simulated annealing framework.
Spending on the average at least thirteen times more computational time than our slower
version, their results show an average improvement of 1.3%.

The Minimum 2-sum [28]. We have found only one article [15] with an implemented
algorithm and numerical results for the minimum 2-sum problem. The algorithm is based on
the spectral approach. Since their test suite is relatively small to provide enough information
regarding the problem, we have launched a new, much larger test suite and compared our
results to the spectral approach. Our multilevel algorithm without any minimization at the
finest level provided much better results (better by an average of 31.4%) than the spectral
one, see Figure 2. Finally, the minimization process applied after both strategies has proven
itself to be good enough for both of the approaches and almost equalized the results. For
complete list of results see [28].

0 5 10 15 20 25 30 35 400

0.5

1

Figure 2: Minimum 2-sum ratios for the 43 graphs of [28]. Each bar represents a ratio
between our σ2 average of 100 trials and previously best known σ2 values.

Bandwidth. We have chosen to test our algorithm on the test suites of [2, 11] which
also include large enough inputs to make the picture complete. The ratios of our results
to the best known values from [2, 11] are depicted in Fig. 3. The experimental results
of each graph are described by a triple of bars, where every bar corresponds to a V-cycle
with different number of WM sweeps. The first (second, third) bar corresponds to the V-
cycle with 5 (10, 200) WM sweeps at all (all, the finest) levels. Each bar represents a ratio
between our σ∞ average of 100 trials and previously best known σ∞ value. The third bar
shows improvement of 34% on the average over the previously best known values.

Workbound reduction. We present the results of the workbound reduction problem
as ratios to the best values from [11] (Fig. 4). Each graph is represented by a pair of
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Figure 3: Bandwidth ratios for the 43 graphs of [2] and [11].
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Figure 4: Workbound ratios for the 43 graphs of [2] and [11].

bars. Each bar represents a ratio between our wb average of 100 trials to those in [11].
The left bar corresponds to the first approximation obtained by evaluating the workbound
functional over the solution of σ2(G) without any postprocessing. The second bar includes a
postprocessing of several iterations of WM showing an improvement of 31% on the average
over previously known values.

Wavefront reduction. As an additional experiment aimed at checking whether the
M2SP may provide a good first approximation for another functional, we tested it for
the wavefront reduction problem defined by wf(G, π) =

(∑
i |fi|

2/n
)1/2, where

fi = adj({∪i
j=1π

−1(j)})
⋃
{π−1(i)} and adj(X) =

⋃
j∈X{k : kj ∈ E}\X . We have

evaluated wf(G, π) for 15 graphs on the solution of σ2(G), without further optimizations,
and obtained similar results to those presented in [17].

5 Conclusion
We have presented a variety of multilevel algorithms for the class of linear ordering prob-
lems for general graphs. These algorithms are based on the general principle that during
coarsening each vertex may be associated to more than just one aggregate according to
some “likelihood” measure. The uncoarsening initialization, which produces the first ar-
rangement of the fine graph nodes, strongly relies on energy considerations (unlike usual
interpolation in classical AMG). This initial order is further improved by Gauss-Seidel-like
relaxation, window minimization and possibly by employing stochasticity, i.e., simulated
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annealing. The running time of the algorithms is linear, thus it can be applied to very large
graphs. In addition, we have proposed two general principles that can be used for different
functionals: (1) the continuation approach in which functionals that contain an evaluation
of power p are successively approximated by a sequence of similar but with lower power
functionals; (2) a first approximation can be obtained from the arrangement produced by
one V-cycle of the minimum 2-sum problem instead of using the very popular spectral ap-
proach.

Since our algorithms were developed for practical purposes we compared them to many
different heuristics : Spectral Sequencing, Optimally Oriented Decomposition Tree, Multi-
level based, Simulated Annealing, Genetic Hillclimbing and other. For almost all instances
we observed significant improvement either of the results or of the computational time com-
pared various state-of-the-art methods. Our algorithms have proven themselves to be very
stable (i.e., small standard deviations) and of high quality both as a first approximation (us-
ing “light” V-cycles) and as more aggressive energy minimizers (with more “heavy” cycles
and possibly postprocessing).

We recommend our multilevel algorithms as a general practical method for solving
graph (matrix) linear ordering problems and as a fast and high-quality method for obtaining
first approximation for them. The implemented algorithms can be obtained at [26].
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[32] K. Stüben. A review of algebraic multigrid. J. Comput. Appl. Math., 128(1-2):281–
309, 2001.


