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How to write a “How to Build a Brain” book∗
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These are exciting times for those of us interested in comprehensive theories of cognition and the brain.
A side by side comparison of Chris Eliasmith’s new book, How to Build a Brain (2013), and W. Ross
Ashby’s Design for a Brain (1952) (to pick a similar earlier title) reveals just how much progress has been
achieved in cognitive and brain sciences in the intervening six decades. In HBB, Eliasmith aims to translate
this progress into constructing a broad-coverage, unified model of how the brain works, inviting the reader
to play along by testing the accompanying code on a selection of problems, sampled from perception/action,
memory, reasoning, and planning.

The conceptual vehicle that Eliasmith constructs for this purpose (clearly after a serious deliberation:
many pages are devoted to explaining his design choices) seems, on the first reading, to lack a means
of propulsion. Part I (“How to build a brain”) is painstakingly detailed with regard to implementational
niceties, such as the properties of the model neurons’ spike trains and the items on pull-down menus in
the accompanying simulation environment that must be clicked to make those neurons spike as intended.
Discovering finally, in Part II (“Is that how you build a brain?”), an attempt to engage with the computa-
tional/functional issues that motivate the choice of algorithms and implementations back in Part I, I realized
that the cart in this rig has been placed firmly before the horse, which, moreover, may not be easily persuaded
to push where it needs to, or, indeed, to make the cart budge at all.

One would imagine that thirty years and more after a proper methodology for cognitive science has
been formulated (Marr and Poggio, 1977; see (Edelman, 2008a, ch.4) for a textbook treatment and (Poggio,
2012) for a retrospective and an update), any attempt to explain the brain would take heed of it. The cart of
explanation, especially one that carries the entire brain, will only move in the right direction if we hitch it to
adequately explicit computational theories of whatever it is that the brain is up to.

Eliasmith does consider Marr’s framework, only to set it aside (p.64). The result is that the book’s many
interesting ideas and contributions — e.g., semantic pointers, the importance of control, dealing with sys-
tematicity — are lost in the methodological maze of Part I. Theoretical projects of a similar scope typically
paint a “big picture” of the brain’s function. For instance, Clark (2013) posits and then defends the hypothe-
sis that the task of the brain is prediction, which may or may not be right, but which does in any case connect
with a crucially important category of questions at the right level of abstraction. In comparison, HBB does
not put goal- or problem-level hypotheses front-and-center. It also tends to mix computational-level con-
cepts (e.g., Bayes theory) with implementation-level ones (connectionism), while entertaining some false
dichotomies (e.g., symbolic vs. dynamical systems; cf. Edelman, 2008b).

One manifestation of this methodological mishmash is a list of “core cognitive criteria” by which success
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in brain-building is to be judged. These are introduced on p.16 and revisited on p.364, where we are offered
a table that evaluates his approach alongside what he considers to be the main competitors. Tantalizingly,
we’re still not told what it is that the brain does, whether according to his model or any of the others.

A potential sticking point that recurs throughout the book is Eliasmith’s use of the concept of semantics,
which is central to his approach. The claim, found on p.79, that “in more connectionist approaches, seman-
tics has been the focus” would surely surprise many of my colleagues (and not just the linguists). It turns
out that what he means by “semantics” is similarity — a philosophically and empirically arguable reduction,
which is never discussed beyond a brief passage on p.370, where the reader is referred to Eliasmith’s earlier
publications on “neurosemantics.”

Indeed, combining cues from the introduction and the later chapters, I gathered that what Eliasmith
thinks the brain does is similarity-based categorization (pp.19,88,247). The space allotted for this review
doesn’t allow me to discuss the notion that a single overarching idea may do justice to the question of brain
function, or to examine, specifically, the viability of the familiar postulate of the centrality of similarity
(which I quite like, albeit not without reservations, and about which I have written in the past). I wish that it
were brought out and treated more explicitly, right from the start.

From the engineering standpoint, Eliasmith’s modeling framework is very sensible. It uses networks of
spiking neurons to implement the holographic reduced representation principle, adopted from Plate (1995),
which is known for its ability to support compositional representations (Jones and Mewhort, 2007). Given
his declared goal of building a brain, I am not convinced, however, that enough attention is given either to the
global or circuit-level or to the local or cortical column-level anatomy of real brains (as, for instance, in the
models of O’Reilly (2006) and Maass, Natschläger, and Markram (2003), respectively). This design choice
detracts from what could have been a major contribution of this book: its attempt to deal with disparate
problems in the same architecture. In the end, the circuits hand-constructed for the different problems (e.g.,
the Towers of Hanoi and the Wason card sorting task) look quite different.

The bespoke nature of those problem-specific incarnations of Eliasmith’s general model and the exces-
sive focus on the level of spiking neurons results in some important computational-level aspects of those
problems being missed. For instance, a circuit tailored to solve Raven’s matrix analogy is described as a
success, because it decides correctly how many triangles should go into the empty cell in the matrix. And
yet, the real problem here is for the model to realize without being hard-wired for it that the real challenge
it faces is to figure out what a triangle is and that counting triangles is what it needs to do in the first place
(cf. the discussion of the Bongard problems in Hofstadter, 1979).

Part II of the book consists of three chapters dedicated to coaxing the pony of computational-level
understanding into giving a nudge to the cart of implementational and performance details, which, however,
squarely blocks off its field of view. My impression is that the arguments marshaled in these chapters are
repetitive (witness how many paragraphs begin with “Again”) and that too much effort is spent on issues
that have little bearing on the kind of big-picture understanding of the brain that one expects from this
book. Upon finishing HBB, I was left with a feeling that chunks of the big picture are nevertheless there,
fragmented and scrambled. Perhaps a better reader than I can piece the explanation together and set the
pony free.
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