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Introduction

An optimization problem is the task of minimizing (or maximizing —
for definiteness we discuss minimization) a certain real-valued “objec-
tive functional” (or “cost”, or “energy”, or “performance index”, etc.)
E(z), possibly under a set of equality and/or inequality constraints,
where x = (z1,...,%,) is a vector (often the discretization of one or sev-
eral functions) of unknown variables (real or complex numbers, and/or
integers, and/or Ising spins, etc.). A general process for solving such
problems is the point-by-point minimization, in which one changes only
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one variable z; (or few of them) at a time, lowering E as much as possi-
ble in each such step. More generally, the process accepts any candidate
change of one or few variables if it causes a drop in energy (6F < 0).
Even without constraints, this process would usually suffer from the
following two types of difficulties:

(i) Slow convergence: due to the localness of the process, large-
scale features (e.g., smooth components) in x are slow to converge. Ac-
celeration by multiscale (e.g., multigrid) methods is the general cure to
this trouble, since it supplements the local processing with increasingly
larger scale processing, based on information suitably gathered from the
fine scale. The slow-convergence primarily occurs in some neighborhood
of the desired solution, where the optimization problem can often be
approximated by quadratic optimization, which is equivalent to solv-
ing a linear system of equations. Therefore the multiscale methods for
treating this slowness often takes the form of fast solvers for large lin-
ear systems of equations, with various extensions to nonlinear system.
Such multiscale solvers have been developed for several decades now,
first as solvers for discretized partial differential equations (PDEs), then
expanded to general algebraic systems, mainly of local equations.

The first part of this article (Secs. 1-7) surveys these solvers, the
emphasis being on an algebraic point of view, with only little discussion
of PDE motivations and applications.

(ii) False convergence: In many highly nonlinear or discrete-state
problems, instead of converging to the true global minimum of E, the
point-by-point minimization process converges to the minimum of E in
a certain restricted “attraction basin”, in which the process is trapped.
The basin is a set of configurations from which the employed process
cannot proceed to configurations with lower E, although such configu-
rations do exist. The emphasis in global optimization methods is the
treatment of this type of trouble.

In this survey we do not attempt to fully cover the very extensive
topic of global optimization. We only outline (especially in Secs. 9—
11) some basic multilevel strategies to deal with highly non-quadratic
optimization problems characterized by a multitude of nested attraction
basins. The methods are of course partly based on approaches described
in the first part, since tools for accelerating large-scale convergence are
also useful for escaping large-scale attraction basins.

Content outline. The sections in this survey are loosely related to
each other and can be approached independently. The following outline
can help the reader locate particular topics.
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1. Unconstrained quadratic optimization and basic multiscale con-
cepts: Relaxation can always efficiently reduce the information content
of a problem, enabling its coarsening. Interscale transfers, coarse equa-
tions (FAS, CS and EIS schemes) and multilevel cycles.

2. Linear geometric multigrid: PDE origin. Relaxation smoothing
rates. Multigrid cycle and its efficiency: theoretical and rigorous analy-
sis. Full multigrid (FMG). Method development, scope and needed ex-
pertise. (Local grid refinements and unbounded domains are discussed
in Sec. 7, inverse PDE and eigenproblems — in Sec. 8.)

3. Algebraic multigrid (AMG): Choice of coarse variables based on
compatible relaxation convergence speed, implying a near-locality prop-
erty. Galerkin coarsening. Interpolation rules in classical AMG and in
Bootstrap AMG (BAMG). Adaptive relaxation. In-cycle iterant recom-
binations.

4. Numerical homogenization: High-accuracy coarsening: Macro-
scopic equations for repetitive systems. Solution methods for many sim-
ilar problems, many eigenvectors or many near-zero eigenvalues.

5. Non-symmetric and highly indefinite matrices: Modified relaxation
and coarsening. Multi-Galerkin coarsening. From wave equations to
rays.

6. Non-local equations: Dense matrices: Exploiting underlying smoot-
hness or asymptotic smoothness for fast matrix multiplication. Multigrid
solvers based on distributive relaxation.

7. Non-quadratic optimization: Nonlinear systems: Advantages and
disadvantages of Newton linearization for coarsening. Full Approxima-
tion Scheme (FAS) for direct nonlinear multigrid solution; Yavneh’s
modification. Algebraic quasilinearity. Local refinements of PDE dis-
cretizations, once-visited refinements and unbounded domains. Contin-
uation and bifurcation. Systematic upscaling of autonomous systems.

8. Constrained optimization and eigenproblems: Local equality con-
straints: optimal control and inverse PDE. Feedback optimal control.
Global and intermediate-scale constraints. Multigrid and AMG eigen-
problem solvers. The Exact Interpolation Scheme (EIS) for general con-
straints and for eigenproblems. Many and high eigenvectors. Inequality
constraints.

9. Nomn-deterministic systems: Statistical mechanics. Monte Carlo
methods and their slowness. Cluster methods. Interpolation-based mul-
tiscale methods. Renormalization multigrid (RMG) — general principles.
Low temperature algorithms.

10. Global optimization: Multilevel annealing: Inefficiency of classi-
cal simulated annealing. Coarse-level variables for highly repetitive sys-
tems. Identification of large-scale moves and their multi-scale re-shaping.
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Nested revisions. Taming local excitations and multiscale population al-
gorithms.

11.  Graph and hypergraph problems: Applications of various opti-
mization strategies mentioned above to representative graph/hypergraph
problems: eigensolvers, weighted aggregations, post-relaxation, pre-rela-
xation, linearization, multilevel annealing, excitation taming, re-shaping
large-scale movements and multiscale population algorithms.

12. Multilevel formulation: Multiscale processing can serve not only
for efficient solution of problems, but also for their improved formulation
when fuzzy or ill-posed. Example: image segmentation.

1. Unconstrained quadratic optimization and
basic multiscale concepts

Notation. The general unconstrained quadratic optimization prob-
lem can be stated as the problem of calculating a real n-vector z for
which

E(z) = 32T Az — b7z is minimal , (1.1)

where A is a given real symmetric positive-definite n X n matrix, and
b is a given real n-vector. The minimizing vector x satisfies the linear
system of equations

Az =b. (1.2)

Thus, our discussion next (Secs. 1-4) will focus on fast multiscale solvers
for this general system (adding in Sec. 5 comments related to the cases
that A is not symmetric and/or not positive-definite, which may arise
in constrained optimization problems).

For any approximate solution z, we denote by e = z — Z the error
vector, by r = Ae = b — Az the vector of residuals, and by a;; the
entries of A, (4,5 = 1,...,n). Thus, r; = b; — }°7_; a;;7; and the error
satisfies the residual equation

n
Ae=r 5 i.e., Zaijej =T (1.3)

We use |- || for the £3 norm and || -||,4 for the A-normalized {2 norm,
ie.,
|ril*

1.4
lap O

lel* = Zlezl2 174 = Zzn

so that for “most” (e.g., random) errors || Ae||,4 is comparable to | e,
but always || Ael[,4<||e]|-
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Relaxation. A point-by-point minimization of (1.1) is equivalent to
the Gauss-Seidel (GS) relazation of (1.2), defined as follows. In each
GS sweep, the n equations in (1.2) are scanned in their natural or-
der, and each equation ¢ in its turn is satisfied by replacing the cur-
rent approximation to the associated unknown z; with the new value
Zi = a; (bi — ¥4 035 ;)

A common feature of this and any other type of relaxation is that at
each step some corrections to T are calculated based on a small number
of residuals. As a result, convergence must be slow when the individual
residuals do not show the true magnitude of the error, i.e., when |[7|/4
< ||e]|. The converse is also true (and proved in [Brandt, 1986] even for
non-symmetric matrices): If the convergence of a suitable (e.g., GS for
symmetric A) relaxation scheme is slow, then ||7],4 = |[Aell;4 < [le]|
must hold. Since the deeper the condition || Ae||;4 < || e]| is satisfied
the more special must be the type of the error || e||, a suitable relazation
can always efficiently reduce the information content of the error, and
quickly make it approrimable by far fewer variables. This observation is
very general and holds even for quite general nonlinear systems.

Coarser level. Thus, following a small number of relaxation sweeps,
the remaining error e, and hence also the solution z itself can be approx-
imated by a “coarser” (or “diluted”) system, i.e., a system with variables
(z5,...,2¢,), where m is a fraction of n, typically n/8 < m < n/2. A
first issue in any coarsening scheme, whether for a linear or nonlinear
system, is how to define the set z°. In the classical case of “geomet-
ric multigrid”, where the fine-level set z is defined on a well-structured
grid, the coarse set x¢ is naturally defined in terms of coarsening that
grid, for example by omitting from it every other row and/or column (see
Sec. 2). In “algebraic multigrid” z¢ is typically a subset of z (see Sec. 3),
and in various types of other problems (e.g., wave equations, atomistic
and molecular particles models, graph problems, etc.) all kinds of other
coarse sets make sense (see some examples in Secs. 5-11). The general
principle is that ¢ and z should be easily derived from each other: z¢ is
usually either a subset of x or averages of x or otherwise explicitly cal-
culated from x, while z should be derivable from z¢ by a short sequence
of relaxation sweeps. This means that it is enough to find x¢ in order
to obtain either z itself or at least an approximation to e and hence a
substantially improved approximation to z. For that purpose, however,
equations for calculating ¢ — the coarse-level equations — should be
constructed.

Coarse equations. There are several ways to construct approximate
coarse equations. An inexpensive direct (i.e., not interpolation-based)
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derivation is available in geometric multigrid, based on the PDE origin
of the equations (see Sec. 2). In other cases (non PDE origin or unstruc-
tured grids) direct derivations are still possible, either by combining fine-
level equations so as to nearly cancel dependence of a coarse unknown on
non-coarse variables (which is suitable for linear systems; see [Brandt,
2000]), or by tabulating relations between the coarse variables z¢ that
correspond to the many fine-level configurations x that appear during
extensive fine-level simulations (see the systematic upscaling of nonlin-
ear systems in Sec. 7). These algebraic (non PDE) direct derivations are
however too expensive, except in the case of autonomous systems (see
Sec. 7).

Relatively inexpensive algebraic derivations of coarse equations are
obtained via the derivation of an explicit coarse-to-fine interpolation op-

erator Tf such that x =~ Tfa:c The coarse equations are then simply the
equations for minimizing E(T({:cc) In the quadratic minimization prob-

lem (1.1), if Tf is linear or affine, then this coarse minimization problem
is again quadratic, yielding again a linear system of equations.

Interpolation-based schemes. A basic rule that the interpolation
operator must satisfy is stationarity, meaning that the current approx-
imation Z (the approximation to the minimizing x just before switching

to the coarse level) must satisfy T = Tf%ﬂ This ensures that if Z is
already at the desired minimum of E(z), the algorithm will never move
away from it: z¢ = z°¢ is the solution of the coarse equations, since it
. ~f .
minimizes E(1,z°).
The classical multigrid (including algebraic multigrid) way to ensure
stationarity is to define

ot =1 @~ ) + & (1.5)

which yields the so-called Full Approximation Scheme (FAS; see Sec. 7).
Here 1/ is a linear interpolation operator (i.e., an » X m matrix), in-
dependent of the current approximation Z or its coarse representation
z°¢, designed once for all so that any error e® left after several relaxation
sweeps satisfies e ~7/ e. In fact, instead of z¢, the variable e® = z¢ — ¢,
which approximates the sought correction (i.e., the error) e, can be em-
ployed at the coarse level, thus yielding the so-called Correction Scheme
(CS), which is widely used for linear problems (as in Secs. 2—6 below).

In the recent Ezact Interpolation Scheme (EIS, appearing in Sec. 8) Tf
is itself linear (n x m matrix), and it is updated each time the algorithm
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switches to the coarse grid, so as to satisfy T = T({EC with the current
approximation .

A more complex, multi-interpolation scheme is needed in some cases,
such as highly indefinite problems: see Sec. 5.

Multilevel cycles. Having constructed the coarse-level equations,
they are then (approximately) solved by a similar procedure: a small
number of relaxation sweeps followed by approximating the remaining
error with a still coarser system. This recursively defines the multilevel
cycle, which, for a work comparable to that of just few relaxation sweeps
over the finest level (the given system), would usually reduce the error
to a small fraction (far less than .5, typically) of its pre-cycle size.

2. Linear geometric multigrid

Multilevel solvers were first developed in the form of multigrid al-
gorithms for solving linear partial differential equations discretized on
regular grids. Their main features are surveyed below. For an extended
elementary acquaintance, see for example the early chapters in [Briggs
et al., 2000], [Trottenberg et al., 2000] or in [Venner and Lubrecht, 2000].

When the matrix equation (1.2) is a discretization of a differential
system Lu = f on some grid, the condition || Ae||;4< || ¢ ||, which is
necessarily obtained when relaxation slows down, can be interpreted as
saying that the error e approximates a continuous function v satisfying
| Lv || < || L] - || v || in some corresponding norms. In case L is
a uniformly elliptic operator, this implies that v, and similarly e, is a
smooth function. In case L is not elliptic, a certain smoothness along
special lines, called characteristics, is at least implied. Hence, relaxation
efficiently reduces mon-smooth components, thus making the remaining
error smooth and hence approrimable on a coarse grid.

Smoothing factor. A precise measure for the efficiency of smooth-
ing by a given relaxation scheme can be calculated in the common case
that the discretization grid is uniform and the relaxation sweep scans
its points in some consistent order. Ignoring boundaries and variations
in the coefficients of equations, a simple calculation yields in this case
the convergence factor per sweep of each Fourier component of the error
(see, e.g., [Brandt, 1977] or [Trottenberg et al., 2000]). The smooth-
ing factor Ti is then defined as the largest (i.e., the worst) convergence
factor per sweep among all those components which are too oscillatory
to be visible on the coarse grid (hence must be reduced by the relax-
ation process). For example, for the Poisson equation in two dimensions
0%?u/0x? + 8%u/0y® = f, discretized by the standard five-point second-
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order discretization, and for the standard coarsening (1:2 meshsize ratio),
it turns out that @ = .5 if the GS relaxation scans the gridpoints in “lex-
icographic” (row by row) ordering, and = .25 if they are scanned in
red/black (checkerboard) order. Hence, two red/black GS sweeps reduce
all error components invisible to the coarse grid by a factor .25% = .0625.

Correction Scheme (CS). To approximate the smooth error e =
x — X left after several relaxation sweeps, its equation Ae = r is approx-
imated on the coarse level by an equation of the form

A = 7° . (1.6)

If (1.2) is a discretization on a grid with meshsize h of a certain differen-
tial problem, one can define A° as the matrix obtained in a similar dis-
cretization of the same problem on a grid with a larger meshsize H. The
standard, and usually the most efficient, meshsize ratiois h: H =1 : 2.
The right-hand side of (1.6) is defined by 7¢ =1¢ r, where 75 is a fine-to-
coarse transfer operator, called residual weighting or restriction. That
is, 1% 7 is a coarse-grid function whose value at each point is (typically)
a certain weighted average of values of r at neighboring fine-grid points.
(A€ and ¢ can also be defined by the Galerkin procedure described in
Sec. 3 below).

Having obtained (in a way discussed later) an approximate solution
€° to Eq. (1.6), we then use it as a correction to the fine-grid solution.
Namely, we replace

i—a+1]e, (1.7)

where 1/ is a coarse-to-fine interpolation matrix (also called prolonga-
tion). That is, at each fine-grid point the value of 1/ &¢, designed to
approximate e, is interpolated from values of €° at neighboring coarse-
grid points. Linear interpolation can be used in most cases. (General
rules concerning the orders of 1/ and 1% are given in [Brandt, 1982, §4.3]
and [Brandt, 1994].)

The whole process of calculating 7“ =1% r, solving (1.6) and interpo-
lating the correction (1.7) is called a coarse-grid correction.

Multigrid cycle. To efficiently get an approximate solution to the
coarse-grid equation (1.6), we employ the above solution process re-
cursively; i.e. (1.6) is itself solved by relaxation sweeps combined with
still-coarser-grid corrections. Thus one multigrid cycle for improving a
given approximate solution T to the system Ax = b is defined recursively
as the following 6 steps.

1 If the given grid includes a small number of points — solve the
equations directly, e.g., by Gaussian elimination.
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2 Pre-relazation: Perform v; relaxation sweeps on (1.2) starting
with the initial T, resulting in a new approximate solution z.

3 Restriction: Calculate r¢ =1% (b — AZ).

4 Recursion: Starting with e© = 0, make v successive multigrid
cycles for improving €¢ as an approximate solution to the system
(1.6).

5 Correction: 7 =3+ 1] ¢°.

6 Post-relazation: Perform vy additional relaxation sweeps on (1.2),
starting with Z and yielding the final T of the cycle.

The sweep counts v; and vy are typically 0, 1 or 2, with 11 + v being
2, 3 or 4. The cycle inder +y is usually 1 or 2 (called V or W cycle,
respectively, due to the shape of its flowchart; see for example Fig. 1.1).

Cycle efficiency. The v = vy + v5 sweeps performed in a V' cycle on
any of its grids are expected to reduce the corresponding error compo-
nents (those visible on that grid but not on the coarser ones) by the factor
¥, where 7 is the smoothing factor. Since all grids are so traversed, the
cycle should heuristically reduce all error components at least by the fac-
tor 7i¥. The work invested per such cycle is only about (1—27%)"1(v+1)
work units, where a work unit is the work of one relaxation sweep on
the finest level, v 4+ 1 work units is therefore roughly the total work at
the finest level (relaxation plus residual restriction), and d is the dimen-
sion, so the number of gridpoints (and hence the work) is reduced by
2=4 per coarsening level. Experience and theory show that for regu-
lar scalar elliptic problems and small enough v this efficiency is indeed
attained, provided the boundary conditions are properly relaxed and
correct inter-grid transfers 1/ and 1% are used. Thus i can serve as an
excellent practical predictor of the multigrid performance one should be
able to obtain.

For example, for the 2D Poisson problem mentioned above, each V
cycle with 2 red/black Gauss-Seidel sweeps on each level, costing only
about 20 computer additions per unknown, reduces the error by more
than an order of magnitude.

Theoretical and rigorous analysis. There is a vast literature of rig-
orous studies of the multigrid cycle; see for example the classical book
([Hackbusch, 1985]) and many papers appearing in the proceedings of
the ten (so far) Copper-Mountain and six (so far) European conferences
on multigrid methods. These studies rigorously prove that the conver-
gence factor per V or W cycle, under various assumptions concerning
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the differential equation and its discretization, is meshsize independent:
no matter how fine is the discretization, the factor is smaller than some
constant C smaller than 1. Most often C is not numerically specified,
or the proved value of the convergence rate log% is very far from reflect-
ing the orders-of-magnitude larger rate observed in practice. Also, the
rigorous proofs apply only to relatively simple problems and synthetic
algorithms (often different from the best real algorithms).

The only quantitatively realistic (in fact quite precise) theoretical pre-
dictors are those based on localized Fourier analysis, often called local
mode analysis (LMA). The easiest and most practical LMA predictor
is the smoothing factor described above. A more elaborate predictor
is obtained by a similar Fourier analysis of a several-level (most often
two-level) multigrid cycle, thus analyzing both the relaxation and the
inter-grid transfers. (See detailed results and software for calculating
such convergence factors in [Weinands, 2001].) Although the employed
Fourier analysis is rigorously valid only for equations with constant coef-
ficients in an infinite or rectangular domains, in practice the predictions
hold in a much wider class of problems, so they are routinely used in
algorithm development and program debugging, even for complicated
nonlinear systems.

Moreover, for general linear elliptic PDE systems with piecewise smoo-
th coefficients in general domains discretized by uniform grids, it has
been rigorously proved in [Brandt, 1991a] and [Brandt, 1994] that, in
the limit of small meshsizes, the quantitatively sharp convergence factors
predicted by LMA are indeed obtained, provided the multigrid cycle is
supplemented with a proper processing at and near the boundaries. That
processing, it is proved, costs negligible extra computer work. Apart
from mode analysis, a Coarse Grid Approximation condition has been
introduced in [Brandt, 1991a] and [Brandt, 1994] which is both necessary
and sufficient for the multigrid algorithm to work properly. Various error
norms and their relations to the orders of the inter-grid transfer operators
are analyzed. Global mode analysis, required to supplement the local
analysis in various border cases, is developed, and practical implications
of the analysis, including practical ways for constructing and debugging
multigrid solvers, are generally reviewed. A major emphasis is on the
importance and practicality of adding partial (local) relaxation passes
to the multigrid algorithm (cf. [Brandt, 1977, App. A.9]): Theory and
practice show that multigrid efficiency is greatly enhanced by adding
special relaxation steps at any local neighborhood exhibiting unusually
large residuals (cf. the adaptive relazation rule in Sec. 3).
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Full Multigrid (FMG) algorithm. The multigrid cycles described
above can be applied to any first approximation given on the finest grid.
In a full multigrid (FMG) algorithm, the first approximation is ob-
tained by interpolation from a solution on the next coarser grid, which
has previously been calculated by a similar FMG algorithm. With such
a first approximation, and provided that the interpolation correctly cor-
responds to the error norm used, one multigrid cycle should suffice to
solve the fine-grid equations to the level of discretization errors. A typi-
cal FMG algorithm, with one V cycle per refinement, is shown in Fig. 1.1.
High-order discretization accuracy may require another cycle or two per
level.

The FMG algorithms are less sensitive than the multigrid cycles. That
is, in many irregular cases the asymptotic convergence factor of the cycles
is not good, but the FMG algorithm with one cycle per refinement still
guarantees solution to the level of discretization errors. This is because
unusually slow-to-converge components tend also to have unusually large
discretization errors. In any case, the apriori guarantee itself is not
really needed: From differences between the final solutions at different
meshsizes (e.g., differences between the solutions at the doubly-circled
stages in Fig. 1.1), one can directly calculate the rate of convergence to
the differential solution, which is all that really matters.

“Textbook” multigrid efficiency (TME). A fully successful FMG
algorithm, employing one V or W cycle per refinement level and a cou-
ple of strongly smoothing relaxation sweeps at each level, costs less than
ten “minimal work units” and can solve the discretized PDE to at least
second-order accuracy (error O(h?) on a given grid with meshsize ), the
“minimal work unit” being defined as the amount of operations involved
in expressing the simplest discretization (or performing the simplest re-
laxation sweep) on the given grid. This ideal efficiency has been termed
“textbook multigrid efficiency” (TME).

Note in addition that all the FMG processes, except at the coarsest
levels (whose computational work is negligible), can be executed by very
many processors in parallel.

Method development. The first two-grid method has probably been
[Southwell, 1935], followed by several others, and the first multi-grid
solver was described in [Fedorenko, 1964], but only for rectangular do-
mains and with extremely poor performance estimates (see the histori-
cal notes in [Brandt, 1977]). The first multigrid algorithms of modern
(near TME) efficiency and generality appeared in [Brandt, 1973|, in-
cluding attempts to extend them to fluid dynamics problems. The text-
book efficiency was first obtained only for scalar, linear uniformly elliptic
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Meshsize

har ()

Figure 1.1. FMG algorithm with one V cycle per level.

is the solution interpolation to a new grid.
is the interpolation of corrections.
is the fine-to-coarse transfer of residuals.

stands for v; relaxation sweeps. On the coarsest grid v = 11 + v2 and
somewhat larger vo are usually used, or the equations are solved directly.

O o/ — —-

shows the stage in the algorithm where the final solution is obtained
for the corresponding meshsize.

har is the finest level and h; is the coarsest level.

problems, but has since then been extended to nonlinear, anisotropic,
non-symmetric, non-elliptic, highly indefinite (waves — see Sec. 5) and
non-scalar PDE systems, in complex geometries and with local grid re-
finements (described in Sec. 7 below), with various discontinuities, singu-
larities, boundary layers, shocks, etc. Each of these features/difficulties
has required further conceptual development of the method. A table
summarizing many of these concepts, together with bibliographic point-
ers, is given in [Brandt, 1998].

The multigrid methods surveyed above are sometimes called “geomet-
ric multigrid”, since they are defined in terms of well structured grids.
A serious disadvantage of these methods is the demanding amount of
expertise and development effort needed to achieve ideal performance
for real-world problems. A practical, more general (working also for
unstructured grids), somewhat less efficient but still high-performance
alternative is described in the next section.
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3. Algebraic multigrid (AMG)

Algebraic multigrid (AMG) algorithms are solvers of linear systems
of equations which are based on multigrid principles but do not explic-
itly use the geometry of grids. Introduced in [Brandt et al., 1982], the
emphasis in AMG is on automatic procedures for coarsening the set of
equations, relying exclusively on its algebraic relations. AMG is widely
employed for solving discretized partial differential equations (PDEs) on
unstructured grids, or even on structured grids when the coarse grid can
no longer be structured, or when the PDE has highly disordered coef-
ficients. AMG can also be used (as in [Brandt et al., 1982]) for many
types of discrete systems not arising from differential equations.

As described above (Sec. 1), following a small number of relaxation
sweeps, the error e in solving (1.2) will satisfy || Ae||,4< | e, and can
therefore somehow be approximated by interpolation from a “coarser”
vector e“:

el e . (1.8)

In the general algebraic setting, the choice of coarse variables that de-
scribe e, the derivations of coarse equation (1.6) that approximates the
fine equation (1.3) and the interpolation operator 1/ are all determined
automatically, using the following AMG procedures.

The set C of coarse variables is chosen as a subset of the set of fine
(original) variables; or, more generally, each coarse variable is chosen to
be a linear combination of a small number of fine variables. (Even more
generally, each coarse variable can be defined as a linear combination of
several fine ghost variables, where the fine variables themselves are also
linear combinations of those ghost variables; see [Brandt, 2000, App. A]).
Thus, in any case, for each fine level vector = (or e) there corresponds
a unique coarse-level vector z¢ (respectively e€). In classical AMG (see
[Brandt et al., 1982], [Brandt et al., 1984], [Brandt, 1986], [Ruge and
Stiiben, 1987], [Stiiben, 2000]), the set C is chosen so that each fine
variable is “strongly coupled” to C' through one or several equations
(cf. the definition of coupling ag-') in (1.13) below). More generally, a
criterion for gauging, and a practical method to control, the quality
of this set can be based on sweeps of compatible relazation. This is a
modified fine-level relaxation scheme that keeps the coarse-level variables
invariant (i.e., it keeps the fine-level configuration always compatible
with the same coarse-level configuration: x changes but so that x¢ does
not change). For example, if 2¢ is defined to be a subset of z, compatible
GS relaxation simply avoids relaxing those variables of z that belong to

x¢. The set C is guaranteed to be good when (and only to the extent
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that) the compatible relazation exhibits uniformly fast convergence rates.
Where these rates are too slow, a diluted subset of the slow-to-converge
variables should be added to C (or, alternatively, subsets of the slow to
converge variables should be relaxed simultaneously; see [Brandt, 2000]).
Following this modification of C (and/or the relaxation) the convergence
factor of compatible relaxation should be checked again. Generally, that
factor is a good predictor to the potential AMG efficiency, similar to the
smoothing factor in the geometric multigrid (see Sec. 2 above).

The derivation of the coarse-level equations is described below
for systems of local equations, i.e., systems Ax = b whose variables
(z1,29,...) each has a location in a low-dimensional space, and whose
equations each involves only few, neighboring variables in that space.
Generalizations exist to “sparsely positive definite” matrices, including
positive-type matrices (see [Brandt, 1986)), to “asymptotically smooth”
and “asymptotically smoothly oscillatory” matrices, including electro-
static or gravimetric interactions (see Sec. 6 below), and to some other
types of systems. Also, the same procedures most often work reasonably
well even for cases not belonging to any of these types.

The fast convergence of the compatible relaxation implies that the
values of the coarse set of variables indeed determine, up to fast local
processing, the values of the fine set. Moreover, it implies that the cho-
sen coarse set satisfies a property called “near locality”: the fine level
solution at each point can be calculated from the coarse level locally,
given just its coarse neighborhood, with very weak remnant dependence
on coarse values outside that neighborhood: the remnant dependence
decays ezponentially (or even faster) as a function of the neighborhood
radius. For 2D discrete Poisson equations, for example, the remnant de-
pendence tends (after enough coarsening levels) to exp(—mr2/2), where
r is the neighborhood radius measured in meshsizes of the coarse level
([Schroder et al., 1976], [Zimare, 1980]). Since each coarse variable is
defined locally by few fine variables, it too depends only nearly-locally
on all other coarse variables. Hence, an equation for each coarse variable
in terms of other coarse variables can be derived locally, using only a
local set of fine-level equations. The error in that coarse equation will
decrease exponentially as a function of the size of that local set.

Galerkin coarsening. Suppose the interpolation 1/ has been chosen
to be a certain matrix P; i.e.,

(1] € =Y Pijes,., (1.9)
i=1
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where the sequence {I; ;}7, is an ordered set of the indices of the n;
coarse-level variables from which interpolation to the i-th fine-level vari-
able is made. (They are chosen in the “neighborhood” of z;, defined
either geometrically or in terms of algebraic couplings.) Then, for linear
systems (1.2) resulting from (1.1), a natural way to define the coarse
approximation e¢ to the error e = x — ¥ is to require that e minimizes
(1.1) over all possible substitutions (1.8), i.e., e minimizes the quadratic
form

(@ + Pe®)TA(T + Pe®) — b7 (T + Pec) . (1.10)

It is easy to see that e minimizes (1.10) if and only if it satisfies (1.6)
with

A¢=PTAP (1.11)

and

r¢ = PT(b— A%) = PTr . (1.12)

The coarsening of (1.3) by (1.6), (1.11) and (1.12) (as well as the gen-
eralization (1.18)-(1.19) to the non-symmetric case) is called Galerkin
coarsening. Using this prescription, the only part that remains to be
automated is the choice of the interpolation matrix P.

Two basic approaches for choosing the interpolation operator, the
“classical AMG” and the “Bootstrap AMG”, will be described below.
Other approaches include the smoothed-aggregation variant of classical
AMG introduced in [Vanek et al., 1994], [Vanek et al., 1996] and [Vanek
et al., 1998]; local eigenvector methods like AMGe [Brezina et al.] and
approaches based on local energy minimization [Mandel et al., 1998]
and [Wan et al., 1998] and on the Euclidean norm instead of the energy
norm [Brandt and Galun, 1996]. For completeness, see [Stiiben, 2000]
and references therein.

Classical AMG. In classical AMG, the interpolation weights are based
on the “strength of couplings”. The following are general formulae for
such couplings. (To understand, please follow first the case with zero
thresholds: o) = 0 in which case a\”) = 1; also start with the case
v = 1. Note that for a zero-sum matrix, i.e., }_; a;; = 0 for every 1, as

in many applications, the normalized couplings satisfy »_; ag-') =1 and

therefore also Zj o P;; =1 for every i.) The v-generation normalized
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@)

couplings a;;” are recursively defined by

1 for 1€C, j=1
0 for 1€C,j#i
PCORN B for i¢C,j=1 (1.13)
" i/ for  igC,ji, @l >a
ij i ) » Y5 = Oy
0 for igC,j4i,a <a
where
NORNE Bl 7L =l gy
E { Siad Va0 - mya V) cys1 Y
o) = Zfdgz)/ 3 al) (1.15)
ki k#i st ) >al)

and ag”) > 0 are thresholds chosen to control complexity. Defining for

each i ¢ C a coarse neighborhood N} = {j € C , ( ) > 0}, the classical
AMG interpolation matrix P can be defined by

P = a Za(y)/ Z a for je Ny (1.16)

k#1 keNy

and P;; = 0 if j € N/; most often v = 1 or v = 2 is used. Such
interpolations are reasonable for a matrix A which is close to an M
matriz (a matrix whose off-diagonal terms are non-positive, while its row
sums are non-negative). Even for such matrices the interpolation (1.16)
is sensitive to scaling and sometimes not accurate enough (especially
for the high-accuracy purposes described in Sec. 4 below), unless the

generation number v is raised and the thresholds 04( “) are lowered so
much that the neighborhood N} become inefficiently large.

Moreover, the classical AMG interpolation is restricted to subset coars-
ening, where the coarse set of variables is simply a subset of the fine set,
whereas in many cases the desired coarsening is in term of averages (see
item (i) in Sec. 4).

Bootstrap AMG (BAMG) Aiming at a greater generality and solver
efficiency, the BAMG approach is based on iterative derivation of the
interpolation operator P. The basic requirement from that operator is
that it should interpolate well low-residual errors. For example, The-
orem 4.1 in [Brandt, 1986] implies that for symmetric positive definite
systems relaxed by Gauss-Seidel relaxation, || e — Pe¢||? should not be
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large compared with the normalized residual norm || Ae||,4. The BAMG
iterations produce such low-residual vectors and adjust P to fit them, ap-
plying the evolving solver itself for obtaining vectors with progressively
lower residuals.

A set of some K low-residual vectors {z(¥F)}/ | can first be obtained by
relaxation. Namely, each z(*) is a result of several fine-level relaxation
sweeps on the homogeneous equation Az = 0, starting either from a
random approximation or, in case the geometric location is known of
each variable x;, from a smooth function. (Those smooth functions can
often easily be chosen to fit the homogeneous boundary conditions; for
different k£ they should be designed to be sufficiently different from each
other). A first approximation to the set of interpolation coefficients
{P;;}; for each i ¢ C can then be determined so that it satisfies best, in
a weighted least-square sense, the over-determined set of equations

#P = Y Pl (k=1 K) (1.17)
JEN;

where 2(¥)¢ is the coarse vector corresponding to (%) and N; is the coarse
neighborhood of i (such as N} or N? defined above). The weight of the
k equation is chosen, e.g., proportional to || Az()|| /4~ This least-square
procedure can also detect when the neighborhood NV; can be reduced or
should be enlarged or modified; it is thus possible to keep its size |V
at a minimum. The number K of relaxed vectors should be larger than,
or at least equal to any |V;|.

Having constructed in this way the first approximation to P, one
can then build the first approximation to the coarse-level matrix A¢ =
PT AP, which can then be used in a similar way to obtain a first approxi-
mation for the next, still-coarser-level set of unknowns, interpolation and
matrix. And so on.

Once several coarse levels have been so defined, they can be used to
obtain a much better approximation to P. This is defined similarly to the
first approximation described above, but instead of the relazed vectors
()| one obtains each of these vectors by a short multilevel cycle applied
to the homogeneous equation Az = 0, followed by normalizing z(*) to
obtain || z(¥) |= 1. If after the normalization the residuals {Az(¥)} are
not reduced much from their pre-cycle values, then instead of using the
homogeneous equation, the cycles should be applied to the eigenproblem
Az®) = X\z(®)| with orthonormalization and eigenvalue calculation at
the coarsest level, using the Exact Interpolation Scheme (EIS; see Sec. 8).
That scheme is particularly appropriate here, since it includes re-fitting
of the interpolation operators, which is anyway the main target here.
Also, with EIS the test vectors {z(*)} for all levels correspond to each
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other: for example, {z(¥)¢} are the appropriate test vectors for the first
coarse level.

With the improved approximation to P and to A¢ = PTAP, and
likewise at the coarser levels, one can use them to similarly obtain such
matrices for additional, still coarser, levels. Then one obtains still better
approximations by repeating these procedures once more, now with more
levels and much better accuracy.

At each coarse level one should check whether any of its variables
represent an almost disjoint subsystem (ADS). An ADS is a subset of
fine-level variables whose couplings with variables external to the sub-
set are much weaker than its internal couplings. Such a subset can be
detected at that coarser level where it will be represented by a single
variable. For each ADS, a separate set of test vectors needs to be con-
structed according to the above procedures.

An important expected advantage of the BAMG algorithm is that it
keeps all |N;| as small as possible while still yielding highly accurate
interpolations, hence producing A€ almost as sparse as possible, saving
much work in its calculation, and also in the actual operation of the
multigrid solver. The latter is often the most important consideration,
as the solver is re-used many times. In many applications, the re-usage
of the solver would be needed upon some small changes in the problem.
The BAMG re-derivation of P and A° would then usually be very in-
expensive, e.g., requiring at each level at most one additional iteration,
and only in regions around the introduced changes.

Unlike classical AMG, BAMG can obtain arbitrarily high interpolation
accuracy, which is important for solving high-order differential systems
and for many other tasks (see Sec. 4). Moreover, BAMG-type methods
can produce accurate interpolation even for aggressive coarsening (fast
decrease in the number of degrees of freedom upon each coarsening step),
potentially important to problems whose complexity would otherwise
increase with coarsening.

Additional AMG tips. Several general AMG rules are worth at
least brief mentioning here (for more details see [Brandt, 2000, §12 and
App. A)).

Relazation schemes. Classical AMG uses always the Gauss-Seidel
(GS) relaxation scheme. For general systems, including those arising in
discretizing non-scalar PDE systems, GS is not always adequate. Relax-
ation schemes that can always be used are Kacmarz and least-squares
(see Sec. 5), although they are usually much less effective than GS for
systems where the latter is applicable (systems nearly symmetric, nearly
definite). Other schemes often used are distributive schemes (relaxing
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an equation by distributing changes to several unknowns, as in Sec. 6
below, and in many discretized PDE, where the distribution pattern can
be designed at the differential level) and block relazation (relaxing simul-
taneously several equations, which can sometimes serve as an alternative
for increasing the number of coarse variables).

Adaptive Relazation Rule: Keep adding relaxation passes at any lo-
cal neighborhood where the normalized residuals |r;|/ 3", |ai;| are much
larger in magnitude than their larger-scale average magnitude. Such
relaxation adaptation is useful in inexpensively and automatically elim-
inating mutigrid slowness caused by various local singularities, such as
boundaries (especially with re-entrant corners), strong shocks, source
singularities, etc. (See [Brandt, 1977, App. A.9], [Bai and Brandt, 1987]
and theoretical background in [Brandt, 1991a], [Brandt, 1994].)

Recombination of iterants. A general way to eliminate m error com-
ponents that are particularly slow to converge (such as AZMs; see (iv)
in Sec. 4) is to recombine m + 1 iterants (each being, for example, the
approximate solution obtained after another multilevel cycle) so as to
minimize the Iy residual norm; see [Brandt and Mikulinsky, 1995]. An
efficient (and popular) way to organize such iterant recombinations is to
regard the multigrid cycle as a preconditioner in a conjugate-gradient or
GMRES procedure. However, note that in addition such recombinations
may be very useful at coarse-level sub-cycles. Such coarse-level recom-
binations should converge those components that are well approximated
on the first coarse level, but not on still coarser levels. Also, using the
FAS scheme, coarse-level recombinations can replace fine-level recombi-
nations, saving dramatically on the amount of storage needed to store
previous iterants. See examples in [Washio and Oosterlee, 1997].

4. Numerical homogenization: High-accuracy
coarsening

Due to the mnear locality property mentioned above, highly accurate
coarse equations exist, and a relatively inexpensive method to derive
them is offered by BAMG. Other methods to achieve highly accurate
coarse equations not through the Galerkin formulation are described
and demonstrated in [Brandt, 2000] (including a method due to Irad
Yavneh). These other methods are much more expensive, but can be
afforded for highly-repetitive systems and they belong to a class of coars-
ening methods applicable in non-linear and non-deterministic problems,
which are often indeed repetitive (see Secs. 7 and 9 below).

For the purpose of multi-level (multigrid) cycles, a rather low (but uni-
form) coarsening accuracy would usually suffice. For example, a coarse
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grid equation with at most 10% error for all “smooth” components (i.e.,
all those slow to converge in relaxation) can yield a multilevel cycle with
a convergence factor close to 0.1. By performing successively any num-
ber of such cycles, any desired solution accuracy can rapidly be obtained.
This will usually be far more cost effective than deriving higher accuracy
coarsening.

In many other cases, however, higher degrees of coarsening accuracy
are really needed. Examples:

(i) Once-for-all coarsening, for the purpose of deriving coarse-level
equations not just for the error e remaining after relaxation, but for the
full solution z, i.e., a coarse approximation to the original equation (1.2).
In this case the most appropriate coarse-level variables are such that
they are indeed largely insensitive to relaxation, each one usually being
a certain weighted average of fine-level variables. Note that in this case
classical AMG cannot be used for deriving the interpolation and BAMG-
type derivations must enter; this generalizes the role of relaxation, from
mere error smoothing to interpolation determination.

(ii) Homogenization. In particular if the original differential equa-
tions are repetitive (the same equations with the same coefficients repeat
themselves in many different subdomains), fine grids (resolving various
features of these equations) need be used only around one subdomain,
and only (very) coarse equations (derived by, e.g., BAMG at that subdo-
main) need be used elsewhere. This will allow derivation of macroscopic
equations for microscopically complicated materials or processes.

(iii) Repeat solve. Many industrial and scientific problems are solved
many times over and over again, with only small changes between two
successive solves. In such a situation, the finer levels need not be used
everywhere at each solve: each level is needed only around the region
where the equations have changed. This will allow, for example, very
fast calculations and updates of matriz inverses and determinants (see
[Brandt, 2001, §12]).

(iv) Problems with almost-zero modes (AZMs), i.e., eigenvec-
tors with unusually close to zero eigenvalues. Such modes often reflect
some ill defined global moves, such as rigid-body motions of the entire
system in problems of elasticity, or a gliding motion of two rigid bodies
along their contact surface. Such AZMs also plague various disordered
problems, such as Dirac equations on critical gauge fields (cf. [Brandt,
2001, §11]). For problems with many AZMs, a general cure is to increase
the coarsening accuracy. A small number of AZMs (such as those associ-
ated with global rigid body motions) may still exhibit slow convergence
even at higher accuracies, but they can be eliminated by recombining
iterants (see end of Sec. 3).
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(v) Collective calculation of many eigenvectors of a matrix
requires high-accuracy interpolations (see Sec. 8).

(vi) Cases of massively parallel processing with poor inter-proce-
ssor communications may benefit from replacing multigrid cycles by
once-for-all solution coarsening.

5. Non-symmetric and highly indefinite matrices

The multigrid and algebraic multigrid solvers described above for sym-
metric and definite matrices (unconstrained quadratic minimization) can
be extended in many ways. Some important types of generalization are
briefly reviewed in this section and in Secs. 67 below.

Non-symmetric matrices. If A in (1.2) is not symmetric, the Galerkin
coarsening (1.11)-(1.12) should be generalized to

A® = QAP (1.18)

and
= Q(b— AZ) = Qr (1.19)

where the matrix Q) is a fine-to-coarse transfer operator, also called re-
striction. The automatic methods (either classical AMG or BAMG) for
deriving the interpolation matrix P from the system matrix A can still
be used here. In a fully analogous way, the transposed restriction QT
(or the transposed conjugate restriction QT, in the complex case) can
be derived (e.g., at each BAMG stage) from A" (respectively A'). This
choice of @ can be motivated by the requirement that high-residual vec-
tors, which are efficiently reduced by the relaxation process, should not
be amplified by the coarse-grid correction.

GS relaxation can still be used in non-symmetric cases with dominant
diagonal. Other cases can be relaxed by the schemes mentioned next for
indefinite systems.

Highly indefinite problems. For highly indefinite problems, the
multigrid (including algebraic multigrid) methods presented above will
not work. One simple reason is that the GS relaxation is fast-diverging
when (1.2) is highly indefinite, so it cannot be used even as a smoother.
Instead, however, one can use a variety of other schemes, such as the
least-square relaxation (equivalent to GS for the definite system AT Az =
ATb) or the Kacmarz relaxation (equivalent to GS for the system AATy =
b, with = ATy describing how to change = upon each relaxation step
[Tanabe, 1971]).

A more serious difficulty with highly indefinite systems is that the
low-residual components (slow to converge upon relaxation) cannot all



22

be described by a single relation like (1.8) (unless the interpolation-
point numbers |N;| increase unboundedly at increasingly coarser levels,
causing unbounded complexity). Some definite systems exhibit similar
traits; e.g., definite systems with indefinite factors, such as A = BT B,
where B is highly indefinite.

In this situation (1.8) has to be generalized to the form

J . . . .
ei=Y w0 w1 e, (1.20)
j=1

where w() are already-known low-residual vectors, obtained for example
by relaxing the homogeneous system Az = 0, and J is a small number
(but possibly exponentially increasing with the underlying (physical)
space dimension). The coarse-level Galerkin equation ((1.6), with (1.18)-
(1.19)) in this case becomes a set of J equations

J
YA =rp, (1=1,...,]) (1.21)
j=1
where '
A= QaW x AwW x P, rf=QaW (1.22)

and * stands for point-to-point multiplication, w being the complex con-
jugate of w.

If local (Gram-Schmidt-type) orthonormalization of {w?)} with re-
spect to each other has accompanied the fine-level relaxation, the coarse
system (1.21) is dominated by its diagonal blocks Af;, and can there-
fore easily be relaxed. With corrections from several such relaxation
sweeps at the coarse level, better w(?) (with lower residuals and wider
local orthonormalization) can be obtained at the fine level, followed by
re-coarsening in which the diagonal blocks Aj; are even more dominat-
ing. After more sweeps at the coarser level, as the recursive algorithm
now switches to a still-coarser level, the error in each ¢()¢ should itself
be represented in a form similar to (1.20). And so on to ever coarser lev-
els. Due to properly-widening scale of orthonormalization at finer levels,
off-diagonal couplings (Alcj for [ # j) can always be ignored at the next
coarsening step, keeping the systems at all levels sparse (each unknown
function being coupled to only few others).

Geometric model case: waves and rays. A model case for these
techniques (first discussed in [Brandt, 1980, §3.2]) is the discretized
Helmholtz equation

APu(€) + k(€)% u(e) = f(&), €Ee€Q"CR?, (1.23)
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especially on domains with large diameter (compared to the wavelength
27 /k) and with radiation boundary conditions. Q" here is the discretized
domain in R? (i.e., it is a d-dimensional grid), A" is the discrete Lapla-
cian, and u({) here is the vector of unknowns (x). This is the model
equation for standing (or time-harmonic) waves appearing in electro-
magnetics, seismology, acoustics, radar, condensed-matter electronics,
etc. Traditional multigrid solvers are not effective for this problem,
because some “characteristic” oscillatory components (those with wave-
length close to 27/k) are non-local (their size is determined by conditions
many meshsizes away) exactly on all those grids which are fine enough
to approximate such components.

The geometric multigrid solver developed for this problem [Brandt
and Livshits, 1997] represents the solution as

J
u(€) = v;(€) exp (9;(€)) - (1.24)

=1

At the finest level this sum includes just one term and %;(§) = 0, so
the representation includes just one function — the desired solution —
and the equation for it is (1.23). Increasingly coarser levels of the solver
(on increasingly coarser grids of £ to discretize each amplitude ¢;(§) and
each eikonal 1;(§)) employ progressively finer sets of “momenta” (i.e.,
larger J). The interaction between these levels has been shown to yield
a solver for (1.23) which is as efficient as the best traditional multigrid
solvers for definite elliptic systems. The radiation boundary conditions
are naturally enforced at the coarsest level, where the representation
essentially coincides with geometrical optics (ray representation, appro-
priate for scales much larger than the wavelength). This indeed can
be developed into a new setting where only geometrical optics is used
in most of the domain, while the wave equations, as well as interme-
diate levels with representations of the type (1.24), are just introduced
at special restricted subdomains where geometrical optics breaks down,
yielding a general numerical tool for computing diffraction (the rays
produced by small-scale disturbances; cf. [Keller, 1962]).

6. Non-local equations: Dense matrices

Fast evaluation (matrix multiply). When the matrix A is dense
(not sparse), the first concern, before designing a solver for (1.2), is
how to represent A efficiently and how to execute fast the “evaluation”,
i.e., the multiplication of A by any given vector x. An arbitrary m x n
matrix A would of course require mn storage and its evaluation O(mn)
computer operations. Very often, however, these can be reduced to just
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O(m + n) storage and O(m + n) operations, using the following general
approach (first preliminarily appearing in [Brandt, 1982, §8.6], then in
[Brandt and Lubrecht, 1990], [Brandt, 1991b]). Other approaches exist
for particular important cases; see, e.g. [Ewald, 1921] and [Greengard,
1994]. In this discussion m # n is allowed, although m = n is usually
assumed when solving (1.2).

Nearly all non-local operators in physical problems have certain smoot-
hness properties in terms of the coordinates of the underlying d-dimensio-
nal physical space (or space and time; thus usually 1 < d < 4). Carefully
discretized integro-differential operators (see, e.g., [Brandt and Venner,
1998] and [Brandt and Venner, 1999]), as well as interaction of discrete
particles, will share these properties. Thus, if the unknown x; has a
location n; = (77J1-,. .,nj) in the underlying space, and if the i-th equa-
tion of (1.2) is associated with the location & = (£},...,£%), then the
matrix element a;; can be described by a function G(f,,nj) where the
so-called “kernel” G(&,7), as a function of the continuous variables ¢ and
7, is either “smooth” or “asymptotically smooth” or suitably “asymp-
totically smoothly oscillatory” (for the exact meaning of these concepts,
see [Brandt, 1991b)).

If G(&,7n) is a smooth kernel (arising, e.g., from first-kind Fredholm
integral equations), then each G(&;,7n;) can be interpolated from the
values {G(X71,Y)}, where the points {X1,...,Xa} is a coarse grid, or
a diluted set of points, in the £ space (possibly a subset of {{1,...,&m},
with M much smaller than m), and {Y1,...,Yn} is likewise a coarser
grid in the 7 space (possibly a subset of {ni,...,7m,}); often & = mn;
(¢ =1,...,n; m = n) and then X; =Y;, (I =1,...,N; M = N).
Namely,

M N
ai; = G(&,m;) = Z Z PQisG(X1,Yy) , (1.25)

where P and Q are local (hence sparse) interpolation matrices in the ¢
and 7 spaces respectively (I3 = C~2 if the spaces are identical, as is often
the case). Usually the approximation = in (1.25) can be as close to equal-
ity as desired, by increasing the interpolation orders. The evaluation of
the product Az can then be executed fast as the product

Az =~ PA°QTx | (1.26)

where AEJ = G(X], YJ).

More often G(&,n) is only asymptotically smooth, meaning that it can
be decomposed as G(€,1) = L(&,n) + G(€,7), where L(€,n) is local, so
that the matrix R defined by R;; = L(&;,n;) is sparse, and G(&,n) is
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smooth, so that (1.26) can be generalized to
Az = (R+ PAQV)x | (1.27)

where gf J= G(X1,Yy). For R to be sufficiently sparse, the coarse grids
{X1,..., Xy} and {Vi,...,Yx} cannot be too coarse, typically MN
still being some fraction of mn, hence the multiplication by A¢ may still
be expensive. In this case the same algorithm is employed recursively:

C~¥(§, n) itself is decomposed as G = L+ G, where L is local in the coarse

scale, allowing G to be interpolated from a still coarser grid. And so on:
using a sequence of increasingly coarser grids, O(m+n) evaluation of Az
is obtained in the form (1.27), where similarly A° = R® + P¢A*(Q°)7),
etc.

In most cases of interest, this method can yield one evaluation in
O((m + n)(log%)q) operations, where ¢ is the desired accuracy and ¢
depends on the dimension d of the underlying space and on the unifor-
mity of the grids {¢;}; and {n;};. Typically ¢ = d or ¢ = d + 1 for
asymptotically smooth kernels.

Fast solvers. Once fast evaluation is available in this form, a rather
fast solver of the system (1.2) is in many cases obtained by simple iter-
ations, such as

2™ =R (b— PAQ Tz D), 2O =0, (1.28)

where multiplications by A€ are calculated by the above fast evaluation
scheme, and multiplication by R~! is an approximate solver employing,
for example, one sparse-matrix multigrid (or algebraic multigrid) cycle.
Actually, quite often R is so strongly diagonally dominant that just one
relaxation sweep would suffice (instead of a multigrid cycle) at each
iteration (1.28).

A faster solver can usually be obtained by applying multigrid cycles
to the full equations (1.2), based on the following principles.

Distributive relaxation. Relaxation of local (sparse) matrices effi-
ciently reduces locally oscillatory errors, leaving more global (e.g., smoot-
her) error components for the coarse grid corrections. For most dense
matrices (e.g., those representing electrostatic interactions or arising
upon descretizing integral or integro-differential equations), however,
simple relaxation schemes would efficiently converge smooth compo-
nents, while being slower for oscillating ones. The latter cannot be
approximated on a coarse level, not just because of their character, but
more basically because they are too numerous. To reverse this, special



26

schemes, called distributive relazation schemes, should be used [Brandt
and Lubrecht, 1990]. Each step of such a scheme distributes changes to
several unknowns simultaneously, in a pre-designed pattern that ensures
little disturbance to non-local (e.g., smooth) components.

Namely, the change to a current solution Z, at the i-th step of a dis-
tributive relaxation sweep, can be describes as T «— T + 6D;, where each
D; is a pre-designed sparse vector and the real number § is calculated
so that the new T satisfies, e.g., the i-th equation of (1.2). For example,
each D; can be designed so that QTDZ- vanishes, at least approximately
or on the average, where Q7 is as in (1.27) above. Or D; can be designed
so that its average, and possibly also some higher moments of it as a grid
function in the 7 space, vanish. This relaxation scheme can be viewed
as a Gauss-Seidel relaxation for a ghost vector w, where x = Dw and
D; is the i-th column of the “distribution matrix” D.

Such a relaxation scheme has two advantages: it efficiently reduces all
oscillatory components (or more generally, the majority of components),
and it requires only one global evaluation with the (dense) matrix A per
cycle, since the distributive steps do not significantly affect the global
part (the term PA°Q” in (1.27)). One can of course apply such a scheme
only as part of a multiscale algorithm that supplement it with a coarse-
level process for treating that global part — which is discussed next.

Coarsening. It is quite natural to choose z¢ = QTaJ as the coarse-
level variables. In fact, if G(£,7) is smooth then it is only Q7 which
is well-determined by the equations (1.2), not z itself; more precisely,
QT z is well-determined if the grid {Y1,...,Yn} is coarse enough. The
coarse system of equations in this case is A°z“ = b, where A° is defined
in (1.26) and b° is a vector such that Pb° best approximates b, the RHS
in (1.2).

If G(&,7m) is asymptotically smooth, with A approximated as in (1.27),
then the above coarsening can be combined with a Galerkin-type coars-
ening for the local part R. Namely, the coarsening of (1.3) can be written
in the form (1.6), with

e =QTe B
A°=QTRP + A° (1.29)
r* =QTr, e~ Pe‘

where the interpolation operators P and @ are derived geometrically or
by the methods of Sec. 3 (BAMG in particular, applied to the full matrix
A, not just to the local part R).

Ideally, a multigrid solver to a dense-matrix system of equations should
cost just a fraction more than just one fast evaluation with the desired
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accuracy (¢), since most of the computations are carried out on coarser
levels and /or with lower evaluation accuracies.

7. Non-quadratic optimization: Nonlinear
systems

The multiscale methods for fast quadratic minimizations (solving lin-
ear systems of equations) can be extended to many (unconstrained)
problems having a non quadratic energy F(z) with real variables z =

(z1,...,2pn). A necessary condition for z to minimize F is that it satisfies
the nonlinear system
OF .
8ac.(ac):(], (it=1,...,n). (1.30)
(]

In this section we discuss fast multiscale solvers of such systems, leaving
for later (Secs. 9-10) the issue of global convergence, namely, how to
escape false attraction basins and ensure that the obtained solution of
(1.30) is the true global minimum.

Relaxation. The relaxation process is essentially the same point-by-
point minimization for all problems, quadratic or not, except that in the
case that OF/dz; is a nonlinear function of z;, the relaxation of each z;
in its turn should not waste work on solving the equation 0E/dz; = 0
eractly. Rather, only an inexpensive substantial step toward such a
solution should be made, meaning for example just one approzimate
local Newton step, i.e., changing x; approximately by the quantity
2
e (131)
x;' (0x;)

where the derivatives are calculated just before this particular step. Ac-
tually, the second derivative need be calculated only approximately, and
need not be updated at each relaxation sweep. Various terms contribut-
ing little to 9 E/(0z;)? can be neglected without changing the overall
efficiency. Such terms, called non-principal terms, cannot however be
neglected in calculating OF/0x;.

bx; =

Coarsening and Global Newton linearization. The way to ex-
tend coarsening and coarse-level corrections to nonlinear systems is less
straightforward. One obvious general approach is global Newton lin-
earization. Namely, given a current approximation Z (e.g., after relax-
ation), the system (1.30) is approximated by the correction equation

’E  _ B OFE _
S0z, @, 6@ =-5-@, 132

Ax)e=0b(z), a;ij(T)=
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where A(Z) = {a;;(%)}}';—; is the current Jacobian, b(Z) = {b;(Z)}}, is
the current residual (or “residual force”) vector, and e = z — ¥ is the
correction sought. A coarse-level approximation to e, denoted e, can
be obtained by any of the coarsening methods described above for linear
systems: multigrid in the case of PDEs descretized on structured grids
(Sec. 2), or algebraic multigrid (classical AMG or BAMG — see Sec. 3)
in more general cases.

The advantage of the Newtonian approach is indeed exactly this: the
possibility to use all sophisticated machinery developed for linear sys-
tems to obtain robust coarse-level approximations, even for highly dis-
continuous and disordered equations. The usual disadvantages are the
need to perform iterations (usually not many, though), the need to start
with a good enough first approximation to ensure convergence, and the
need to store and perhaps repeatedly update the matrix A(Z). In addi-
tion, from the point of view of multiscale solvers, global linearization has
a most serious disadvantage in the very common case of autonomous,
and hence highly repetitive, nonlinear systems. By “autonomous” sys-
tem we mean a system whose local equations are independent of external
information, such as a current approximate solution. In such systems,
the nonlinear equations are the same repeating equation everywhere, or
nearly everywhere, or the same set of few equations keep repeating itself.
This in principle would allow accurate nonlinear coarse equations to be
derived in some representative small regions and then be used all over
large domains (see “systematic upscaling” below). This autonomy of the
nonlinear system is however lost upon linearization.

Exact Interpolation Scheme (EIS), reviewed in Sec. 8 below, is a
general promising approach that avoids global linearization iterations in
optimization problems. Here however we focus on the following, cur-
rently more popular and tried out scheme.

Full Approximation Scheme (FAS). Writing now the nonlinear
fine level system (1.30) in the form

N(z)=0, (1.33)
a corresponding coarse-level nonlinear system
N¢(z¢) =0 (1.34)

is often directly accessible. In particular, if the system of equations (1.33)
represents a discretization of some continuum equations (PDEs, for ex-
ample), then a similar discretization can be obtained for the coarse grid
(often coded by the same computer program, with different discretization
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parameters). If T is the current (e.g., after relaxation) fine-level approx-

imation, and hence r = —N(Z) is the current residual, then a general
coarsening scheme is to approximate the fine-level residual equations
N(z) - N@)=r (1.35)

by the nonlinear coarse system
N€(x€) — N°(2°) =15 r , (1.36)

where T; is a fine-to-coarse transfer as defined, e.g., in Sec. 3, and (the
unknown) z¢ and (the known) Z¢ are the coarse versions of z and Z, re-
spectively. (Note that generally z¢ is not the solution ¢ of (1.34); unlike
the latter, it would have the accuracy of the fine level in approximating
the PDE solution.) It is important to remember that it is the error
e = x — z° which is smoothed by relaxation and thus approximated by
the residual equations (1.35), so after obtaining a solution z¢ to (1.36), it
is the correction ¢ —z°¢ which should be interpolated, i.e, the coarse-grid
correction to the fine level is

Faew = T4+ 1] (2° — 7°) . (1.37)

It is also important to use exactly the same Z¢ in (1.36), in (1.37) and
as the first approximation in the process of solving (1.36), so that the
solver is stationary, meaning that if the exact solution has already been
obtained at the fine level (r = 0, hence 7% r =0, hence z° = z¢) then
(1.36) is immediately at its solution, and then (1.37) does not change Z.

This scheme, introduced in [Brandt, 1977], is called the Full Approx-
imation Scheme (FAS), because it gives directly an equation in terms of
the full solution z¢ not in terms of the correction e. Defining

¢ = N°a°)- 1% N(2) , (1.38)
Eq. (1.36) can be written as
Ne(z¢) = 7¢ . (1.39)

Except for a different forcing function, this equation has the same form
as the original coarse equation (1.34), and can use the same computer
program. Neither storage nor updating of linearization coefficients (such
as A(Z) above) are needed. No global linearization iterations are per-
formed, and the solver is usually as inexpensive as solving just one cor-
responding linear equation: For discretized PDEs, just one cycle per
level in an FMG algorithm will typically yield errors well below the dis-
cretization errors (cf. Sec. 2). Such FMG-FAS algorithms are widely
used in many fields of PDE applications.
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Yavneh’s Multilevel Nonlinear Method (MNM). Sometimes, or
in some subdomains, the given coarse-level operator N€ is not good or
robust enough approximation, while the Newton linearization A(Z) does
have a good and robust coarsening A°(ZT), obtained for example by an
advanced AMG algorithm. Then, instead of N¢(z), an improved coarse
level operator that can be used in the FAS algorithm is

Ne(z°) := N°(z°) + A%(F) — A°(7°) , (1.40)

where A¢(F°) is the Jacobian of N¢ at . This MNM method [Yavneh
and Dardyk| may enjoy wider convergence basin than either Newton or
the simple FAS method. More generally one can use

N¢(z°) := aN°(z°) + BA(F) — (1 — a — B)A°(7°) , (1.41)

giving MNM for o = 8 = 1, Newton’s method for « = 0, § = 1 and
simple FAS for a = 1, § = 0. The coefficients « and 8 can be vector
parameters chosen locally, for example switching to Newton’s method
near a large discontinuity or to the simple FAS near strong nonlinear
effects.

Quasilinearity. Nonlinear problems can often usefully be written in
the algebraic quasilinear form A(x)-z = b, where the dependence of A(z)
on z is non-principal, by which we mean that || A(z+6)-(z+6) — A(z) -
(x+06) || <] A(z) - 6 || for any small §. For example, most nonlinear PDE
systems in mathematical physics are differentially quasilinear, meaning
that each term in the system is linear in the highest derivative included
in it; then in the discretization, only the dependence on the highest
derivative (in each such term) is principal, so the algebraic quasilinearity
comes there naturally. Unlike Newton linearizations, this quasilinear
discretization can be autonomous wherever the PDE is autonomous.

In a quasilinear system, to a very good approximation the interpola-
tion 1/ depends only on A(z) and can therefore be derived as in Secs. 2-3.
Moreover, 1/ needs seldom be changed when x changes. Also the form of
A(z) is often simple and explicit; e.g., in fluid dynamics and other areas,
each term in A depends on x linearly. It is then possible to transfer this
form of dependence also to the coarse level, enabling the employment
of an FAS-like algorithm, thus solving the nonlinear problem directly,
without linearizations.

Fine-to-coarse defect correction and local grid refinements. The
function 7¢ defined in (1.38) is called the fine-to-coarse defect correction.
It has many applications (see e.g., [Brandt, 1982]). In solving PDE sys-
tems, 7€ can serve as a good approximation to the local discretization
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error of the coarse level, and by a proper scaling this yields an estimate
also for the fine-level local discretization error, which gives the crite-
rion to decide whether the discretization is fine enough. (“Local” errors
means errors in satisfying the equations. Large such errors (indicated by
large values of 7¢), even when appearing only in one small subdomain,
would pollute (i.e., cause errors in) the entire global solution, hence must
be corrected by grid refinements.)

Often, the discretization grid needs to be refined only in small re-
gions, e.g., near singularities. The FAS scheme is very convenient, ef-
ficient and flexible for this purpose: the refinement is done by adding
a finer level to the multigrid system, consisting of patches of finer grid
that cover only the required regions. Using (1.34) everywhere and (1.39)
in the refined regions, where local processing (interpolation to the finer
patches, followed by relaxation there) yields the needed correction 7°.
Part of the refined regions may require further refinement (indicated
by large 7¢), and so on, leading to multilevel nested self-adaptive local
grid refinements. An automatic grid self-adaptation process can nat-
urally be integrated into the FAS-FMG algorithm: as the FMG (see
Sec. 2) proceeds to increasingly finer levels, it can also decide (using the
7€ criterion) where those finer levels should be employed. This yields
a one-shot solver-adaptor, with no need for grid-adaptation iterations.
Furthermore, each of the local refinement patches can use a grid with its
own coordinate system, aligned with solution characteristics or fitted to
the local geometry (such as spherical coordinates around an isolated sin-
gularity, or local boundary-fitted grids in flow boundary layers), allowing
local anisotropic grids with very high aspect ratios, while the global grids
remain simple Cartesian. (For details consider [Brandt, 1982], [Brandt,
1984] and [Bai and Brandt, 1987].)

An important feature of this adaptation is that often the calculation
within the local-refinement patch can be done once for all: Although
the solution in the patch changes when the parent-grid solution changes,
the fine-to-coarse defect corrections usually change very little. At most
one more short “visit” to the patch (e.g., one more relaxation sweep at
the finer level) toward the end of the calculation will normally be needed
to update the defect corrections. Alternatively, one can calculate apriori
the approximately linear dependence of the defect corrections on the
local parent-grid values.

A similar FAS structure can be used to solve problems on unbounded
domains, using increasingly coarser levels to cover increasingly larger
subdomains, controlled by criteria based on 7¢ (see [Brandt, 1997, §4]
or [Brandt, 2001, §6.2]).
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First Approximation: Continuation and Bifurcation. For non-
linear problems, a common way to obtain a good first approximation, or
generally to trace branches of solutions, is by continuation (also called
“embedding” or “Davidenko method”): The problem, including its dis-
cretization and its approximate solution is written as depending on some
continuous parameter, like v in the range

Y <Y< s (1.42)

where for 7y the problem is easily solvable (e.g., it is linear), while for
74 it is the problem one really needs to solve. One advances vy from
Yo to 7. in steps 6y small enough to ensure that the solution to the
problem can serve as a good first approximation in solving the v + 6y
problem. Sometimes 7y is a physical parameter; sometimes the solutions
are better defined in terms of a non-physical parameter, such as the
generally-applicable arclength of the solutions path [Keller, 1977].

In multigrid solvers, one will usually perform one FAS or Newtonian
cycle per continuation step. Better still, in solving PDEs by an FMG-
FAS algorithm, one can often integrate the continuation process into the
FMG sequence of increasingly finer levels, by attaching to them progres-
sively more advanced values of -y, thus avoiding the need to iterate. Note
that here, as also elsewhere, the notion of “coarser grid” is generalized
to the notion of “simpler-to-solve approximation”, in the sense of hav-
ing both fewer variables and easier parameter values (e.g., smaller ).
Note also that a proper continuation parameter may sometimes enter
the FMG process even without explicitly intending it, such as the pa-
rameter of viscosity in flow problems, which is larger at coarser levels
due to numerical viscosity.

For calculating bifurcation diagrams (curves that trace solution depen-
dence on one or several parameters, revealing multiple-solution branches,
bifurcation points, etc.), various multigrid situations arise. For some
problems the whole continuation process can be done on very coarse
levels, proceeding only with the target 7, to finer levels to obtain im-
proved accuracy. In other problems, the continuation process does need
fine-level resolution of important features, but it can still be done mostly
at coarse levels by providing those levels with the fine-to-coarse defect
corrections 7¢, which may need only little updating from visits to finer
levels; the finer the level, the rarer the visits.

See more about multigrid continuation strategies in [Brandt, 1982,
§8.3.2], [Mittelmann, 1982], [Bank and Mittelmann, 1986], [Bolstad and
Keller, 1986], [Schwichtenberg, 1985], [Trottenberg et al., 2000, §10.2].
See also a related comment in the discussion of global constraints in
Sec. 8 below.
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Systematic upscaling of autonomous systems. In autonomous
systems, the same small set of (nonlinear, local) equations repeats itself
all over a large domain, so it is desired to construct for that domain a
similar small set of coarse autonomous equations.

The coarse variables should be chosen according to the same criterion
as in linear systems, based on the compatible-relaxation convergence
speed (see Sec. 3).

Coarse equations can take the general form of a detailed numerical de-
pendence table, giving detailed account of the dependence of any coarse
variable (the “pivot”) on its neighboring coarse variables (the “neigh-
borhood”). For each “neighborhood bin” (some narrow range of neigh-
borhood values), the average value of the pivot is calculated during lo-
cal fine-level simulations (relaxation sweeps). Due to the near-locality
property (see Sec. 3), accurate dependence tables can be constructed
efficiently using a branching structure. In such a structure, any current
bin with enough cases in it is partitioned into finer bins, either repre-
senting a finer resolution of the same neighborhood or an ezpansion of
the neighborhood (i.e., sub-binning according to values of additional,
e.g., more remote, neighbors; see an example in [Brandt and Ron, 2001],
where such a branching method was first introduced).

Having prepared the dependence table, for any actual neighborhood,
the corresponding value of the pivot can be calculated by a suitable
interpolation from that table. This is all one needs in order to run coarse-
level simulations (point-by-point relaxation sweeps). Such simulations
can then be used to construct a branching dependence table for the
next, still coarser level, and so on. The coarser the level the larger the
physical domain on which its simulations are performed. Whenever at
some coarse level a neighborhood arises for which there is no adequate
statistics, a return to the next finer level can be done in some local
window (a local refinement patch over the coarse level region suffering
lack of statistics), to gather more statistics. This is done by first running
several passes of compatible relaxation (see Sec. 3) over the window,
followed by usual (not compatible) relaxation sweeps in the interior of
the window, while keeping a zone around its boundary compatible.

Such a derivation of coarse nonlinear equations is admittedly expen-
sive, but easily affordable for autonomous or highly repetitive systems,
with the important benefit of avoiding fine resolutions of very large do-
mains. Note that the equations often become much less autonomous in
special parts, e.g., near boundaries, so separate dependence tables may
need to be constructed there, that will involve external data (such as dis-
tance to boundary and boundary conditions) in their “neighborhoods”.
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Much less expensive coarse equations can be obtained by settling for
lower coarsening accuracy, then using that approximate coarse system
as N¢ in FAS cycles. Conversely, if an approximate coarsening N¢ is
known (e.g., a coarser discretization of the same PDE), the systematic
upscaling method can use it to derive less expensively a more accurate
coarsening: The dependence table described above is constructed not
for the full value of the pivot, but only for the value of the fine-to-coarse
defect correction 7¢.

The systematic upscaling method has been inspired by an analogous
approach first developed for non-deterministic problems (the “renormal-
ization multigrid” (RMG) approach: see Sec. 9), and like the latter,
it may be extended to time-dependent problems. In fact, a systematic
upscaling of a deterministic system may in some cases give rise to non-
deterministic coarser systems.

8. Constrained optimization and eigenproblems

Frequently the problem of minimizing F(z) = E(x1,...,y) is subject
to side conditions, possibly including L equations

filz) = filx1,...,2n) =0, (l=1,...,L), (1.43)
and M inequalities
Im(z) = gm(z1,...,2n) >0, (m=1,...,M). (1.44)

Assuming existence of continuous derivatives of E, {f;} and {g,,} at the
minimum, the solution z will satisfy, instead of the system (1.30), the
augmented system of L + M + n relations (1.43), (1.44) and (1.45),

OF Lo, W g
[ e — m ) ) = ]_, ceey y ].4:
Ao oz, @)= N Bz, mZ:1 Hm o (i n) (1.45)

having the “Lagrange multipliers” A1,...,Ar and p1,...,pp as addi-
tional unknowns (A9 = 1, except in some “abnormal cases” in which
Ao = 0), together with the “complementarity conditions”

pm >0 if gm(x)=0,
i 1.4
pm =0 if  gn(z) >0, (m=1,...,M) . (1.46)
The following are some general comments concerning the multiscale
solution of such augmented systems.

Local equality constraints: optimal control and inverse PDE.
In the case of equality constraints only (M = 0), the fast multiscale
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solution methods described above, with their various extensions, would
usually apply in principle to the augmented system (1.43)+(1.45) as well,
particularly when the constraints (1.43) and {OFE/dz;} are all local.
This is the typical situation in differential optimal control problems,
where the equality constraints (1.43) correspond to the discretization
of the underlying constitutive differential equations, and E(z) is some
performance index. This is also the case in many inverse PDE problems,
in which incomplete, noisy or ill-posed data are given, supplemented by
a certain solution fitness measure (—E) which has to be optimized.

The Lagrange multipliers A in such problems correspond, similar to
x, to one or several discretized functions, so the equations to be solved
correspond to a discretized augmented PDE system. To achieve top
multigrid efficiency in such problems, however, is usually more compli-
cated than in standard PDE problems, since their mathematical char-
acter is less straightforward. For example, for constitutive PDE which
is a hyperbolic time-dependent system, the optimal control (or fitness
index) introduces backward-in-time couplings, such that the problem
cannot be solved by simple time marching. It need be treated by full-
dimension multigrid (coarsening both the space and time dimensions),
which is, however, quite tricky, since the underlying hyperbolic nature
implies that some high-frequency (non smooth) components are not lo-
cal, prohibiting simple smoothing. The relaxation process should de-
pend on the level: On sufficiently fine levels, locally dominated by the
underlying PDE (or its discretization (1.43)) and its adjoint (resulting
from the right-hand side of (1.45)), the relaxation would typically in-
volve forward time marching of changing x according to the underlying
PDE, and backward marching of changing A according to the adjoint
equations. On coarse levels (on scales comparable, e.g., to the control
horizon), the coupling terms between the PDE and its adjoint (result-
ing from E) become dominant and should be relaxed according to their
character (see example in [Gandlin, 2002]).

This fundamentally different treatment necessarily needed at dissimi-
lar scales explains why such problems are often impossible to solve with-
out multiscale techniques, thus traditionally requiring various compro-
mises in their formulation and discretization. Another important benefit
of multiscaling is that the separate processing at different scales makes
it possible to attach different objectives (performance indices or fitness
measures) at different scales (see Sec. 12 below).

Often the assimilation of non-standard, ill-posed data into a direct
PDE solver should cost relatively little, i.e., the extra computer time
needed for the data assimilation should ideally be smaller than the time
required by the direct solver itself. This is because: (1) Large scale data
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averages can inexpensively be assimilated on correspondingly coarse lev-
els of the solver (coarser both in space and time). (2) Deviations from
such averages should be assimilated at finer scales, but their correlations
on those scales are local. (3) The underlying equations must usually be
resolved at scales finer than those on which assimilation should be done.
The overall solver of an ill-posed inverse problem can sometimes cost
even far less than the solver of a corresponding well-posed problem, since
ill-defined high frequencies (e.g., at regions far from measurements) need
not be calculated at all. See examples in [Gandlin, 2002], and discus-
sion in [Brandt, 2001, §4] listing several additional potential benefits of
multiscaling for data assimilation problems.

Feedback optimal control. In feedback optimal control problems
new initial values of the underlying PDE are continuously fed from the
controlled device, requiring very fast real-time updating of the control.
The fast multigrid solver for the open-loop (i.e., not feedback) optimal
control problem allows super-fast updates upon feedbacks, based on the
observation that, upon changing the initial conditions, the change in
the solution is increasingly smoother at times increasingly far from the
initial. (In various actual problems, the sense of this smoothness has to
be carefully understood.) This makes it possible for the multigrid re-
solving algorithm to re-process its fine grids only at the very early times,
while at increasingly later times only progressively coarser levels are re-
processed, with FAS fine-to-coarse defect corrections (7¢) being frozen
there (cf. Sec. 7). As a result, the computational cost of re-resolving is
equivalent to only local re-processing (essentially just few steps near the
initial time) of the full solver.

Global and intermediate-scale constraints. Problems often come
with one or several global conditions, i.e., a single condition with a large
effect on a substantial fraction of the unknowns. For example, if all
equations in a system give only differences between unknowns, except
for one equation that gives, say, the average of all unknowns, then a
change in that average would introduce an identical change to every
unknown. In fact, a global condition need not itself explicitly involve
all or many of the unknowns. The exceptional equation in the example,
instead of giving the average of all unknowns, may specify the value of
just one of them — it will still have the same global effect. A boundary
or initial condition for an ordinary (i.e., one-dimensional) differential
equation, or its discretized version, is a global condition. There may
also be implicit global conditions. For example, the average along the
boundary of the values of a boundary condition of a partial (i.e., higher
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dimensional) differential equation is a global condition, even when it is
not specifically given as a single condition.

There may also be conditions which are neither local nor global but
have some intermediate scale. For example, instead of boundary or
initial conditions, a PDE may be supplemented with a data set repre-
senting measurements of solution values. The scale of each such value
is, roughly, its typical distance to neighboring values.

A global (or intermediate-scale) condition most often comes with a
corresponding global (or intermediate-scale) unknown, such as the La-
grange multiplier corresponding to a global constraint in a minimization
problem. In continuation processes (see Sec. 7) a global condition (fix-
ing a parameter, such as the arclength of the continuation step [Keller,
1977]) is often added to a problem while “freeing” (i.e., turning into
global unknown) one of the original problem parameters, thereby ob-
taining a better-posed problem (having for example a unique solution in
terms of the new parameter instead of multiple solutions in terms of the
original parameter).

In multiscale solvers, for best efficiency, the simple rule is to avoid
relaxing a global condition or changing a global unknown at any fine
level of the multigrid cycle. All one has to do on such levels is to transfer
the residual of the condition to the next coarser level to serve as a forcing
term in a similar condition on that level. Each condition and unknown
should best be treated (relazed, changed) at the level corresponding to its
scale. Sometimes a treatment at the wrong level may even be damaging,
not just a waste of effort. (See some supplementary rules in [Brandt,
1982, §5.6].)

This rule is often useful also for an ¢mplicit global condition. For ex-
ample, in relaxing boundary conditions of a PDE, it is often best to relax
at each step the difference between the conditions at two neighboring
boundary points, leaving the average of all such conditions unchanged,
since it constitutes an implicit global condition. This is in fact a special
case of the following.

Distributive relaxation. Since the scale of side conditions is often
not local, the relaxation should generally be distributive, as in the case
of non-local equations (see Sec. 6). A suitably chosen distributive change
D; of an unknown function (either a control function, or an unknown
PDE coefficient, or a Lagrange-multiplier function) has only localized
effect, hence its size (6 in Sec. 6) can inexpensively be calculated.

Eigenproblems. A frequent global condition is a normalization con-
dition, such as %Emf = 1 or more generally %xTBac =1, where B is a
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positive definite matrix. For the case that E(z) = $27 Az, BEq. (1.45)
then takes the form of the generalized eigenvalue problem: finding the
smallest A such that the normalization condition is satisfied and

Az = A\Bz . (1.47)

The methods reviewed in earlier sections (multigrid and algebraic multi-
grid) are applicable to this eigenproblem, together with the general rule
mentioned above for treating global conditions and unknowns; namely,
the eigenvalue (the Lagrange multiplier \) is frozen, and the normaliza-
tion condition need not be relaxed, at fine levels. In the linear case, due
to homogeneity, the enforcement of the normalization condition needs
in fact be done only once, at the very end.

If a good first approximation to A and z is not yet available (e.g.,
at fine levels, before visiting the coarsest levels), A = 0 can be used in
relaxing (1.47). A very suitable relaxation to use in this process is the
Gauss Seidel scheme.

Additional constraints often lead to the need to compute several, say
K, lowest eigenvectors, i.e., K different solutions to the eigenproblem

42 = neBa® | a®TB®) =1, k=1, K)  (148)

with the lowest eigenvalues A1 < Ay < ... < Ag. A typical cycle of a pos-
sible approach, developed in [Brandt et al., 1983], is to apply a multigrid
cycle to each of K approximate eigenvectors to obtain new approxima-
tions which together will therefore span an improved approximation X
to the K-dimensional subspace spanned by the lowest eigenvectors. This
is then followed by a Ritz projection, which finds a basis in X closest to
the sought set of eigenvectors, by calculating vectors O CON
and values A1,..., Ax such that the orthogonal projection on X of each
AzZ®) — X, B#*) vanishes (k =1,...,K).

This “classical” approach is suitable for calculating several low eigen-
vectors in a geometrical environment which allows using a straightfor-
ward multi-polynomial coarse-to-fine interpolation. In many cases such
interpolation is not available. In AMG solvers the interpolation is to
be found. In fact, calculating low eigenvectors and finding a suitable
interpolation depend on each other (see Sec. 3, the BAMG processing
in particular). Moreover, even in geometrical multigrid with well struc-
tured grids, standard interpolation is not suitable for high eigenvectors,
where the needed coarse-level correction is oscillatory, as in highly indef-
inite problems (cf. Sec. 5). In all these and other situations, especially
where interpolation should be designed as part of the solution process,
the following general scheme seems most suitable.
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Exact Interpolation Scheme (EIS). The general EIS approach for
coarsening the constraints optimization problem (1.43)-(1.46) is first to
adapt the interpolation operator 1/ so that & =1/ Z¢ ezactly, where 7 is
the current fine-grid approximation and z° is its coarse-level representa-
tion, and then to derive the coarse equations from the resulting coarse
minimization problem, namely, the minimization of E(1] z°) under the
constraints {f;(1 z¢) = 0}; and {gm (1} 2¢) > 0},,.

In particular, in the case of the linear eigenproblem (1.48), one can
choose 7/ to be a linear (not just affine as in FAS) operator such that
(k) =11 #k)e simultaneously for all the current approximate eigenvec-
tors (k =1,..., K; see the discussion below about large K'). This yields
the coarse-level eigenproblem

Acg®e =\, Bez®e %A’“)”B%(’“)C 1, (k=1,...,K) (149)

where A¢ = 1174 1/ and B¢ = 1/" B 1. Unlike classical CS and FAS
multigrid, no residuals are transferred here from fine to coarse, and the
coarse level problem has the same natural form of a generalized eigen-
problem. At convergence, orthonormality at the coarse level, in the sense
that {%x(l)TBca;(k) = 6kl}kK7l:1, automatically implies orthonormality at
the fine level.

Following relaxation of (1.49), interpolation from a still coarser level to
the first coarse level can be designed to fit the current approximation to
{2} K analogously yielding eigen-equations for that second coarse
level, and so on to a coarsest level whose eigenproblem can inexpensively
be solved directly. The coarsest-level solution yields orthonormality and
approximate eigenvalues, which are then inherited by successively finer
levels, each obtained from the next coarser level by the designed inter-
polation followed by one or several relaxation sweeps. This complete an
EIS cycle. No Ritz projection in needed.

Many low eigenvectors. In order to have an interpolation that is
simultaneously stationary for (i.e., satisfied by) a large number K of
current approximate eigenvectors, a correspondingly large number of in-
terpolation points must be used (|V;|, the number of points in the neigh-
borhood Nj in (1.17), should be at least K, for every 4, in contrast to the
condition stated there). In extensive problems (where n is large while
the effective underlying (e.g., physical) dimension is low) there can be a
large number of low eigenvectors which satisfy, to a good approximation,
the same interpolation rule (e.g., all of them are smooth, hence closely
satisfy one regular second-order polynomial interpolation). This inter-
polation is good enough for the first EIS cycle. To boost accuracy in the



40

next cycle, the numbers |V;| can be raised. As they increase, the inter-
polation effectively acquires progressively higher orders, hence it can fit
very closely even a much larger number (K > |N;|) of low eigenvectors.
If absolute algebraic accuracy (vanishing residuals) is desired without
further increasing |IV;|, some relaxation sweeps or even cycles can be
added in which a (very small) FAS-like affine part is appended to the
constructed joint linear interpolation. This however may well be unnec-
essary, since errors smaller than the discretization errors are obtained as
soon as the effective interpolation order exceeds the discretization order.

Most eigenvectors that can be considered low at the fine level (in the
above sense of satisfying to a good approximation a joint interpolation
rule) may no longer be low at the scale of some coarser level. This brings
them at that level to the situation discussed next.

Higher eigenvectors. As K gets even larger (or the level coarser), a
point is reached where the K eigenvectors cannot all satisfy the same
interpolation. The EIS is still applicable, except that different interpo-
lation operators should be adapted to different (not necessarily disjoint)
subsets of eigenvectors. Also the eigensystem (1.48) for high eigenvalues
Ak is highly indefinite, so the rules of Sec. 5 enter: a suitable relax-
ation scheme (such as Kacmarz or least-square) should be employed, to-
gether with a multiple-interpolation coarsening (1.20)-(1.22). Note that
that interpolation is designed so that the coarse-level representations are
smooth, even when the approximate fine-level eigenvectors are oscilla-
tory. This EIS multigrid is appropriate for computing high eigenvectors
even without calculating lower ones.

Multiscale Eigen-Base (MEB). The above description indicates
that even when a large number of eigenstates is of interest, only few
of them need be represented at the finest level: as few as the number of
distinct interpolation operators necessary to fit to a good approximation
all eigenvector subsets. At the coarser level a larger number of eigen-
vectors should be separated out, and so on: for linear systems of local
equations it is expected that the total number of eigenstates that should
be separated out at each level is inversely proportional to the number of
variables on that level. To obtain this collective representation — the so
called multiscale eigenbase (MEB) — it is not necessary to orthogonalize
each eigenvector with respect to each other: On each level each repre-
sentative eigenvector need be locally orthogonalized only with respect
to its “siblings” in this tree-like collective structure.

A work along these ideas is in progress. As a preliminary demonstra-
tion, a kind of MEB structure has been developed for general discretized
linear ordinary differential operators [Livne, 2000], [Livne and Brandt,
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2000]. It has been shown that the MEB construction for K eigenvec-
tors costs only O(nlogK) computer operations and computer storage,
and that with a similar amount of work typical information of interest
can be extracted from this compact structure. In particular, it costs
again only O(nlogK) operations to expand a given function in terms of
the K eigenvectors. This constitutes a vast generalization of the Fast
Fourier Transform (FFT) efficiency, whose basis functions are the eigen-
states of discretized differential operators with constant coefficients, pe-
riodic boundary conditions with 2! uniformly spaced gridpoints. The
new O(nlogK) expansion is in terms of the eigenfunctions of a gen-
eral variable-coefficient operator with general boundary conditions and
a general number of unevenly spaced gridpoints.

Inequality constraints. One of the earliest computational fields to
employ multilevel procedures is the field of production planning, notably
in the Soviet Union. Such procedures were quite naturally introduced
there, since the multilevel structure was already explicit in the problems
themselves, due to the hierarchical division of the economy into sectors
and its pyramidal management. This led to the introduction of iterative
“aggregation/disaggregation” (a/d) algorithms, starting already in the
mid sixties [Dudkin and Yershov, 1965] and growing in the seventies to
extensive Russian literature on iterative a/d procedures for large linear
programming problems (see [Vakhutinsky et al., 1979]).

Multigrid methods have led to the realization that rather than the ex-
plicit hierarchy exploited by those methods, greater efficiency and gen-
erality can be obtained by introducing as many intermediate levels as
possible, as long as this does not substantially increase the total num-
ber of variables on all levels. So far, not many inequality-constrained
problems have been solved this way, though.

For discretized continuum problems, a fairly general multigrid solver
can be based on projected Gauss Seidel (PGS) relaxation together with
full-approximation-scheme (FAS) coarsening. In PGS, each unknown z;
in its turn is changed so as to minimize E(x) as far as possible in the
feasible range (the range where the constraints are satisfied). The FAS
coarsening (see Sec. 7) is convenient for expressing the inequalities on
the coarser level. On interpolating the calculated correction from coarse
to fine, a slightly infeasible approximation may be produced, but subse-
quent relaxation should easily fix that, and the algorithm is stationary
at the feasible minimum.

In [Brandt and Cryer, 1983], this approach was used to minimize the
Dirichlet integral [[5(57 - u(€))? + £(€) - u(§)]d¢, suitably discretized,
given f(¢) in ©Q and u(£) on the boundary of €, under the constraint
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w(€) > 0 for all ¢ € Q C R’ Without this constraint the problem
is equivalent to the second-order elliptic Poisson equation. The PGS-
FAS multigrid solved the constrained problem in essentially the same
“textbook” efficiency at which the Poisson equation is solved.

Another possible, but little tried, approach to optimization problems
with equality+inequality constraints is the EIS mentioned above.

Experimental studies of multigrid-like solvers to the linear program-
ming transportation problem is reported in [Kaminsky, 1989] and [Nilo,
1986].

9. Non-deterministic systems

A general ingredient in methods to escape false attraction basins in
search for the global minimum is borrowed from physical processes asso-
ciated with non-deterministic finite-temperature systems. We will there-
fore first review these systems and the conventional and multiscale meth-
ods for treating them, then, in the next section, proceed to the issues of
global minimization.

Indeed the energy minimization problem can be viewed as the zero-
temperature limit of non-deterministic finite-temperature problems. Ac-
cording to the theory of statistical mechanics, if a physical system with
variables x = (z1,...,%,) and a potential-energy functional E(x) has a
thermal contact with a heat reservoir at absolute temperature 1" over a
sufficiently long time period, then the probability (or probability den-
sity) Pg(x) to obtain any particular configuration x at any given moment
is given by

Py(z) = - (1[) ¢~ B@)/kpT (1.50)
where kp is the Boltzmann constant and z(7') is a constant determined
by the requirement that the sum (or integral) of Pgr(z) over all possible
configurations z is 1; namely, >, Pg(z) = 1. Clearly, as T — 0 the only
probable configurations are those with the lowest energy.

Large systems (large n) of this kind arise as central problems in many
areas of physical sciences, including elementary particles theory, quan-
tum mechanics and molecular dynamics. The aim of computations is
to calculate various statistical averages of various “observables”, such as
M(z) =Y, z; and (M (x))?%, E(x) and many others, where the average of
an observable O(z) is defined by < O >=Y"_ Pg(x)O(xz) (or integration
instead of summation when z; are continuous variables).

Monte Carlo. A general method to calculate such averages is the
Monte Carlo (MC) method, whose aim is to produce a sequence (“chain”)
of configurations (1), () ... with the physical probability distribution
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(i.e., the probability of each z(*) to be a certain configuration z is Pg(z)),
so that < O > can be approximated by averaging over this sequence

1 K
~— ®)y . 1.51
<0> Kkgow ) (1.51)

To obtain such a fair-sampling sequence of configurations a typical MC
sweep scans the variables (z1,...,2,) in some order, changing one (or
few) of them at a time, much similar to relaxation (point-by-point min-
imization) in deterministic models. But instead of lowering E(z) as
much as possible in each such step, the MC step simulates Pg(z), i.e.,
each choice of a new value z; to replace a current value z; is decided
randomly by an ergodic procedure that keeps Pg stationary. “Ergodic”
means that every configuration x can (with positive probability) eventu-
ally (in a finite number of sweeps) be reached. “Stationary” means that
if before the step the probability distribution happens to be Pg, then
after the step the distribution will still be Pg. A usual way to obtain
stationarity of Pg is by maintaining detailed balance at each step, that
is, satisfying for any pair of configurations  and z’ the condition

Pg(z)P(z — ') = Pp(2")P(z' — x) , (1.52)

where P(x — z') is the transition probability of the step, i.e., the prob-
ability of obtaining z’ after the step given that the configuration before
the step is z. A general simple way to change one x; while maintaining
detailed balance is by the Metropolis procedure [Metropolis et al., 1953],
consisting of the following two steps:

(i) Let the current configuration be z® = (zf,...,z%); choose a can-
didate = = (xf,,xﬁ) to replace z®, where :czﬂ =z for i # j, and
x]ﬁ is chosen in a symmetric way; i.e., the probability of choosing m]ﬁ to
have a certain value vy given that z7 has the value v is the same as that
probability with the roles of v and 4/ interchanged. For example, choose
acf = 2§ + 0, where ¢ is a random number uniformly distributed in a
symmetric interval [—g, g].

(ii) If E(z?) < E(z®) then 2P is accepted, i.e., it replaces z® as the
next configuration of the MC chain. If however E(z?) > E(x®), then
2P is only accepted in probability p, where

p = Pp(a?)/Pg(z®) = P =B ke T (1.53)

while in probability 1 — p the candidate =P is rejected, i.e., ® remains
to serve as the next configuration.

Note that if the Jacobian 82E/8xi8x]~ is sparse, the calculation of
E(z®) — E(2”), and hence of p, is inexpensive. For efficiency, the size ¢
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above is adjusted so that acceptances and rejections are roughly equally
frequent.

Monte Carlo slowness. By the theory of Markov chains, if the MC
chain of configuration (1), z(?), ... is ergodic and stationary (e.g., by em-
ploying Metropolis), then limj_,oProb(z(®*) = z) = Pg(z), and hence
limKHoo% YK O(ac(k)) =< O >, as desired. However, convergence can
be painfully slow, because many successive configurations in the chain
are very similar to each other, so they do not add new statistics to aver-
age out deviations from the average. By the Central Limit Theorem of
probability, the error < O > —% K 0(z®) is proportional to il_{l/z,
where i is the number of essentially independent samples in the chain
2, 2@ 2K Many MC sweeps are usually needed to produce
one new independent configuration. This MC slowness (called Criti-
cal Slowing Down (CSD) in statistical mechanics of systems in critical
temperatures) has a nature similar to the relaxation slowness (cf. Intro-
duction): Due to the localness of the MC process (e.g., treating one x;
at a time), large-scale features (e.g., smooth components) in z are slow
to change (requiring many MC sweeps to sample a new amplitude). In
addition, and potentially more serious, again similar to the determin-
istic case, there is the problem of attraction basins of the energy func-
tional. Although unlike relaxation the MC process is never absolutely
stuck in a basin since it assigns a positive probability even to energy-
increasing steps, in practice the probability to accumulate enough local
steps to escape a large-scale attraction basin can be exponentially small,
and the MC process will fail to sample other basins. In fact, in non-
deterministic models, the distinction is blurred, between the slowness of
sampling large-scale features and the slow switching between large-scale
attraction basins. Both are very detrimental to the MC statistics, since
it is exactly the largest fluctuations in O(x) which are usually associated
with the largest-scale changes in x, so they are slowest to be averaged
out.

Cluster methods. A well-known early technique to eliminate or re-
duce the critical slowing down of certain models in statistical mechanics
is the cluster method, introduced by [Swendsen and Wang, 1987] and
further developed by [Wolff, 1989]. The approach is to enhance the MC
simulation by constructing large-scale changes that maintain detailed
balance. The method has revolutionized the computational investiga-
tion of the relevant models (e.g., the Ising spin model and models in
which the Ising model can be embedded), but it is not general enough
and cannot attain statistical optimality (defined below).



Multigrid solvers and Multilevel Optimization Strategies 45

Interpolation-based multiscale methods. Similar to the Galerkin
coarsening of deterministic problems (cf. Sec. 3), the energy functional
E(z) can automatically be defined on increasingly coarser levels by re-
cursively specifying, level after level, coarse-to-fine interpolation rules.
Also, the same type of multigrid (or algebraic multigrid) cycles can be
used, except that the relaxation sweeps are replaced by MC sweeps. The
cycle index «y (see Sec. 2) in such statistical multigrid algorithms, and the
amount of MC passes in each region at each level, can be chosen so that
changes associated with larger fluctuations of the calculated observable
O are sampled suitably more often.

Different versions of interpolation-based multigrid MC algorithms were
independently introduced by a number of authors [Brandt et al., 1986],
[Goodman and Sokal, 1986], [Mack and Pordt, 1988]. In [Brandt, 1992],
[Galun, 1992] and [Brandt et al., 1994] it was shown that such algorithms
not only accelerate the MC simulation at the fine level, but can also very
cheaply average-out large-scale fluctuations by calculating many samples
at the coarsest levels of the multigrid hierarchy (employing higher cycle
indices). In fact, for infinite-lattice Gaussian models, i.e., models with
quadratic energy functionals E(x) and n — oo, it has been shown in
[Galun, 1992], [Brandt et al., 1994], [Brandt and Galun, 1996], [Brandt
and Galun, 1997] that the algorithms are “statistically optimal”, i.e.,
they calculate < O > to accuracy ¢ in just O(c%¢~2) computer opera-
tions, where 0 =< (O— < O >)? >'/2 is the standard deviation of the
observable O. This achieves for observables associated with infinitely ex-
tended systems the same order of computer work as needed to calculate,
by statistical sampling and to a similar accuracy, any simple “pointwise”
average, such as the frequency of “heads” in coin tossing.

Less successful has been the extension of the interpolation-based ap-
proach to non-Gaussian models, although partial reductions of critical
slowing down were demonstrated [Galun, 1998], [Brandt and Galun,
1998], [Shmulyian, 1999]. This led to the multiscale approach described
next, which is much more generally applicable.

Renormalization multigrid (RMG). The RMG method combines
multigrid techniques with the coarsening approach of the renormaliza-
tion group (RG) method developed in theoretical physics (e.g., [Wilson,
1983] and [Fisher, 1998]) and other multiscale ideas. It has already
yielded statistically optimal performance for models in statistical me-
chanics (see [Brandt and Ron, 2001]) and was successfully applied to
diverse models, from simple liquids [Brandt and Iliyn, 2000] to simple
macromolecules [Bai and Brandt, 2000]. The following is a brief sum-



46

mary of its principles. (Compare it to “systematic upscaling” in the
deterministic case — in Sec. 7.)

Coarse level variables are each defined in terms of a small local set of
next-finer-level variables. Examples: (i) If the next finer level consists
of a discrete function (e.g., defined on a grid of points) each coarse
level variable may be a weighted local average of several fine variables,
or just the sign of such an average (e.g., in Ising spin problems), etc.
(ii) If the fine variables represent atom positions of a macromolecule
(e.g., polymer), the coarse variables may represent positions of pseudo
atoms, each located at the mass center of several fine atoms. (iii) If the
fine variables are atom positions of a fluid, the coarse variable can be
defined on a grid, where the values at each gridpoint represent local fluid
statistics, such as its total mass in a cell around the gridpoint, its total
dipole moment, etc., depending on the context. And so on. Although
the choice of coarse variables is not unique and requires physical insight,
there is a general criterion (presented below) to decide whether a given
choice is adequate.

Compatible Monte Carlo (CMC) is a MC process on the fine level
which is restricted to the subset of fine-level configurations compatible
with (i.e., whose coarsening coincides with) one given, fixed coarse-level
configuration. The equilibration (or decorrelation) time of CMC is the
number of sweeps the CMC needs to obtain a fine-level configuration
which is essentially independent of its initial (compatible) fine-level con-
figuration. A consistently fast CMC equilibration (i.e., CMC with very
short average decorrelation time, averaging being over an ensemble of
the fixed coarse configuration) implies that the fine-level equilibrium
can be produced from the coarse-level equilibrium just by a short local
processing.

A general measure for the adequacy of the set of coarse variables is the
average speed of CMC equilibration. A similar deterministic measure,
the speed of compatible relazation, is defined in Sec. 3 above. Analo-
gously to that case, a consistently fast CMC equilibration entails the near
locality property, implying that the conditional probability distribution
of any coarse variable, given fixed states of all other coarse variables, de-
pends mainly on its closest neighborhood, with exponentially weak rem-
nant dependence on coarse variables outside that neighborhood. This
makes it possible to derive, just by local simulations, coarse-level transi-
tion probabilities, in terms of which effective coarse-level MC simulations
can then be conducted.

The coarse-level transition probabilities are defined either in terms of
a branching table of conditional probabilities, obtained by accumulating
statistics during fine-level simulations (as in [Brandt and Ron, 2001]), or
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in terms of a coarse-level Hamiltonian, obtained iteratively by comparing
statistics of coarse simulations with fine ones (as in [Bai and Brandst,
2000]).

Interpolation. Whenever desired, any coarse level configuration can
quickly be “interpolated” to the fine level, by running to equilibrium a
corresponding CMC.

Multilevel coarsening. With MC simulations now available at the
coarse level, derivation of the next coarser level, first its variables and
then its transition probabilities, can be conducted in a similar manner. A
sequence of increasingly coarser levels can be derived in this way, leading
for example to a fixed point (see below) or to macroscopic simulations
of a material whose microscopic description was given. Usually this mi-
croscopic description was given in the form of highly repetitive laws, so
that simulations at fine levels can be restricted to small representative
regions. The form of the emerging macroscopic “equations” (or transi-
tion probabilistic rules) comes out purely numerical, which offers much
greater generality than closed-form analytical expressions.

Slowness-free Monte-Carlo simulations at all levels of this system
comes naturally: to obtain a new independent equilibrium on a given
finite domain, an equilibrium is first obtained on that domain at a coarse
enough, inexpensive level, then an equilibrium configuration is interpo-
lated to the next finer level (by fast-equilibrating CMC), and so on until
the target level is reached. At each interpolation level, if the coarse level
transition probabilities are not fully accurate, the CMC equilibration
should be followed by a small number of regular MC sweeps, a process
called “post relazation”.

A particular advantage of this equilibration process is the ability to
cheaply produce very far regions of the same equilibrium configuration,
without having to produce (at the fine levels) all the regions in between.
This yields very efficient ways to calculate far correlations.

Windows. In fact, usually one should not produce full configurations
of the fine levels; rather, only some representative windows of increas-
ingly finer levels will be generated, concentrating on regions from which
more fine-level statistics is needed.

Fast iterations. Since the derivation of the coarse transition proba-
bilities depends on efficient simulations at the finer levels, which in turn
depend on the coarser levels for fast equilibration (or for supplying a
rich enough collection of windows), iterating back and forth between
the levels is in principle needed. However, these iterations converge
very fast, since only local equilibration inside representative windows is
needed at each level. The entire multilevel system settles quickly into a
self-consistent equilibrium.
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Fized-point calculations. In many systems of statistical mechanics
there exists a critical temperature T, below which the sequence of coars-
ening (renormalization) steps tend to a fully deterministic system, and
above which it tends to a completely random system. The calculations
of most interest are at T, where all scales of the problem strongly inter-
act with each other and the successive coarsening (the renormalization
group) tends to an interesting fized point. Supplemented with “critical-
ization” projections to curb divergence away from the critical surface,
the RMG techniques can very efficiently calculate the fixed point and
associated quantities, such as the critical exponents (see [Brandt and
Ron, 2001}, [Ron et al., 2002a], [Ron et al., 2002b)).

Non-local interactions and non-equilibrium systems. The RMG
techniques can be extended to non-local (e.g., electrostatic) interactions,
by transferring directly to a coarse level the smooth part of those inter-
actions (as in Sec. 6 above), so that only their local part remains to be
expressed at the coarse level, which can be done by the local procedures
presented in this section. Also, these techniques are expandable to non-
equilibrium systems. The conditional-probability representation of such
systems can be coarsened in both space and time, at various space/time
coarsening ratios, yielding long-time and large-scale dynamics of the sys-
tem.

Low temperature algorithms. Attractions basins are particularly
inefficiently sampled at low temperatures. However, the multigrid algo-
rithm can efficiently get into equilibrium even at low temperature by em-
ploying an adaptive annealing process. In this process the temperature
is reduced step by step. At each step, upon reducing the temperature
from a previous 1" to a new 71", a first approximation to the transition
probabilities of 7" at all levels are obtained from those of T’ (by applying
the same Hamiltonian or by raising each term in the conditional proba-
bility tables to the power T'/T"). Then, in just few multilevel cycles, the
transition probabilities can be made accurate — provided the quality of
the set of coarse variables has not been deteriorated.

Indeed, the type of coarse-level variables appropriate at low tempera-
tures does generally differ from that at high temperatures. In calculation
of fluids, for example, at high temperatures the average density is an ade-
quate coarse-level variable. At low temperatures, e.g., at the appearance
of liquid drops in a gas or at the onset of piecewise crystallization, other
coarse-level variables should be added, such as the average crystal direc-
tion, and/or the average density of holes, and/or the location of mass
centers. Thus, in the annealing process one should monitor the qual-
ity of coarse variables by occasionally checking the CMC equilibration
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speed at all levels. When this speed starts to deteriorate at some level,
additional variables should be added at that level, with a corresponding
extension of the transition probability tables (e.g., adding terms to the
Hamiltonian). Candidate new variables can be found by physical un-
derstanding and/or by suitably blocking highly-correlated variables at
the next-finer level; then the new variables should be admitted provided
they pass the CMC-equilibration-speed test. Some of the old variables
may be removable, as judged again by CMC equilibration tests.

In fact, unlike the classical simulated annealing method (see Sec. 10),
the chief purpose of annealing here is the gradual identification of the de-
grees of freedom that should be employed at increasingly coarser levels.
At the zero-temperature limit these procedures can also yield power-
ful multiscale minimization procedures, as described later in the next
section.

10. Global optimization: Multilevel annealing

A general method to escape false attraction basins is to replace the
strict point-by-point minimization by a process that still accepts each
candidate change which lowers the energy (6E < 0), but also assigns
a positive probability, proportional for example to exp(—g - 6E), for
accepting a candidate step that increases the energy (6F > 0). This is
similar to a Monte Carlo simulation of the system at a finite temperature
T, where 8 = (kpT)~! and k, is the Boltzmann constant. This is indeed
the very way by which natural materials escape various attraction basins
and advance toward lower energies (cf. Sec. 9).

To have a reasonable chance to escape wide attraction basins or basins
within high energy barriers, in a tolerable amount of computational time,
a low value of 3, or a high temperature, must of course be applied. This
however makes it improbable to hit the true minimum. A general ap-
proach therefore is the gradual decrease of temperature, hoping first to
escape false high-energy attraction basins, then lower-energy ones, etc.
This process is called simulated annealing [Kirkpatrick et al., 1983], since
it simulates the common industrial process of “annealing” — obtaining
low-energy materials (such as less brittle glass) by careful gradual cool-
ing. Variations on the theme include various procedures of alternate
heating and cooling.

The simulated annealing algorithms are extremely inefficient for many
physical problems, requiring exponentially slow temperature decrease
to approach the true minimum. This is usually due to the multiscale
structure of the attraction basins: small-scale basins reside within larger-
scale ones, which reside within still-larger-scale ones etc. The small-scale
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basins correspond to local structures in the physical space; larger-scale
basins correspond to larger physical structures. When the temperature
is high enough to enable transition between large-scale attraction basins
it would completely randomize finer-scale features, even when they have
already settled into low-energy local structures (by a previous cooling).

In such cases, the transitions between basins at various scales should
be better coordinated. It should employ much lower temperatures in
switching between large-scale basins, which can be achieved only if well
orchestrated large-scale moves are constructed. This is done by what
we will generally call “multilevel annealing”, whose main features are
described below. Its first, incomplete version appeared in [Brandt et al.,
1986].

In multilevel annealing, the main role of the gradual cooling is to
identify increasingly larger-scale degrees of freedom that are acceptable
to simulation at progressively lower temperatures. There are two ap-
proaches to go about it, one in terms of coarse-level variables and the
other in terms of large-scale moves.

Coarse level variables These are variables that are coupled to each
other through temperature-dependent conditional probability (CP) ta-
bles, as in the RMG method (cf. Sec. 9). Gradually, as the temperature
is lowered, new coarse-level variables are generally introduced, checked
by the CMC-equilibration test. The procedure is like that of Monte
Carlo simulation at low temperatures (described in Sec. 9), except that it
can be executed without strict adherence to statistical fidelity (“detailed
balance”). In many cases a low-temperature-like simulation is actually
more realistic than strict minimization, either because the minimization
task is fuzzy anyway (see Sec. 12), or simply because the material whose
minimal energy is sought has in reality a finite temperature.

Note the similarity of this procedure to the BAMG approach in Sec. 3,
in which increasingly coarser (large-scale) variables and interpolation
rules associated with increasingly lower eigenvalues (corresponding to
lower temperatures here) are gradually revealed, through a process that
uses coarser levels already accessible by the current interpolation rules
to accelerate relaxation (or the Monte Carlo simulation here) at finer
levels.

Large-scale moves. Note that in the approach just described, each
coarse level configuration corresponds to the equilibrium of all fine-level
configurations that are compatible with it. When the temperature is
lowered, this equilibrium narrows down to the vicinity of few specific
fine-level configurations. Another approach then is to work explicitly
with the fine level, and to identify on it increasingly larger-scale moves
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that can be done with progressively lower temperatures. If an efficient
simulation has already been obtained at some temperature 7', it can
be employed to identify suitable moves for a lower temperature 7’, as-
suming T — T' < T'. Indeed, the moves already identified for T are
at a scale close to those required for 7", hence each suitable 7'-move is
approximately a linear combination of just a small number of T-moves.
Such combinations can be identified by calculating correlations between
neighboring T-moves during Monte Carlo simulations with the temper-
ature 7. Each combination can then be “revised” into more precise
T'-move by optimizing around it (see below).

The work in terms of large-scale variables is perhaps preferable when-
ever the system is highly repetitive, so that the same coarse-level variables
and CP tables can be used at all (or many) subdomains, as in the case of
atomistic systems. The tables then can be derived in just representative
small windows of the fine-scale system (see the description of windows
in Sec. 9). On the other hand, the identification of ezplicit large-scale
moves is often more practical for systems that have different specific
structures at different neighborhoods, making it too expensive to derive
place-dependent CP tables. However, the explicit moves are not flexible
enough, requiring the device discussed next.

Nested revision algorithm. Any preassigned large-scale move is
likely to bring about a substantial energy increase since its fine details
would not generally quite fit the fine details produced by other large scale
moves. In other words, in switching to a new large-scale attraction basin
one does not generally immediately hit the lowest-energy configurations
of that basin; since in the previous basin a process of minimization has
already taken place, the new configuration is likely to exhibit a much
higher energy. Thus, only rarely the large-scale move will be accepted
in a low-temperature simulation, even if the new attraction basin does
harbor lower energy configurations. Therefore, before applying the ac-
ceptance test to a large-scale move, one should “revise” (or “reshape”)
the move, or “optimize around it”, by employing in the neighborhood
around it a Monte Carlo simulation of smaller-scale moves. Each of
these smaller-scale moves may itself need “revision” by local simula-
tions around it at still finer scales. And so on. Such nested revision
processes are needed when the energy landscape has nested attraction
basins. Each of these processes generally should itself employ a kind of
annealing (see details in [Brandt et al., 1986]).

Working with the difficult discrete optimization problem of spin glasses,
it was shown already in [Brandt et al., 1986] that such multiscale nested
optimization techniques (together with the taming technique discussed
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below) work reasonably well even without any prior identification of spe-
cialized moves at all scales. However, the amount of work in that case
turned out to increase at least quadratically as a function of the number
of spins in the system, due to the excessive nested revision processes that
were required. Much shorter revision procedures will suffice with more
specialized moves. Also, as mentioned above, the revision procedure can
be used to optimize the specialized moves themselves, prior to their use
in the 7" simulations.

Note that the revision procedure (unless confined only to the prior
identification of moves) does not satisfy the statistical detailed balance.
It is very efficient in the search for a minimum, but cannot be used for
obtaining accurate finite-temperature statistics.

Revision process can of course be very beneficial also in the annealing
process at each single level of the multiscale algorithm. Namely, any
attempted move can be followed by some neighboring moves at the same
level, which revise the move so as to lower the energy as far as possible,
before deciding whether to accept the (revised) move.

Taming local excitations. In any sufficiently large-scale problem
with local couplings (i.e., its objective functional is a sum of terms
each of which depends only on a local set of variables, in some low
dimensional space), there is a large accumulation of likelihood that any
stochastic simulation, even with a low temperature, will always have
somewhere some small-scale local excitations (fluctuations away from
the minimum), frustrating the chance to identify the global minimum.
Since these excitations are indeed likely to be local, one can eliminate
them by the following simple procedure.

Keep in memory one or several of the best-so-far (BSF) configura-
tions. Once in a while (e.g., whenever the stochastically-evolving cur-
rent configuration yields a particularly low energy) compare the current
configuration with each of the BSF configurations. The two compared
configurations will generally have spots of just local disagreement, i.e.,
disconnected (or nearly disconnected) subsets where the values of the
two configurations differ, but outside which the configurations coincide.
Hence, for each such subset, separately from all other subsets, one can
decide whether or not to replace the BSF values by those of the current
configuration, depending which option would yield at that spot the lower
energy. Before deciding, if the subsets are not fully disconnected, one
should of course relax around the replaced values, to lower the energy
as far as locally possible (somewhat similar to the “revision” processes
described above). From the two configurations, their so called Lowest
Common Configuration (LCC) is thus produced. In this way all the BSF
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configurations can be replaced by better ones. The current configuration
should continue its evolution from its previous value, in search for new
optima. At the end, the BSF configurations can be compared to choose
the best among them.

This device should apply not only to the main optimization process,
but also to each of the auxiliary “revision” processes defined above, as
successfully demonstrated in [Brandt et al., 1986] and [Ron, 1989].

Population algorithms. Analogous devices can be used even for
more general problems (not just locally coupled). The general approach
can be described as a combination of multilevel annealing with genetic-
type algorithms. In the case of processing in terms of large-scale moves
(as described above), instead of one minimization process, a population
of such processes evolve in parallel. Once in a while one of the evolving
configurations (a “parent”) chooses another (a “partner”), from which it
borrows a combination of large-scale moves, revising them using its own
finer multiscale moves, then (and only then) deciding whether to adopt
the resulting configuration (accept it as an addition to the population
or as a replacement). Each of the revision processes can itself be done
in terms of several evolving children, and so on recursively. “Fitness”
parameters can be defined in terms of the low-energy levels attained by
the evolving configuration and its relatives. The choice of “partner” can
be based on its fitness and criteria of compatibility with the choosing
“parent”.

In the case of processing in terms of coarse-level variables, processing
at very coarse levels is very inexpensive, allowing the use of much larger
populations of parallel processes there. Upon each switch to a finer level,
the population can be sharply reduced, by repeatedly replacing a pair
of similar configurations by their LCC. (For each configuration, a list
of similar configurations can inexpensively be prepared at the coarsest
level, then transferred to (and trimmed down at) finer levels, where
progressively stricter “similarity” criteria would be applied.)

In short, one can marry the ideas of multiscale optimization with those
of genetic algorithms and study the fitness of their evolving offsprings...
The success is likely to be especially high for problems dominated by a
multitude of local couplings.

11. Graph and hypergraph problems

Notation. A hypergraph is a pair of sets V and £, where V is a set
of n = |V| vertices, or nodes, denoted V = {1,2,3,...,n}, and £ is a set
of subsets of V, called hyperedges. An (undirected) graph is the special
case where each subset includes only two vertices, say ¢ and j, forming
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a simple edge, or link, denoted {i,j}. In a weighted (hyper)graph, each
(hyper)edge has a weight, and also to each vertex i there may be assigned
a volume (or area, or length, depending on context), denoted v;. In a
simple graph, the weight of the edge {4, j} will be denoted w;;. The non-
weighted hypergraph can be regarded as the special case where v; = 1
(1 =1,...,n) and all hyperedge weights are also 1. In the algorithms
below, even if the original problem is non-weighted, the emerging coarse-
level problems are generally weighted.

Optimization problems. There are many kinds of graph/hypergraph
optimization problems. The following are some popular examples.

(1) Linear arrangement (minLA): Find a permutation ¢ of the graph
nodes such that 37; ;w;j|¢(i) — ¢(j)| is minimal. The generalized form
of this problem is to minimize }_; ; wi;|z; — z;| where z; = 37 ;) <o) V-
The minLA problem is a typical example of graph layout problems; see
[Diaz et al., 2002] for a survey. It is also related to the next kind of
problems.

(2) Low-dimensional graph embedding: For each node i assign a d-
dimensional vector #; such that the Euclidean distances r;; =||Z; — Z; ||
will minimize an objective functional such as 3 ; iyee(rij — w;j)?. Here
each node may represent some high-dimensional data point and the edge
weights represent distances in that high-dimensional space. Often such
distances are given only between close neighbors. The dimension d is low,
so that the positions Z; yield good parameterization or visualization of
the large multivariate data set, or reveal similarity between such sets.
(see [Cox and Cox, 1994]). The problem of drawing a general graph in
some low dimension was formulated as such in [Hall, 1970]. Another
promising possible objective, the locally linear embedding proposed in
[Roweis and Saul, 2000], is 3=, || &5 — X2(; jyee Wii&j ||, where {W;;}; is
the set of weights for representing the data point ¢ as a weighted average
of some neighboring data points j.

(3) Graph/hypergraph partition is the problem of dividing V' into a
(usually small) number of disjoint subsets Ry, Rs, ..., Rk, called regions,

each having total volume between two given bounds v™ and v™3X, so

that the total weight of all inter-region hyperedges (cutsize) is mini-
mal. The image segmentation problem can be regarded as a special case
(see Sec. 12). For other major variant formulations of the partitioning
problem see [Alpert and Kahng, 1995].

We will not discuss here for any of these problems theoretical com-
plexity issues, such as lower and upper bounds for their solution cost.
We are not interested here in the worst possible cases, which are ex-
tremely non-representative. Our focus is on practical high-performance
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algorithms, such that in most practical cases would yield a good ap-
proximation to the optimum at low computational cost. Typically, the
multilevel algorithms exhibit linear complexity, i.e., the computational
cost in most practical cases is proportional to V| + |£].

To achieve such high practical performance, many of the optimization
strategies discussed above, throughout this article, can be helpful, as
will be outlined below.

AMG eigensolvers. For various graph problems, practical high per-
formance algorithms have in the past taken the form of spectral algo-
rithms, meaning algorithms based on calculating several of the lowest
eigenvectors of the so called graph Laplacian A, whose terms are defined
by
~Wij for {i,jle&,i#]
a;j = { 0 for {i,j}¢E,i#]j (1.54)
Ykgi Wik for i=j -

It has been shown by [Hall, 1970] that the second eigenvector of A
gives the optimal solution for a real-valued quadratic formulation similar
to minLA, i.e., minimize }*; ; a;;(x; — x;)* subject to the constraints
;22 =1 while Y, z; = 0. An approximation to the minLA ordering
is the order of vertices in that eigenvector. Graph drawing on a plane
can be similarly carried out by using the second and third eigenvectors
of A. Extensions to partitioning and other applications are surveyed in
[Alpert and Kahng, 1995].

For most graphs appearing in practice, the AMG-EIS eigensolver (see
Sec. 8) is very efficient and has linear complexity. There are exceptions,
such as random graphs and other expanders, but for them the spectral
approximation is not likely to be good anyway, nor is the optimal solu-
tion likely to be significantly different from many arbitrary others. For
most problems, since the graph Laplacian is a zero-sum M matrix, the
simpler, classical AMG solvers will usually be suitable. (Parts of such
an AMG eigensolver were used for graph drawing and minLA in [Ko-
ren et al., 2002] and in [Koren and Harel, 2002].) However, the natural
correspondence between the BAMG solver and the eigenproblem would
possibly make it a more appropriate and certainly more general choice.

Multigrid paradigm. Rather than using it for solving a related eigen-
problem, the general multigrid paradigm, combining recursive coarsen-
ing and relaxation at each level, can be directly applied to the graph
problems. In this paradigm, the general purpose of each coarsening is
to create an analogous but substantially smaller graph problem, whose
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solution would yield an approximate (or improved) solution to the given
graph problem.

The relazation in this paradigm has actually two different roles, some-
times entailing two different kinds of schemes. The first is to improve
the approximate solution obtained after returning from the coarse level,
a process called post-relazation. The second is to help prepare the coars-
ening by yielding a good coarse-to-fine correspondence, for example,
through smoothing the error, as in classical multigrid, or by supply-
ing test vectors to define good coarse-to-fine interpolation, as in BAMG
(see Sec. 3). This process is called pre-relazation.

The multigrid paradigm has been used successfully for drawing graphs
by [Koren et al., 2002], for the graph/hypergraph partitioning problem
(see [Karypis, 2002], [Walshaw, 2002] and references therein) and for
other related problems discussed in this book. Essential aspects of ap-
plying this paradigm to graph problems are discussed below.

Weighted aggregation. The AMG coarsening (Sec. 3) will be inter-
preted here as a process of weighted aggregation of the graph nodes to
define the nodes of a coarser graph. In a strict aggregation process (also
called edge contraction or matching of vertices) the nodes are blocked in
small disjoint subsets, called aggregates. Two nodes i and j would usu-
ally be blocked together (put in the same aggregate) only if their coupling
is strong, meaning that w;; is comparable to min{max,w;, maxgws;}.
In weighted aggregation, each node can be divided into fractions, and
different fractions belong to different aggregates. In both cases, these
aggregates will form the nodes of the coarser level, where they will be
blocked into larger aggregates, forming the nodes of a still coarser level,
and so on. As AMG eigensolvers have shown, weighted, instead of strict,
aggregation is important in order to express the likelihood of nodes to
belong together; these likelihoods will then accumulate at the coarser
levels of the process, automatically reinforcing each other where appro-
priate. Strict aggregation, by contrast, may run into a conflict between
the local blocking decision and the larger-scale picture.

The rules for creating a weighted aggregation of a graph can indeed
be based on AMG principles, as follows. Each aggregate is seeded by one
fine-level node, where the set C of all seeds is a subset of V' chosen so that
the compatible relaxation of the graph Laplacian has a fast convergence
rate (see Sec. 3). Then, the fraction P;; of a node ¢ that belongs to an
aggregate j can be chosen by the rule (1.16). To curb complexity, the

number of fractions of each node should be restricted, either directly or
()

7

by a proper choice of the thresholds «
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A weighted aggregation can also be designed for hypergraphs. The
seeds and fraction sizes can in this case be determined by a pre-relaxation
process, as described below.

The coarse graph. Having determined the aggregates, which are the
nodes of the coarse graph, the associated coarse minimization problem
should be formulated so that upon disaggregation its minimum will ap-
proximate the minimum of the original (or the next-fine-level) problem.
This formulation is usually quite straightforward.

For example, in the (hyper)graph partition problem, the coarse prob-

lem is again a partition problem, with the same v™ and v™3X con-

straints, defining the volume of each coarse node I to be >, v;f(i, 1),
where f(i,I) is the fraction of the fine-node ¢ that belong to I. Simi-
larly, the edge that connects two coarse aggregates I and J is assigned
with the weight 3, ;wi; f(i, 1) f(j,J). In the image segmentation prob-
lem these weights are subsequently modified (see Sec. 12).

In minLA, the coarse problem will be a generalized minLA, with
coarse “volumes” (here actually standing for lengths) and weights de-
fined as in the partition problem.

Disaggregation. Having solved the coarse problem, an approximate
solution to the original (or the next-finer-level) problem is obtained by
disaggregation, the analog of the coarse-to-fine multigrid interpolation.
This approximation is subsequently improved by several post-relazation
sweeps (first compatible, then regular: see below).

The design of disaggregation is quite straightforward, too. For ex-
ample, in the partition problem, having obtained a partition of the
aggregates, a simple disaggregation process is to put fine-level node ¢
in region Ry in probability > ;cp, f(i,I). If the obtained partition is
infeasible (violate the volume constraints), it will be made feasible by
the post-relaxation. In minLLA, the disaggregation involves two steps:
first one positions node i along the real line at y(i) = > 7 f(¢,I)z§,
where z¢ is the position of aggregate I. Then the position is changed to
Ti = Dy(j)<y(i) Vj> thus retaining order but taking volume (length) into
account.

This simple disaggregation is not likely to be accurate enough, though.
It should therefore be followed by several sweeps of compatible relaxation,
which is like the post relaxation described below, but avoids changing
the positions of the seeds (cf. the compatible relaxation in Sec. 3). This
will produce much improved disaggregation, still compatible with the
coarse solution, before changing it by regular post relaxation.

Post relaxation, since done in the multilevel framework, can be re-
stricted to just local exchanges of nodes, each exchange being aimed at
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lowering the objective (energy) functional, possibly with added stochas-
ticity to “oil” the passage to lower energies (see “annealing” below).
By “local” exchanges we will generally mean switching or adjusting po-
sitions only between several neighboring or nearly neighboring nodes,
where neighborhood relations are determined in some natural way: in
minLA it is determined by the current linear arrangement; in the par-
tition problem — by the topology induced by the current hierarchical
aggregation.

Pre-relaxation is a similar local process, but with a possibly different
objective functional and, especially, different constraints. For example,
in the hypergraph partition problem, the objective functional can remain
the same, but the volume constraints are much smaller , e.g., v™%% = 4
and v = 1, so that the aim is partitioning into a host of small re-
gions, which we will call clusters. Once optimized, at least locally, these
clusters can be used as the aggregates of a strict aggregation. Alter-
natively, during the sweeps of pre-relaxation one can count the number
of times any two nodes, ¢ and j, share the same cluster, and use these
counts as the coupling a;; serving in a weighted aggregation. (This
is somewhat similar to finding interpolation weights from relaxation in
Bootstrap AMG, as in Sec. 3, or to the identification of large-scale move-
ments, as in Sec. 10). Note that this approach is applicable when there
is no Laplacian, as in the case of hypergraphs, or when the Laplacian is
not very useful for obtaining weights, as in the case of very aggressive
coarsening (large |Vine|/|Veoarse|, Sometimes needed to reduce the overall
complexity).

Linearizations. The graph Laplacian yields a good coarsening (the
AMG coarsening) when the problem is associated with, or approximated
by, the problem of minimizing the quadratic functional 3=, ; w;j(z; —
z;)%. A better quadratic formulation to a non-quadratic minimization
problem can usually be obtained in terms of a current approximation,
in the spirit of Newton linearization (see Sec. 7). The main property
of such an approximate quadratic formulation is stationarity, i.e., the
quadratic formulation will reproduce the current approximation if the
latter happens to be already the solution to the original (non-quadratic)
problem. For example, given a current approximation {Z;}, a stationary
quadratic approximation to the (generalized) minL A problem is

minimize Z ~wi”~a(ac2 — mj)2 , witha=1. (1.55)
i,j |x’l - .7)]‘

At each level of the multiscale minLLA solver, several cycles to coarser
levels can thus be performed, using first the original (a = 0) quadrati-
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zation, then in subsequent cycles increasing a toward 1. Using a certain
value of o means here to employ a;; = w;;/|z; —x;|* instead of the origi-
nal Laplacian in forming the aggregation seeds and weights. Note, how-
ever, that (1.55) is stationary only for the real-number approximation
to minL A, it is not stationary when the requirement that (z1,...,z,)
has to be a permutation of (1,...,n) is added.

Multilevel annealing, revision and population processes. Both
post- and pre-relaxation, at all levels, can benefit greatly from incor-
porating annealing processes, in which Monte Carlo simulations with
progressively lower temperatures replace the deterministic relaxation.
At each level the annealing can start at relatively high temperature,
e.g., such that would give 90% acceptance to about half the local ex-
changes at that level. Then, at each subsequent Monte-Carlo sweep,
the temperature should be lowered substantially, e.g., to 0.75 times its
previous value. The localness of these exchanges and the rapid cooling
guarantee the preservation of large-scale solution features inherited from
the coarser levels. Repeated re-heating and cooling can be useful.

As the algorithm proceeds to ever more evolved configurations, further
improvement may depend on employing nested revisions of each move
that seems promising; that is, whether to accept the move is decided
only after optimizing around it by additional moves either at the same
level or at finer levels (see Sec. 10). Another alternative: If recursive
revisions are not extensively used, processing at the coarsest level is very
inexpensive, hence a large population of parallel optimization processes
can be afforded there. Upon switching to a finer level, the population
should be cut down by repeated LCC replacements for pairs of similar
configurations (see Sec. 10), so as to keep the overall work at each level
suitably bounded.

The multiscale paradigm, employing extensive annealing at all levels
has been implemented in [Safro, 2002] for a sequence of model minLA
problems. Although not yet employing other devices mentioned above,
the test in nearly all cases have produced a solution with energy lower
than that reported in [Petit, 1998] and [Koren and Harel, 2002].

12. Multilevel formulation

In many, perhaps most, global optimization problems, the objective
functional E is not uniquely determined by direct physical laws, but
is concocted, somewhat arbitrarily, to impart a precise meaning to a
practical problem, whose original form is more fuzzy.

This, for example, is the formulation of ill-posed problems, like inverse
PDE problems (system identification or data assimilation, as in Sec. 8).
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The solution of such problems is often uniquely and stably fixed with the
aid of reqularization, which recasts the problem into a minimization task.
The same is true in formulating optimal control problems, in which a
performance index is added to the given mechanical system. In all these
cases, the objective, or the sense in which one solution is considered to
be better than another, is not exactly apriori given; it is chosen, with
somewhat arbitrary form and parameters.

Another typical example is the problem of reconstructing pictures
from blurred or noised data. It is often recast as the problem of mini-
mizing an energy functional which is the sum of penalty terms, penal-
izing the reconstruction for various unwanted features, such as (i) its
distance from the data; (ii) non-smoothness, except across lines recog-
nized as “edges”; (iii) proliferation of such edges; (iv) non-smoothness
of edges; etc. This combination of penalty terms creates a monstrous
minimization problem, with many nested attraction basins at all scales.
It is extremely difficult to solve — and unnecessarily so: The difficulty
largely arises from taking too seriously a set of arbitrary choices. Indeed,
the form and the numerical coefficients of the various penalty terms are
quite arbitrarily chosen; a picture which is slightly better than another
according to one choice may well be worse according to many other,
equally reasonable choices.

More generally, unnecessary computational difficulties often arise from
our tradition to cast fuzzy tasks into “stationary” formulations, that is,
to define as a solution a configuration which satisfies (exactly or approx-
imately) one well-defined criterion, such as minimizing a certain func-
tional under specified constraints. A more universal, and often far easier
way is to admit a solution which is just the end product of a suitable nu-
merical process, not necessarily designed to satisfy, even approximately,
any one governing criterion. In reconstructing pictures, for example, fea-
tures like edges and segments can be captured very satisfactorily by very
inexpensive processes (see below); the results may well fit our percep-
tion even better than the true or approximate minimizer of the objective
functional mentioned above. Similarly, for many other fuzzy problems,
a numerical process can inexpensively yield excellent solutions, whose
only “fault” is our inability to say what stationary objective functional
they (at least approximately) optimize.

While this may be fairly obvious, one can argue that the objective-
functional formulation is still in principle the “true” one: if fully care-
fully chosen, it would precisely reflect what one would want to obtain,
complicated or impractical as it may be. However, even this is often
not the case: a numerical process can incorporate a host of driving
directives that are impossible to include in one stationary criterion. Fz-
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amples: (i) The process for detecting curved edges can employ differ-
ent completion-field parameters at different scales (see [Sharon et al.,
2000a]). (ii) The process for detecting picture segments can introduce
new affinities between emerging intermediate aggregates, based on their
internal statistics (see below). (iii) In solving inverse PDE problems one
can apply multiscale regularizations, which use different penalty terms
at different scales, based on the fact that known properties of the solu-
tion, as well as both the nature of measurement errors and the size of
numerical errors, all may be very dissimilar at different scales.

It can be seen from these examples that an important tool in formu-
lating various problems is to have different, sometimes even somewhat
conflicting, objectives at different scales of the problem. The multiscale
processing is thus not just a method to accelerate convergence and es-
cape false attraction basins (as discussed above), but can often also be
essential for an improved definition of the problem.

Incidentally, even for linear problems multi-scale formulations are
sometimes needed. An example is the case of wave equations with ra-
diation boundary conditions: such conditions are most appropriately
formulated at the coarsest levels of the wave/ray algorithm (see Sec. 5
above), while the differential equations themselves are discretized at the
finest level.

VLSI placement obviously has quite fuzzy multiple objectives. For
example, one objective (objective I) may simply sum the total length
of connections, while another objective (objective IT) may also take
into account the frequency of using each connection. Objective II may
be more important than objective I at short ranges. The multilevel
algorithm can accommodate such a situation by applying objective IT
at the lower (finer) levels, while more heavily weighting objective I in
defining increasingly-coarser-level hyperedges.

Picture segmentation. As a more detailed example, we briefly present
the multiscale picture segmentation algorithm of [Sharon et al., 2000b],
[Sharon et al., 2001]. The decomposition of a given picture into mean-
ingful segments is a basic task in pattern recognition. The criteria for
blocking two picture elements into the same segment include similarity
in color levels, absence of separating edges, etc. Quantitatively, these
can be expressed in terms of coupling coefficients between neighboring
pixels, thus translating the picture into a graph. The iterative weighted
aggregation of this graph (see Sec. 11) can be regarded as a hierarchical
segmentation of the picture. Salient segments are those coarse-level ag-
gregates whose external couplings (to other aggregates of the same level)
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are weak compared to their average internal couplings (a quantity that
can be accumulated during the iterative aggregation process).

This segmentation process is very fast: only several dozen operations
per pixel are invested before switching to coarse levels where the work
is much smaller. More important, the multiscale weighted aggregation
is free to apply new types of couplings at different levels. The coupling
between larger-scale aggregates, instead of (or in combination with) be-
ing induced by the fine-scale couplings (as in the AMG process), they
can employ new criteria. Such criteria can include for example simi-
larity in the average color levels of the aggregates. More generally, all
kinds of other intra-aggregate “observables” can be used: the aggre-
gate’s center of mass, its diameter, principal orientation, texture mea-
sures (being, e.g., averages and variances of sizes and orientations of
sub-aggregates at various smaller-scale levels), etc., with the number of
observables per aggregate increasing at coarser levels. Strong couplings
should for example be established between neighboring aggregates which
have similar texture measures. Strong affinity should also be assigned
between two (not necessarily neighboring) aggregates whose principal
orientations align with the direction of the line connecting their centers
of mass; or between two neighboring aggregates whose boundaries seem
to continue each other; etc. These kinds of couplings can be established
even between quite distant aggregates, promoting the appearance of dis-
connected segments, presumably signifying partly occluded objects.

All these higher-level segmentation processes could not of course be
reflected in a single objective functional. Our experiments with a series
of real images show very successful segmentations of difficult examples.
Not only the detected segments are much more accurate and realistic
than could be produced by previous methods (that did not use multi-
scale principles in the aggregation process), but the computer run-time
has been dramatically reduced from many minutes to just few seconds,
even at the current research stage. Importantly, the hierarchical seg-
mentation produced in this way is in a form directly usable by potential
storage/retrieval recognition systems, since various statistics are accu-
mulated from level to level and then normalized, so that each large-scale
segment emerges with a vector of numbers representing textures, stan-
dardized shapes, sub-segments with their own vectors of numbers and
other identifying features.
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