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Abstract. The truncated forced non-linear Schrödinger (NLS) model is known to mimic well the forced

NLS solutions in the regime at which only one linearly unstable mode exists. Using a novel framework

in which a hierarchy of bifurcations is constructed, we analyze this truncated model and provide insights

regarding its global structure and the type of instabilities which appear in it. In particular, the significant

role of the forcing frequency is revealed and it is shown that a parabolic resonance mechanism of instability

arises in the relevant parameter regime of this model. Numerical experiments demonstrating the different

types of chaotic motion which appear in the model are provided.

Putting an order in a multi-dimensional chaotic system by classifying all the different types

of trajectories and finding their corresponding phase space regions is, in general, a formidable

and perhaps even unattainable task. Near integrable Hamiltonian systems are a fascinating

playground in this respect as some rough classification may be found. Indeed, we demonstrate

here that in some cases their structure may be well described via the construction of a three

level hierarchy of bifurcations. The analysis reveals, in a systematic way, what are the typical

and singular solutions on a given energy level and how these are altered as the energy level

and the parameters are varied. In particular, all the different types of singular unperturbed

solutions arising in a given model may be classified. The various types of chaotic trajectories

which are produced by the perturbation in the neighborhood of such solutions are shown.

The concrete system we analyze is a two-mode truncation of the forced one dimensional

non-linear Schrödinger equation, an equation which describes many phenomena in Physics

such as the Bose-Einstein condensation. Our analysis explains the phase space structure of
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this extensively studied reduced model, discloses the significance of the forcing frequency

parameter and reveals new types of chaotic solutions in it.

1. Introduction

The one dimensional non-linear Schrödinger equation emerges as a first order model in a variety of fields

in Physics - from high intensity laser beam propagation to Bose-Einstein condensation to water waves

theory; since it is the lowest order normal form for the propagation of strongly nonlinear dispersive waves its

appearance in such a wide range of applications is mathematically obvious (see [20] and references therein).

It was one of the triumphs of mathematics when it was realized that the NLS is completely integrable in

one dimension on the infinite line (or with periodic boundary conditions) and hence completely solvable,

leading to the beautiful theoretical development of inverse scattering, Lax pair and spectral analysis of

such nonlinear systems [33]. The realization that such integrable structure might not persist under small

perturbations, lead, almost two decades ago [4][8], to the development of a program in which the influence of

forcing and damping that break the integrability of the PDE is considered. This program included extensive

numerical study of the perturbed PDE’s which was presented in various forms. Since the phase space is

infinite dimensional - it is indeed unclear which form supplies the best understanding of the solutions

structure. It was then suggested that a finite dimensional model - a two mode Galerkin truncation of the

perturbed NLS - faithfully describes the PDE dynamics when even and periodic boundary conditions are

imposed and the L2 norm of the initial data is not too large [5, 3, 9, 6, 4, 7, 8, 13]. Furthermore, it was

shown that the unperturbed truncated system is a two degrees of freedom Hamiltonian system with an

additional integral of motion, hence, is integrable. The study of the perturbed two-mode model is the main

subject of this paper.

Previous investigation of the truncated system lead to the discovery of a new mechanism of instability -

the hyperbolic resonance - by which homoclinic solutions to a lower dimensional resonance zone are created

[25, 19, 22, 21]. The unperturbed structure of the truncated model which is responsible to this behavior is

a circle of fixed points which is hyperbolic in the transverse direction (see section 3 for a precise definition).

New methodologies and tools introduced to this PDE-ODE study have finally lead to a proof that the

homoclinic resonance dynamics, and in particular the birth of new types of multi-pulse homoclinic orbits
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which is associated with it, has analogous behavior in the PDE setting (see [20, 13, 31][41] and references

therein).

The appearance of a hyperbolic circle of fixed points in the truncated model is not a special property

of the NLS model - investigation of the structure of low-dimensional near-integrable Hamiltonian systems

(see [29]) shows that hyperbolic resonances are a persistent1 phenomenon in n degrees of freedom systems

with n ≥ 2; Among such integrable Hamiltonian systems there are open sets of Hamiltonians which have

an n− 1 dimensional torus of fixed points which is normally hyperbolic.

The framework of studying the phase space structure of the perturbed NLS and its modal truncations

as perturbations to increasingly larger dimensional integrable systems appears to be promising. Yet,

despite a century long study of near integrable Hamiltonian systems, our qualitative understanding of

inherently higher dimensional (non-reducible to smooth symplectic two dimensional maps) near-integrable

dynamics is lacking. Qualitative understanding means here that the effect of small perturbations on

different unperturbed orbits may be a-priori predicted for some non-trivial time scales. For example, such

a qualitative understanding exists for generic near integrable one-and-a half degrees of freedom systems;

the unperturbed periodic orbits which fill almost all of the phase space are replaced by KAM tori, Cantori

and resonance bands whereas the neighborhood of homoclinic loops of the integrable system are replaced

by homoclinic chaotic zones. While there are some long standing open problems regarding the asymptotic

behavior of such systems (notably the decay rate of averaged observables in the chaotic zone and the measure

of the chaotic zone [23, 43]), the basic transport and instability mechanisms are well understood on time

scales which are logarithmic in the perturbation parameter [32, 38]. Another example is the behavior

of orbits of near-integrable n degrees of freedom systems in a neighborhood of an unperturbed compact

regular non-degenerate level set with Diophantine frequency vector; While the asymptotic behavior of the

solutions in such regions is still unknown (the famous Arnold diffusion conjecture), it is known that for

extremely long time (at least exponential in the perturbation parameter [36, 18]) the orbits will hover near

1The existence of such tori may be formulated as the existence of transverse intersection of some finite dimensional

manifolds. Hence, using the Transversality theorem, one proves that hyperbolic resonant tori exist for a C1−open set of

integrable Hamiltonians, which we take hereafter as the definition of persistence.
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the preserved KAM tori. In both examples, while the asymptotic behavior is unknown, there is a good

understanding of the characteristic behavior of all orbits in a given neighborhood for a long transient time.

Here, we propose the following framework for obtaining such a qualitative information for a class of n

d.o.f. near-integrable Hamiltonian systems (and demonstrate this approach on the truncated NLS equa-

tions); Given an integrable n degrees of freedom family of Hamiltonian systems H0(q, p;µ) depending on

the vector of parameters µ consider the following three level hierarchy of bifurcations; The first stage

consists of the analysis of the structure of the level sets (the sets of phase space points along which all n

constants of motion are fixed) on a single energy surface (the set of phase space points along which the

unperturbed energy is fixed). Bifurcation values at this level correspond to the values of the constants of

motion across which the topology of the level sets on a given energy surface H0(q, p;µ) = h is changed.

The set of these values was called the ”bifurcation set” by Smale [42] and the ”singularity manifolds” by

Lerman and Umanskii [27]. The energy-momentum bifurcation diagram and the branched surfaces provide

a complete description of this level sets structure on any given energy surface. These tools correspond to

generalizations and extensions of the standard energy-momentum maps and the Fomenko graphs which

were previously developed and applied to several interesting integrable systems [1][2][15][42, 27, 16, 14]

[11]. In these diagrams were constructed for a simple two d.o.f. model which describes the motion of high

altitude weather balloons in the atmosphere. In [28, 29, 30] such diagrams were constructed for a variety

of normal form type models with n = 2 and 3. The main emphasize in these constructions is that given

a conservative perturbation, the Hamiltonian which is preserved in the perturbed flow defines the energy

surfaces which are close2, under some mild conditions, to the perturbed surfaces (see appendix A). Thus

the structure of the unperturbed surfaces supplies a-priori bounds to the perturbed motion.

The next level in the hierarchy consists of the energy bifurcation values hb across which the energy

surfaces are no longer C1 conjugate. Thus, it describes how the energy surface differential topology is

changed with h. This level of bifurcation was implicitly mentioned before ([42][16][11]) but has not been

fully investigated. We have shown in [28, 29, 30] that the energy momentum bifurcation diagram supplies

a graphical tool for realizing such bifurcation scenarios on this second level. In [40][39][28, 29, 30] we have

2metrically but not necessarily topologically
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shown that the simplest bifurcation (a fold in the co-dimension one singularity surfaces) is associated with

resonances - namely with a dynamical phenomena! Indeed, previous works have mostly concentrated on

one specific dynamical phenomena which changes the level set topology - the appearance of isolated fixed

points, where the structure of the level sets and the energy surfaces becomes more complex as n increases

(see [27],[16] and related works). Here we list all the other known scenarios creating energy bifurcation

values for the 2 d.o.f. case (folds, cusps and their symmetric analogs, curve crossings and asymptotes

to infinity) and discuss their dynamical implications (resonances, parabolicity, lower dimensional tori or

global bifurcations or no special local implications, unknown yet, respectively).

The last level in the hierarchy is concerned with the parameter dependence of the energy bifurcation

values. The bifurcation values here are the parameter values µb at which the bifurcation sequence of

the second level changes (e.g. by changing the order of the energy bifurcating values). For example,

for the 2 d.o.f. case, at a parameter value for which the fold-resonance energy bifurcation value hres

intersects the cusp-parabolic energy bifurcation value hpar a resonant parabolic circle [39] (a circle of fixed

points which is normally parabolic) is created. The perturbed motion near parabolic resonant tori exhibits

instability. We establish here that a parabolic resonance appears for some relevant parameter values in

the perturbed truncated NLS model and demonstrate that the perturbed orbits near such values are of

different characteristics then the trajectories which were previously observed. Using this framework the

importance of a second parameter, the forcing frequency, which was set to be one in most of previous

studies, is highlighted.

The paper is ordered as follows; In section 2 we describe the model which we study - the two mode

truncation of the forced NLS equation. In section 3 we discuss the structure of the perturbed and unper-

turbed energy surfaces and in section 4 we construct the energy-momentum bifurcation diagram and the

Fomenko graphs for this model. Together, these supply a complete information on the structure of the

energy surfaces and their dependence on the energy, namely this section completes the first level of the

hierarchy of bifurcations analysis. In section 5 we present numerical solutions of the perturbed model at

regular energy values in various forms, demonstrating how the underlying integrable structure determines

their character. Next, in section 6 we discuss the second level of the hierarchy - the energy bifurcation
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values. We show that in our model three possible mechanisms for the appearance of such bifurcations exist

and for completeness we discuss one other mechanism which appears in other models. We demonstrate

that the appearance of energy bifurcation values is usually associated with some dynamical phenomena of

the perturbed trajectories. Finally, in section 7 we describe how the energy bifurcation values vary with

the model parameters - the interval length and the frequency of the forcing. We again relate parameter

bifurcation values with dynamical phenomena of the perturbed dynamics. After the discussion and the

conclusions, in appendix A, we prove that under quite general conditions on n d.o.f. systems, for small

Hamiltonian perturbations, the energy surfaces of the perturbed and unperturbed systems are close to

each other (yet not necessarily topologically conjugate). Appendix B consists of several energy-momentum

bifurcation diagrams and their corresponding Fomenko graphs.

2. The NLS Equation

Consider the following forced and damped NLS equation:

(1) −iψT + ψXX + |ψ|2ψ = iε(αψ − ΛψXX + Γ exp(−iΩ2T )),

with periodic boundary conditions and with even solutions in X:

ψ(X,T ) = ψ(X + L, T ), ψX(0, T ) = 0.

Let

(2) B = ψ exp(iΩ2T ).

Then B satisfies the same boundary conditions as ψ and the autonomous (time independent) equation:

(3) −iBT +BXX + (|B|2 − Ω2)B = iε(αB − ΛBXX + Γ).

This equation was extensively studied in the last two decades [5, 3, 9, 6, 4, 7, 8], and in this section we will

mention only the relevant results. In this context, the perturbed NLS was first derived as a small amplitude

envelope approximation of the damped driven Sine-Gordon Equation (SGE) when the driving force is in
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the near resonance frequency. Then, Ω = 1 and the only parameter appearing in the unperturbed system

is the box size L.

The space of spatially uniform solutions (B(X,T ) = 1√
2
c(T )) is invariant under the perturbed flow (1)

and the unperturbed solutions are of the form c(T ) = |c(0)| exp(i(Ω2− 1
2 |c(0)|2)T + iγ(0)). Linear stability

analysis of such solutions at ε = 0 shows that there is exactly one unstable mode, cos 2π
L X, when

(4)
2π
L
< |c(0)| ≤ 4π

L

whereas for lower values of |c(0)| the plane wave solution is linearly stable (neutral)3. We see that for large

box size the plane wave solution is unstable even for small amplitude, as expected.

Consider a two mode complex Fourier truncation for equation (3):

(5) B2(X,T ) =
1√
2
c(T ) + b(T )coskX,

where the periodic boundary conditions imply that

(6) k =
2π
L
j, j ∈ Z+,

and since we are interested in the first unstable mode we take j = 1. Substituting this solution to the NLS

equation 3, setting α = Λ = 0 and Γ = 1, and neglecting (see [5, 3, 9, 6, 4, 7, 8, 13] for discussion of this

step) higher Fourier modes, we obtain the following equations of motion:

−iċ+
(

1
2
|c|2 +

1
2
|b|2 − Ω2

)
c+

1
2
(cb∗ + bc∗)b = i

√
2ε(7)

−iḃ+
(

1
2
|c|2 +

3
4
|b|2 − (Ω2 + k2)

)
b+

1
2
(bc∗ + cb∗)c = 0.

Here |b| is the amplitude of the first symmetric mode and 1√
2
|c| is the amplitude of the plane wave.

These equations are of the form of a two degrees of freedom near integrable Hamiltonian system with the

3The various references use various rescalings of ψ X and T , leading to some multiplication constants in the above relation

- all of these relations are of course equivalent. Furthermore, in most of the works either L or Ω (usually Ω) are considered

as fixed.
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Hamiltonian:

(8) H(c, c∗, b, b∗; ε) = H0(c, c∗, b, b∗) + εH1(c, c∗, b, b∗),

and the Poisson brackets {f, g} = −2i
(〈

∂
∂c ,

∂
∂c∗

〉
+
〈

∂
∂b ,

∂
∂b∗

〉)
, where

H0 =
1
8
|c|4 +

1
2
|b|2|c|2 +

3
16
|b|4 − 1

2
(Ω2 + k2)|b|2 − Ω2

2
|c|2 +

1
8
(b2c∗2 + b∗2c2)(9)

H1 =
−i√

2
(c− c∗).

Furthermore, at ε = 0, these equations possess an additional integral of motion:

(10) I =
1
2
(|c|2 + |b|2)

and thus are integrable, see [6, 4, 7, 8, 13].

3. Energy surfaces

Here the closeness of the perturbed and unperturbed energy surfaces is discussed, the expected structure

of energy surfaces of 2 degrees-of-freedom integrable Hamiltonians is described and finally the specific

structure of the energy surfaces of the unperturbed truncated NLS model is found.

3.1. Perturbed energy surfaces. Most of this paper is devoted to the study of the structure of the energy

surfaces of the integrable part of the truncated NLS model. Before we delve into this study, we notice that

it supplies a-priori bounds to the perturbed motion. Indeed, since the perturbation is Hamiltonian and

autonomous4, for any ε, a perturbed orbit with energy h (so H(c, b; ε) = h, (c, b) ∈ {c(t), b(t)}t∈R) satisfies

H0(·) = h−εH1(·; ε). We prove below that for small ε, points belonging to the perturbed and unperturbed

energy surfaces must be close, uniformly in h, as long as5 ‖∇H0(·)‖ is bounded away from zero and the

growth rate of H1 for large ||(c, b)|| is slower than that of H0. Hence, the structure of the unperturbed

4notice the importance of the transformation (2) which transforms the non-autonomous equation (1) to the autonomous

one (3), and the resulting dependence of the unperturbed equation on Ω

5Hereafter, all norms are the Euclidean norms: ‖(q, p)‖2 =
∑n

i=1 |qi|2 +
∑n

i=1 |pi|2 and ‖∇H‖2 =
∑n

i=1 |
∂H
∂qi

|2 +∑n
i=1 |

∂H
∂pi

|2.
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energy surfaces in an O(ε)-interval of energies near h supplies global information on the allowed range of

motion of the perturbed orbits. More precisely:

Property 1. The Hamiltonian H(q, p; ε) = H0(q, p) + εH1(q, p; ε) is said to have the boundness property

if H0(q, p) and H1(q, p; ε) are C∞ and are bounded with bounded derivatives on bounded sets. Moreover,

for any L2 > 0 there exists a constant L1 and an ε1 such that for all 0 ≤ ε < ε1:

‖∇H0(q, p)‖ > L2 max{‖∇H1(q, p; ε)‖ ,
|H1(q, p; ε)|
‖(q, p)‖

, ε

∣∣∣∂H1(q,p;ε)
∂ε

∣∣∣
‖(q, p)‖

}(11)

for all ‖(q, p)‖ > L1.

Theorem 1. Consider a near integrable Hamiltonian H(q, p; ε) = H0(q, p)+εH1(q, p; ε), ε� 1, (q, p) ∈M ,

where M is a 2n-dimensional symplectic manifold and H satisfies the boundness property 1. Consider the

energy surface Mε(h) = {(qε, pε)|H(qε, pε; ε) = h}. Then, for each δ > 0 there exists an ε0(δ) and a

constant K(δ) (independent of h) such that for all 0 ≤ ε < ε0(δ), and for all (qε, pε) ∈Mε(h) satisfying

‖∇H0(qε, pε)‖ > δ,

there exists (q0, p0) ∈M0(h) (i.e. H0(q0, p0) = h) such that
∥∥(qε, pε)− (q0, p0)

∥∥ < K(δ)ε.

Proof. See appendix A for details; First,we prove that since ‖∇H0(qε, pε)‖ is bounded away from zero so

is ‖∇H(qε, pε)‖. Then, an implicit function type of argument shows that one can extend the solution of

H(qε, pε; ε) = h from any given ε in the interval (0, ε0(δ)) to zero – which completes the proof. Using the

bounds of property 1 allows to show that this continuation may be done uniformly in ‖(q, p)‖, hence it is

independent of h.

The Hamiltonian (9) satisfies the theorem assumptions since H0 has quartic growth in |c|, |b| whereas H1

is linear in |c|, see appendix A for more details. Therefore, we conclude that the perturbed and unperturbed

energy surfaces are close to each other as long as the level sets belonging to the unperturbed energy surface

are bounded away from neighborhoods of fixed points (where ∇H0 vanishes). Since the fixed points of

the system (7) belong to a finite number of level sets, hence they reside on a finite number of isolated

energy surfaces (see appendix A), one concludes that for most part of the phase space the unperturbed and
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perturbed surfaces are close to each other. The behavior near the fixed points requires further analysis, as

expected.

Notice that the closeness of the perturbed and unperturbed energy surfaces does not imply that they

are topologically conjugate. Nonetheless, this geometrical closeness is sufficient to obtain a-priori bounds

on the motion! Another remark is that the Euclidean distance is clearly coordinate dependent, yet, a

smooth symplectic transformation of the coordinates will merely change the constant K(δ) in the theorem.

3.2. The unperturbed energy surfaces. The integrable 2 d.o.f. truncated NLS Hamiltonian, H0(c, b),

(c, b) ∈ M = C × C, has 2 integrals of motion: H0 and I. Both integrals are smooth functions of

their variables and they are pair wise in involution: {H0, I} = 0. Furthermore, since the level sets

of I are 3−spheres, the Hamiltonian level sets Mg = {(c, b) ∈ M, H0(c, b) = g1, I(c, b) = g2}, are

clearly compact, hence the unperturbed flow is complete. By the Liouville-Arnold theorem (see [34] and

[2, 24]), the connected compact components of the level sets Mg, on which dI and dH0 are (point wise)

linearly independent, are diffeomorphic to 2-tori and hence a transformation to action-angle coordinates

(H0 = H0(J)) near such level sets is non singular. Here, direct computation shows that dI and dH0 are

linearly independent for almost all values of c and b.

Consider a neighborhood of a level set Mg0 which contains a singularity set at which dI and dH0 are

linearly dependent (e.g. the plane c = 0) , but do not vanish simultaneously. Then, on each connected and

closed component of such a Hamiltonian level set there is some neighborhood D, in which the Hamiltonian

H0(c, b) may be transformed by the reduction procedure to the form (see [27], [34]):

(12) H0(q, p, J), (q, p, φ, J) ∈ U ⊆ R1 × R1 × T1 × R1

which does not depend on the angles of the torus, φ. The symplectic structure of the new integrable

Hamiltonian (12) is dq ∧ dp+ dφ ∧ dJ , where (q, p, φ, J) are the generalized action-angle variables.

For our model, the symmetry c→ c exp (iγ) , b→ b exp (iγ) of H0(c, b) inspired the following symplectic

change of variables to the generalized action angle coordinates (x, y, I, γ) (see [25]) :

c = |c| exp (iγ) , b = (x+ iy) exp (iγ) ,(13)

I =
1
2
(|c|2 + x2 + y2).(14)
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Then, the Hamiltonian (9) becomes:

H(x, y, I, γ) = H0(x, y, I) + εH1(x, y, I, γ),

where

(I, γ) ∈ (R+ × T ), (x, y) ∈ BI = {(x, y)|x2 + y2 < 2I}

and

H0(x, y, I) =
1
2
I2 − Ω2I + (I − 1

2
k2)x2 − 7

16
x4 − 3

8
x2y2 +

1
16
y4 − 1

2
k2y2,(15)

H1(x, y, I, γ) =
√

2
√

2I − x2 − y2 sin γ.(16)

The transformation to these variables is singular at c = 0, namely on the circle 2I = x2 + y2, where the

phase γ is ill defined and the perturbation term has a singular derivative. In previous works [25, 19, 22, 21]

the analysis was performed for phase space regions which are bounded away from this circle. We introduce

a similar symplectic transformation which is valid as long as b 6= 0:

(17) b = |b|eiθ , c = (u+ iv)eiθ , I =
1
2
(u2 + v2 + |b|2)

and obtain the equation of motion in the canonical coordinates (u, v, I, θ) from the Hamiltonian (9):

H0(u, v, I) =
3
4
I2 +

(
−Ω2 +

3
4
u2 − 1

4
v2 − k2

)
I − 7

16
u4 − 3

8
u2v2

+
1
2
k2u2 +

1
2
k2v2 +

1
16
v4

H1(u, v, I) =
√

2(v cos θ + u sin θ).

When both γ and θ are well defined6, namely for cb 6= 0, the two sets of coordinates are simply related:

x = |b| cos(θ − γ) y = |b| sin(θ − γ)

u =
|c|
|b|
x, v = −|c|

|b|
y.

6The (x, y, I, γ) and the (u, v, I, θ) correspond to two charts of the 3-sphere defined by (10).
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The geometrical structure of the new Hamiltonian, H0(q, p, J), is such that for any fixed J a circle is

attached to every point of the (q, p) plane. The singular level sets contain a fixed point in the normal plane

(q, p) :

(18) ∇(q,p) H0(q, p, J)|pf
= 0, pf = (qf , pf , Jf ).

Generically, for two degrees of freedom systems, we expect to have a one parameter family of solutions to

these equations, namely a one parameter family of circles (qf , pf , Jf , φ). The stability type of these circles

in the normal direction to the family 7 of circles is simply determined by the stability of the fixed points of

the reduced system (the system in the normal plane [2, 37, 10]), which, in the (q, p, J) coordinate system

is determined by:

(19) det

(
∂2H0

∂2(q, p)

∣∣∣∣
pf

)
= −λ2

pf

where pf satisfies (18). When λp
f

is real and non-vanishing the corresponding family of tori is said to be

normally hyperbolic, when it vanishes it is called normally parabolic and when it is pure imaginary it is

normally elliptic, see the detailed references in [30] and the discussion in [10]. The motion on these circles

is described by the equations:

dφ

dt
= ω(qf , pf , Jf ),

dJ

dt
= 0,

where ω(q, p, J) = ∂H0(q,p,J)
∂J is the frequency vector. Following [27] terminology, the invariant circles on

which equation (18) is satisfied are called here singular circles and the curves of energy and action values

on which this equation is satisfied (i.e. the curve (H0(qf , pf , Jf ), Jf ) in the (H,J) plane) are called the

singularity surfaces. We will see that the structure of these singularity surfaces serves as an organizing

skeleton of the energy surfaces.

For our model, the singular circles are easily found by setting ∇(x,y)H0(x, y, I) = 0 for circles satisfying

x2 + y2 < 2I and similarly ∇(u,v)H0(u, v, I) = 0 for circles satisfying u2 + v2 < 2I. As in [25, 19, 22, 21],

we identify six such families of singular circles as summarized in table 1 - the plane wave (b = 0) and

symmetric mode (c = 0) families are the two pure states and the other four families correspond to circles

7Notice that a single circle belonging to this family has neutral stability in the action direction. The normal stability

referred to in the Hamiltonian context ignores this direction, see [12, 10] and references therein.
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which bifurcate from these two pure families when they loose stability.

Invariant circle: θ, γ ∈ T 1 Exists For Description

1. ppw = (x = 0, y = 0, I, γ), I ≥ 0 Plane wave(b = 0)

2. psm = (u = 0, v = 0, I, θ), I ≥ 0 Symmetric mode(c = 0)

3. p±pwm =

(x = ±
√

4
7 (−k2 + 2I), y = 0, I, γ), I ≥ 1

2k
2 PW mixed mode(bc 6= 0)

(u = ±
√

6
7I + 4

7k
2, v = 0, I, θ), I > 1

2k
2 ”

4. p±smm =

(x = 0, y = ±2k, I, γ), I > 2k2 SM mixed mode(bc 6= 0)

(u = 0, v = ±
√

2I − 4k2, I, θ), I ≥ 2k2 ”

Table 1

Table 2 includes the calculation of the normal stability multipliers for these families of circles, namely

the calculation of eq. (19) for this case, showing that the first two families become unstable when their

norm is increased above a threshold level which depends on the box size.

Remark 1. Recall that we expect the two-mode model to apply for regions in which the plane wave solution

has at most one unstable mode. Using 4 and 13 it follows that near the circle b = 0 we should expect the

analysis to be valid for I ≤ 2k2. Interestingly enough, we see that exactly at this I value the symmetric

mode solutions lose their stability. The analysis and numerical simulations of the truncated model with

I > 2k2 are performed here to demonstrate some interesting dynamical phenomena, but their relevance to

the full PDE dynamics is admittedly doubtful.

Jacobian Eigenvalues Elliptic For Hyperbolic For Parabolic For

1. (λpw)2 = k2(−k2 + 2I) I < 1
2k

2 I > 1
2k

2 Ipw
p = 1

2k
2

2. (λsm)2 =
(

3
2I + k2

) (
1
2I − k2

)
I < 2k2 I > 2k2 Ism

p = 2k2

3. (λpwm)2 = 4
7 (2k4 − k2I − 6I2) I > 1

2k
2 - Ipw

p = 1
2k

2

4. (λsmm)2 = 4k2(2k2 − I) I > 2k2 - Ism
p = 2k2
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Table 2

The dynamics in the angle direction for x2 + y2 < 2I is described by:

(20)
dγ

dt
= ω(x, y, I) = I − Ω2 + x2 =

∂H0(x, y, I)
∂I

and for u2 + v2 < 2I we have:

(21)
dθ

dt
= ω(u, v, I) =

3
2
I − Ω2 +

3
4
u2 − 1

4
v2 − k2 =

∂H0(u, v, I)
∂I

.

In particular, the invariant circles listed in table 1 have an inner frequency, ω(I) = ∂H0(pf )
∂I , and they

correspond to a circle of fixed points when this frequency vanishes as listed in table 3.2 below.

ω(pf ) = dH
dI (pf ) I-resonance I-parabolic Parabolic

Resonance

1. ωpw = I − Ω2 Ipw
r = Ω2 Ipw

p = 1
2k

2 Ωpr−pw = 1√
2
k

2. ωsm = 3
2I − (k2 + Ω2) Ism

r = 2(Ω2+k2)
3 Ism

p = 2k2 Ωpr−sm =
√

2k

3. ωpwm = 15
7 I − Ω2 − 4

7k
2 Ipwm

r = 7Ω2+4k2

15 Ipw
p = 1

2k
2 Ωpr−pw = 1√

2
k

4. ωsmm = I − Ω2 Ismm
r = Ω2 Ism

p = 2k2 Ωpr−sm =
√

2k

Table 3

Using the transformation to the (x, y, I) coordinates, the corresponding two d.o.f. system with Ω = 1

was studied in the dissipative and conservative cases [25, 19, 22, 21, 20]. In particular, it was realized that a

specially interesting phenomena occurs when the circle corresponding to a plane wave (b = 0) is a normally

hyperbolic circle of fixed points (from table 2 and 3 and remark 1 we conclude that such a circle appears

in the relevant regime for any Ω, at I = Ω2 for 1√
2
Ω < k <

√
2Ω). Then, at ε = 0, pairs of fixed points on

this circle are connected by two heteroclinic orbits. This realization lead to a beautiful theoretical study of

the behavior of integrable systems with such a normally hyperbolic circle of fixed points under conservative

[22, 21, 20] and dissipative [25, 19] perturbations, showing that the perturbed system has various types of

homoclinic and heteroclinic orbits. Furthermore, these studies lead to the development of a geometrical
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PDE approach by which it was proved that the perturbed NLS equation has homoclinic solutions to the

resonant plane wave solutions, see [41, 20][31] and references therein.

Kovacic [25] includes in his study global analysis of the integrable system in which, after identifying the

critical I values, the level sets H = h are plotted for typical values of I. Here, we present the integrable

system using Energy momentum bifurcation diagrams and Fomenko graphs, investigating the surfaces

H = h and their extent in the I direction. This representation allows a better understanding of the

behavior under small conservative perturbations since the total energy H is preserved. The implications

of this representation on the damped case will be studied elsewhere.

4. Energy momentum bifurcation diagrams

The energy-momentum bifurcation diagram (EMBD) supplies global information on the bifurcations of

the energy surfaces structure and their relation to resonances; Consider an integrable Hamiltonian system

H0(q, p) in a region D ⊆M at which a transformation to the local generalized coordinate system H0(q, p, J)

is non singular. The energy-momentum map assigns to each point of the phase space (q, p, J) a point in the

energy-momentum space (h = H0(q, p, J), J). The Energy-Momentum bifurcation diagram (EMBD) is a

plot in the (h, J) space (for (h, J) in the range of D) which includes (see [30] for the n d.o.f. formulation):

• The region(s) of allowed motion (the closure of all regions in which the energy-momentum mapping

is a trivial fibre bundle, see [2], [42]).

• The singular surfaces (h, J) = (H0(pf ), Jf ) (see equation (18)) where the normal stability of the

corresponding singular circles, defined by equation (19), is indicated.

• The strongest resonance surfaces on which the inner frequency of the circles vanishes, ω(pf ) = 0

(and possibly the regions in which back-flow occurs, where dφ(q,p,J)
dt changes sign along the level

set (h = H0(q, p, J), J).

• The energies at which topological bifurcations occur and the Fomenko graphs in the intervals

separated by these bifurcation points.

Note that the energy-momentum bifurcation diagram depends on the choice of the generalized action-angle

co-ordinates (q, p, J), see [30] for discussion. In particular, the form of the perturbation determines what
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are the strongest resonant directions, and the actions in the EMBD are chosen accordingly. Here, eq. (9)

implies that the dominant resonant direction is indeed the conjugate angle to I, in both the (x, y, I) and

the (u, v, I) co-ordinate systems. Hence, the convenient coordinates for the energy-momentum bifurcation

diagram is (h, I). Notice that while the momentum variable I is globally defined, the associated angle

co-ordinate is defined differently near the plane wave circles (b = 0) and near the symmetric mode circles

(c = 0). The EMBD contains the resonance information for both representations.

4.1. Construction of the EMBD. Calculation of the singular surfaces and the normal stability of the

lower dimensional tori are the first steps in depicting the global structure of the energy surfaces. We begin

the construction of the EMBD by plotting the singular surfaces (H0(pf (I)), I) in the (h, I) plane, where

(pf (I)) are given by the six families of Table 1.

H0(xf , yf , I) Evaluation Exist For

1. H(xpw, ypw, I) = H(0, 0, I) = ( I2

2 − Ω2I) I ≥ 0

2. H(usm, vsm, I) = H(0, 0, I) = 3
4I

2 − I(Ω2 + k2) I ≥ 0

3. H(x±pwm, y
±
pwm, I) = 15

14I
2 − (Ω2 + 4

7k
2)I + 1

7k
4 I ≥ 1

2k
2

4. H(u±smm, v
±
smm, I) = I2

2 − Ω2I − k4 I ≥ 2k2

Table 4

In figure 1 we plot these curves for the non-dimensional wave number k = 1.025 at Ω = 1, which is the

value used in previous works [5, 3, 9, 6, 4, 7]. Other values of k and Ω are presented in Appendix B. We

use the usual convention in bifurcation diagrams by which normally stable circles are denoted by solid lines

whereas normally hyperbolic circles are denoted by dashed lines (see Table 2). Different colors are used for

the different families of invariant circles (Thick and thin black line8 for the plane wave and its bifurcating

branch and thick and thin grey line9 for the symmetric mode and its bifurcation branch). The allowed

region of motion is shaded - for each point (h, I) in this shaded region there are (c, b) values satisfying

H0(c, b) = h, I = 1
2 (|c|2 + |b|2). An energy surface in this diagram is represented by the intersection of a

8blue and red in the color plots

9magenta and green in the color plots
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vertical line with the allowed region of motion. The topology of the level sets for different I values on a

given energy surface (i.e. the number of disconnected 2-tori which correspond to each (h, I) value and the

manner by which these tori glue together at the singular values) is represented by the Fomenko graphs as

described next.

Figure 1. EMBD graph for k = 1.025,Ω = 1. Thick black (Blue) line - ppw, Thin black

(Red) line -ppwm Thick grey (Magenta) line -psm, Thin grey (Green) line -psmm. Dashed

lines - normally hyperbolic circles, solid lines- normally elliptic circles.

Figure 2. Fomenko graphs for k = 1.025,Ω = 1. Clear triangle- ppw, Solid triangle -ppwm

Clear circle-psm, Solid circle -psmm.

4.2. Fomenko graphs. The Fomenko graphs are constructed by assigning to each connected component

of the level sets (on the given energy surface) a point on the graph, so there is a one-to-one correspondence

between them (see [17][30]). Then, an edge of this graph corresponds to a regular one parameter family
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of two tori whereas vertices correspond to singular values of (h, I) at which some families of tori glue

together or shrink to a singular circle. In the standard construction of the Fomenko graphs [17] the main

objective is the study of the topology of the surfaces and the level sets, hence, for example, all the normally

elliptic singular circles are assigned with the same symbol (molecule ”A”). Here, we distinguish between the

different singular circles as these correspond to different dynamic in the NLS. Thus, we denote the invariant

circles corresponding to the plane wave family (ppw) and the invariant circles which emanate from them

(p±pwm), by open and full triangles respectively. The invariant circles corresponding to the symmetric mode

family (psm) and the invariant circles which emanate from them (p±smm), are denoted by open and full

circles. In this way the topological changes of the level sets are discovered and the energy surface may be

reconstructed from these graphs.

Figure 3. EMBD, Fomenko graph and energy surfaces (mode S1) for k = 1.025, Ω = 1,

h = −0.44.

Figure 1 shows the energy-momentum bifurcation diagram for the truncated NLS model at k = 1.025, Ω =

1. The numbered vertical lines on this figure indicate energy values for which the Fomenko graphs were

constructed as shown in figure 2. Thus, the simple segment corresponding to graph 1 in 2, corresponds to

an S2 × S1 energy surface - a sphere in the (u, v, I) space, multiplied by the circle θ ∈ S1. Figure 3 shows

the more complex energy surface at the energy level corresponding to line 5 in figure 1 and to diagram 5

in figure 2. Projections of the energy surface are plotted twice; the energy surface is the two dimensional

surface in the (x, y, I) space (respectively (u, v, I) space) multiplied, for all c 6= 0 (for all b 6= 0), by the
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circle γ ∈ S1 (θ ∈ S1). The redundant presentation in the (u, v, I) space is shown to better explain the

level sets topology near the circle c = 0 where the transformation to the (x, y, I) co-ordinates is singular. In

figure 3 we demonstrate more precisely the relations between the energy momentum bifurcation diagram,

the Fomenko graph and the energy surface; Indeed, let us describe in details the level sets topology on this

energy surface as the action I is increased:

(1) The lowest I value corresponds to the intersection of line 5 with the solid grey line in figure 1, to

the open circle on the Fomenko graph and to the lowest level set in figure 3 - the symmetric mode

circle. The level set here is the circle c = 0, |b| =
√

2Ism which is normally elliptic. It is represented

in the (u, v) plane as a point - the origin - which is multiplied by the circle in θ (the representation

in the (x, y) plane is singular here). For a bit larger I values each level set is composed of one

torus - the Fomenko graph has a single edge for such values of I and indeed we see that in both

the (x, y) plane and the (u, v) plane a single circle, corresponding to a torus, appears.

(2) When the I value reaches the dashed black line in figure 1 the level set becomes singular - it is

composed of the plane wave circle and its homoclinic surfaces, shown as a figure-eight level set

in the (x, y) plane. On the three dimensional energy surface this figure eight is multiplied by the

circle γ ∈ S1. This singular level set is denoted by the open triangle with dashed boundary in the

Fomenko graph.

(3) As I is further increased, each point in the (h, I) plane has two tori associated with it - in the

Fomenko graph we see that there are two edges for these values of I, and the corresponding level sets

at the (x, y) plane have two disconnected circles. These circles shrink to two points which are two

normally elliptic invariant circles of the plane-wave-mixed-mode type at a critical I value at which

line 5 is tangent to the curve corresponding to ppwm in figure 1 ; For energies above line 5 the energy

surface splits to two due to this curve. Thus this value of the energy is an energy bifurcation value

- the level sets for lower energies (diagram 4) and higher energies (diagram 6) undergo different

topological changes as the action is increased along the energy surface (graphs corresponding to

such energy bifurcation values are denoted here by * in the Fomenko graph sequences). The two

circles p±pwm are denoted by the solid triangles in the Fomenko graph.
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(4) Further increase of I leads us again to the two tori situation until the curve ppw is intersected

again. Then the two tori coalesce at the singular level set of the plane wave and its homoclinics

which is denoted as before by an open triangle.

(5) Further increase of I leaves us with one connected component of the level sets until the dashed

grey line in the EMBD, which denotes the normally hyperbolic circles psm, denoted in the Fomenko

graph by an open circle, is intersected. This singular level set is again, topologically, a figure-eight

times a circle, but now it is represented in the u, v plane (since the (x, y) coordinates are singular

here).

(6) For larger I values, in the Fomenko graph, two edges emanate from the circle corresponding to psm.

These correspond to the two families of tori which oscillate near the two symmetric-mode-mixed-

mode circles. The upper boundary of the energy surface is reached when these two tori shrink to

the corresponding invariant circles - when line 5 intersected the thin grey line - when the two solid

circles in the Fomenko graph are reached.

This rather lengthy explanation can be now repeated for each Fomenko graph without the explicit

computation of the corresponding energy surfaces. Namely, these graphs encode all needed information

for the reconstruction of the energy surfaces [17]. We note that a similar construction for some n d.o.f.

systems has been recently suggested (see [30] and references therein).

5. The NLS truncated solution’s structure at regular energy levels

Using the EMBD and the Fomenko graphs, we gave a full description of the structure of the unperturbed

solutions on a given energy surface in the (x, y, I, γ) and (u, v, I, θ) coordinate system. An energy surface

is a regular surface if the Fomenko graph are identical in its neighborhood [11] (e.g. in figure 2, graphs

1,2,4,6,7,8 and 10 all correspond to regular values). For such energy values, the detailed understanding

of the unperturbed structure immediately translates into a qualitative understanding of the perturbed

motion: for sufficiently small perturbation an edge in the Fomenko graph (corresponding to a family of

two-tori) disintegrates into a Cantor set of KAM tori and Cantori with resonance bands (with their own

chaotic zones) residing in the gaps of the Cantor set. The vertices which correspond to hyperbolic circles
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develop (generically) to circles with splitted separatrices with the usual chaotic zone associated with it. The

vertices which correspond to normally elliptic circles have again the usual Birkhoff normal form/resonant

behavior depending on the ratio of their normal and inner frequencies which needs to be calculated. In

figure 4 we show several perturbed orbits for h ≈ −0.42, i.e. energy surface which is described by graph 6

in figure 2. To make the perturbed motions visible we let ε value to be 10 times larger than the ε value in

the consequent figures of the perturbed orbits. Notice that this graph has 8 different edges corresponding

to 8 separate families of two-tori, 3 vertices corresponding to hyperbolic circles with separatrices, and 7

vertices corresponding to normally elliptic circles.

The relation between the solutions in the (x, y, I, γ) (or (u, v, I, θ)) spaces to the truncated solution

B2(X,T ) and hence to the truncated solution ψ2(X,T ) = B2(X,T ) exp(−iΩ2T ) of equation (1) is easily

found for c 6= 0 via the transformations (5,13):

B2(X,T ) =

(√
I(T )− 1

2
(x2(T ) + y2(T )) + (x(T ) + iy(T )) cos kX

)
exp(iγ(T ))

ψ2(X,T ) = B2(X,T ) exp(−iΩ2T ),

and similarly for b 6= 0:

B2(X,T ) =

(
u(T ) + iv(T )) +

√
I(T )− 1

2
(u2(T ) + v2(T )) cos kX

)
exp(iθ(T ))

ψ2(X,T ) = B2(X,T ) exp(−iΩ2T ).

In previous works it was suggested that plots of |B(X,T )| as a function of (X,T ) for a small interval of

time (we will call this representation the amplitude plot) and a plot of (Re{B(0, T )}, Im{B(0, T )}) for a

longer T interval (we will call this representation the B-plane plot), reveal the difference between regular

and chaotic motion. We present the various perturbed orbits which reside on the same energy surface in

these projections. It is seen that left and right branches of tori with the same I values (oscillating near

the circles p+
pwm and p−pwm respectively) appear in the B plane plots as projections of tori with different

radii (observe the light and dark green orbits in figure 4), and in the amplitude plots as phase-shifted in

X solutions (thus, the right branch has its maxima at X = 0 whereas the left one at X = π
2k , as was

demonstrated in the earlier works [7]). On the other hand the upper and lower branches (oscillating near
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Figure 4. Perturbed orbits on energy surface 6 shown on the projected energy surfaces,

the EMBD and the B plane plot for ε = 1√
2
10−2, k = 1.025, h = −0.42.

the circles p+
smm and p−smm respectively) are indistinguishable in these plots. Presenting Re{B(X,T )} for

these solutions shows a similar center-wings jumps. The chaotic solutions in these projections are shown

as well, the ones associated with ppw exhibiting left-right jumps in the amplitude plots and inner-outer

radii jumps in the B plane plots, whereas the ones associated with psm show left right jumps in the real B

plots.
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6. Bifurcating Energy values

Intersecting the energy-momentum bifurcation diagrams with a vertical line and constructing the cor-

responding Fomenko graphs leads to a full description of a given energy surface. It follows that changes in

the differential topology of the energy surfaces can be easily read off from these diagrams - they precisely

correspond to singularities of the singularity curves (the curves corresponding to the circles in the EMBD)

with respect to changes in the energy, namely to folds, branchings (cusps), intersections and asymptotes of

the singularity curves to a vertical line. The dynamical phenomena associated with each of these simplest

geometrical features of the singularity surfaces are listed below. Thus, for the two degrees of freedom case

singularity theory may be used to classify all possible energy bifurcation values (see also [30]). Here we do

extend some of the notions to the n d.o.f. framework as this has not been previously discussed. A complete

classification of all the possible singularities of these singularity surfaces and their dynamical consequences

has not been developed yet.

6.0.1. Folds in the singularity surfaces and Resonances. Clearly (see for example figure 1) the energy

surfaces change their topology whenever there is a fold in the singularity surfaces. Furthermore, it was

established in [30] that extremum of non-parabolic singularity surfaces correspond to strong resonance

relations for the lower dimensional invariant tori:

(22)
dH0

dJi

∣∣∣∣
p∗f

= 0 ⇔ dφi

dt

∣∣∣∣
p∗f

= 0, i ∈ {1, ..., n− 1},

where p∗f is also a fixed point in the normal plane, namely a solution of eq. (18) (the equivalence (22)

can be easily verified by using the chain rule, (18) and the fact that (J, φ) are conjugate canonical vari-

ables [39, 30]). In particular, a fold of the singularity surface H0(qf , pf , Jf ) at the non-parabolic torus

(qf , pf , Jf ) implies that this n− 1 dimensional torus is n− 1 resonant, namely it is a torus of fixed points.

The normal stability of this torus may be elliptic or hyperbolic. Notice that the appearance of such folds

is a persistent phenomena, hence so is the appearance of circles of fixed points in 2 d.o.f. systems (see the

corresponding theorems in [29]). To find a set of bifurcating energies we need to list the extremum of the

surfaces H0(qf , pf , Jf ) for the various singularity manifolds. To establish that at these values the topology

of the energy surface changes we also need to verify that these are non-degenerate. In Table 3 we list the
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I values for which folds are created for the six singular surfaces of Table 3, all of which are indeed non-

degenerate (in fact quadratic). The values of I for which the singular circles are parabolic are listed as well.

Using the resonant I values of Table 3 in Table 4 we conclude that the following energy values correspond

to bifurcations due to the resonances/folds:

hpw
r = −Ω4

2
,

hsm
r = −1

3
(Ω2 + k2)2,(23)

hpwm
r = − 7

30

(
Ω2 +

4
7
k2

)2

+
1
7
k4, for k <

√
2Ω

hsmm
r = −Ω4

2
− k4, for k <

1√
2
Ω

At each of these energies the corresponding family of circles (for example ppw) has a circle of fixed points

(e.g., the open triangle in diagram 3∗ in figure 2 corresponds to a normally hyperbolic circle of fixed points,

giving rise to hyperbolic resonance under perturbations); for energies below the bifurcating energy (say for

h < hpw
r , see diagrams 1 and 2 there) the energy surfaces do not include any circle of this family whereas

for energies beyond this value (say for h > hpw
r , diagram 4-10 there) two circles of this family appear on

the same energy surface.

The perturbed dynamics near such circles of fixed points, occurring on these bifurcating energy surfaces,

is different than the standard perturbed motion which was described in section 5. When the resonant circles

are normally elliptic (for Ω < Ωpr−pw for the plane wave circles, for Ω < Ωpr−sm for the mixed mode circles

and for Ω > Ωpr−pw for the plane wave-mixed circles) the coupling creates a resonance zone. Then, one

expects that an even number of fixed points will survive the perturbation, half of them becoming stable

and half unstable. Consider the motion near a stable point ppw(γ(0)) belonging to ppw which survives

the perturbation. Then, γ(T ) = γ(0) + γ̃(T ) where |γ̃(T )| is small and similarly all the other components

of pε(T ) remain close to ppw(γ(0)). Hence, the corresponding B-plane plots shown in figure 5 are quite

different - instead of seeing circles, independently of the initial phases, as in the non-resonant case, we will

see asymmetric spots for some phases and circles for others.
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Figure 5. A perturbed orbit near an elliptic resonant circle for k = 2, ε = 1√
2
10−3. Initial

Conditions: (c(0), b(0)) = (−1.413 + 0.001i, 0.001 − 0.001i) i.e. (x(0), y(0), I(0), γ(0)) =

(−0.001, 0.001, 0.9983,−π).

The motion near hyperbolic resonant circles is of completely different nature [25, 19, 22, 21]. Of particular

interest for the NLS model are the hyperbolic resonance plane wave circles which exist when Ipw
p = 1

2k
2 <

Ipw
r = Ω2. When Ω = 1 these appear only for small wave numbers (k <

√
2), namely for sufficiently large

intervals. By introducing the additional parameter Ω we see that for any k value there is an interval of Ω

values for which the resonant plane wave circle is hyperbolic: it is hyperbolic for all Ω > Ωpr−pw = 1√
2
k

, and by remark 1 the two mode model is relevant for Ω <
√

2k (indeed, the symmetric mode resonant

circles are hyperbolic for Ω > Ωpr−sm =
√

2k, so their relevance is unclear). Here, we show some perturbed

trajectories which appear in the hyperbolic resonance regime. We see that the main difference between the

regular homoclinic chaos and the hyperbolic resonant chaotic motion has to do with the non-uniformity in

the angle variable - thus it is not observable in the amplitude plot but is clearly seen in the B plane plots,

and the real B plot. Indeed, in figure 7 we show the behavior near regular homoclinic orbits whereas figure

6 shows the behavior near resonant homoclinic orbits. We note that in these plots typical chaotic orbits

are shown - these orbits shadow some of the countable infinity of multipulse homoclinic and heteroclinic

orbits that exist due to the transverse separatrix crossings (see [20] and references therein).



26 ELI SHLIZERMAN AND VERED ROM-KEDAR

Figure 6. A perturbed orbit near a hyperbolic resonant circle for k = 1.025, ε =

1√
2
10−3. Initial Conditions: (c(0), b(0)) = (−0.999 − 0.001i,−1.001 + 0.001i) i.e.

(x(0), y(0), I(0), γ(0)) = (1.001,−0.001, 0.9983,−π).

Figure 7. A perturbed orbit near a family of hyperbolic circles for k = 1.025, ε =

1√
2
10−3. Initial Conditions: (c(0), b(0)) = (−1.4132 − 0.001i,−0.8954 + 0.001i) i.e.

(x(0), y(0), I(0), γ(0)) = (0.8954,−0.001, 1.3995, π).
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6.0.2. Branching surfaces and parabolic circles. Another source for bifurcations in the energy surface struc-

ture appears when the singularity surface has a cusp (or split in the symmetric case). For the two degree of

freedom case such a cusp/splitting is associated with the appearance of a parabolic circle (for the n d.o.f.

case we look for a fold in the surface of parabolic tori, namely we look for an n − 2 resonant parabolic

n − 1 tori, see [30] for precise statement). Thus, the appearance of the parabolic circle psm at h = hsm
p

(similarly ppw at h = hpw
p ) from which the branches of circles p±smm emerge implies that for energies below

this value (graph 1 in figure 2) no such circles appear, and the Fomenko graph has no splitting to two edges

whereas larger energies have these two circles as the upper boundary of the energy surface (diagrams 2-10).

In Table 3 we list the two parabolic values of I. Plugging these values in Table 4 we find two additional

values of energy bifurcations which appear due to singularity surface branchings:

(24) hpw
p =

1
2
k2(

1
4
k2 − Ω2), hsm

p = k4 − 2k2Ω2

Notice that by remark 1 the first parabolic circle, at (x, y, I) = (0, 0, Ipw
p ), is always in the range at which

the two-mode model is expected to be valid. The second parabolic circle, at (u, v, I) = (0, 0, Ism
p ), occurs

at an I value for which a second mode becomes unstable near the circle x = y = 0. Thus, its relevance to

the PDE is doubtful.

The behavior near a branching point is not simple - to analyze it one needs to understand how Hamil-

tonian trajectories cross bifurcations [26]. It appears that the action in the normal plane is a key ingredient

in understanding the perturbed motion as it is adiabatically preserved [35]. It follows that to distinguish

between the motion near regular elliptic circle and a parabolic circle one needs to investigate very small

actions in the normal plane (of the order of the action of the unperturbed homoclinic loop at energies of

order hp +O(ε)). Only for such trajectories the chaotic transfer across the homoclinic loop (with a chaotic

zone which is exponentially small in the distance from the parabolic circle) may be observed. We do not

attempt to present here numerical verification for this delicate phenomenon.

6.0.3. Singular surfaces crossings and Global bifurcation. A third possible source for topological changes

in the energy surface is the crossing of singular surfaces. Such an intersection of singular surfaces of n− 1

dimensional invariant tori can be a result of one of the following phenomena:
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(1) Appearance of a higher dimensional singularity, namely an n− 2 invariant torus.

(2) Appearance of a global bifurcation - e.g. the creation of heteroclinic connection between two

families of n− 1 normally hyperbolic families.

(3) Appearance of two unrelated10 singular level sets for the same action and energy values.

Each one of these phenomenon appears to be persistent under Cr integrable perturbation with r > 2.

The first and second cases imply that at the corresponding energy and action values there are singular

orbits of a new type whereas the third case does not. The response of the system to perturbations is

therefore altered in the first and second case but not in the third. We thus call the first two dynamically

significant energy bifurcation values whereas the third is a dynamically insignificant energy bifurcation

value. For our example, it follows from Table 3 that the two curves (H(ppw(I)), I) and (H(psm(I)), I)

cross at I = 0 and at I = Igb = 4k2 and that no other singularity curves cross.

I = 0 corresponds to the trivial solution c = b = 0, at which both singularity curves are normally elliptic

and at their intersection we have a 4d elliptic point - an n− 2 singular level set, as in the first case above.

Thus the corresponding energy, h0 = 0, is a dynamically significant energy bifurcation value.

Igb = 4k2 corresponds to the intersection of the two singularity curves (of ppw and psm) at a value for

which both families are normally hyperbolic (since Igb > Ism
p = 2k2 > Ipw

p = 1
2k

2 for all k > 0, see Table

2). Indeed, at this value our system admits four heteroclinic connections between the plane wave circles

and the symmetric mode circles (see [25]). The energy-momentum bifurcation diagrams (see figure 1)

show the intersection between the corresponding singularity curves (dashed grey and dashed black). The

Fomenko graphs (graphs 8,9,10 in figure 2) demonstrate that a global bifurcation must occur - the solid

circles (that denote p±smm) are connected to the open circle (which denotes psm and its homoclinic orbits)

in graph 8 and to the open triangle (which denotes ppw and its homoclinic orbits) in graph 10. Hence,

this intersection corresponds to a global bifurcation and the corresponding energy is an energy bifurcation

value. Summarizing, we find two additional energy bifurcation values resulting from the singularity surfaces

10Unrelated means that the Fomenko graphs before and after the crossings have the property that there are no edges

connecting the vertices associated with these two singular surfaces.
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crossings:

(25) h0 = 0, hgb = 4k2(2k2 − Ω2)

and both of them are dynamically significant.

While the appearance of the global bifurcation intersection is intriguing from the mathematical point

of view, it appears at values of I for which more than one unstable mode exist and the two-mode model

cannot capture the full dynamics (see remark 1). Notice that the four heteroclinic connections give rise to

homoclinic chains, hence, under perturbation one expects to obtain the usual chaotic behavior associated

with homoclinic chaos. Since the heteroclinic connections connect the two charts (x, y, I, γ) and (u, v, I, θ)

we present in figure 8 the behavior in both of them, where the motion near the singular circles in each

chart need to be ignored. In figure 8 we present the additional (I, t) graph which is defined globally, unlike

the (I, γ) and (I, θ) presentations that become singular near c = 0 and b = 0 respectively.

Figure 8. A perturbed orbit near the global bifurcation for k =
√

3
8 , ε = 1√

2
10−3. Initial

Conditions: (c(0), b(0)) = (−1.7311−0.001i,−0.001+0.001i) i.e. (x(0), y(0), I(0), γ(0)) =

(0.001,−0.001, 1.4983, π).

6.0.4. Unbounded singularity surfaces. We remark that another possible source for an energy bifurcation

value is the appearance of a critical energy at which one of the singularity surfaces tends to infinity (i.e.
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(H0(pf ), J1, .., Jn−1) → (hc, J
c
1 , ..., J

c
j−1,∞, Jc

j+1, ..J
c
n−1), with possibly more than one infinite direction,

see [42] where it was shown that a motion in a central field may exhibit such a property). In this case

energy surfaces become unbounded in the Jj direction after this critical energy value. This possibility does

not appear in our model and its dynamical implications will be studied elsewhere.

7. Parametric bifurcations

The third level of the bifurcation hierarchy consists of the study of the dependence of the EMBD’s on the

parameters of the problem, the wave number k and the forcing frequency Ω. Equations (23,24,25) include

the eight energy bifurcation values for our model. At these values of energies the energy surface structure

changes. Hence, any singularity in the dependence of the surfaces of bifurcation values on the parameters,

changes the sequence of the Fomenko graphs. Fixing one of the parameters, the curves of energy bifurcation

values can have singularities of the fold, asymptote, cusp and crossing types. In our case we find that only

the latter two appear. Figure 9 shows the graph of the eight curves hpw
r , hpw

p , hsm
r , hsm

p , hpwm
r , hsmm

r , hgb, h0

as a function of Ω for k = 1.025, and similar figure can be constructed for these curves as a function of

k for a fixed Ω value (in principle we could expect to have some co-dimension two singularities here but

this does not appear to be the case here). This is a bifurcation diagram of the energy bifurcation values

- crossings and cusps of curves in this diagram correspond to bifurcations of the EMBD’s. Even for a

fixed k the emerging picture is complicated - there are many intersections of these curves, so a complete

description of the truncated NLS model consists of many different EMBD figures and their corresponding

Fomenko graph sequences. A few representative ones are shown in Appendix B.

As in the case of crossings of singular surfaces, we observe that some of the crossings do not have

dynamical significance while others do - intersections of singular surfaces which correspond to the same

action values may lead to a dynamical significant bifurcations. In such a case some of the orbits structure

may be of higher co-dimension. Then, even for small perturbation its existence may alter the local behavior

of some trajectories. These cases are enlarged in figure 9. Let us discuss the structure near several such

external bifurcations - bifurcations of the energy bifurcation values.
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Figure 9. Bifurcation diagram of the energy bifurcation values for k = 1.025, Ω is varied.

7.0.5. Parabolic Resonances. When the curve corresponding to a fold of a singular surface (indicating

the existence of a torus of fixed points), and the curve corresponding to the parabolic circles intersect, a

parabolic circle of fixed points is created. Indeed, at the critical value k = kpr−pw =
√

2Ω (respectively

at k = kpr−sm = 1√
2
Ω) the plane wave family, b = 0, (respectively the symmetric mode family, c = 0)

possesses a parabolic resonant circle at Ipr = Ω2; at this value of the parameter three bifurcating energy

curves intersect hpw
r = hpw

p = hpwm
r (similarly, at k = kpr−sm, hsm

r = hsm
p = hsmm

r ), see figure 9. The

corresponding EMBD has therefore a fold occurring exactly at the point at which the singularity curve

changes from solid to a dashed line.

The appearance of parabolic resonances gives rise to trajectories which have different characteristics than

trajectories appearing in 1.5 d.o.f. systems and of trajectories passing through separatrices as shown below

for our model. Furthermore, it is observed (see [39]) that large instabilities occur near parabolic resonances
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when additional degeneracies occur - when the curvature of one of the branches at the parabolic resonant

points approaches zero and a near flat PR appears (see [29, 28] for the higher dimensional formulation and

examples):

d2

dJ2
H0(x(J), y(J), J)

∣∣∣∣
pf→ppr

f

→ 0.

Here, we find that d2

dI2H0(x(I), y(I), I)
∣∣∣
{ppw,psm,p±pwm,p±smm}

= {1, 3
2 ,

15
7 , 1}, namely these are fixed non-

vanishing numbers. Hence, we conclude that the instability mechanism associated with the near-flat

resonance does not exist in this model. It follows that an introduction of additional parameter which

controls, for example, the mixed terms in the Hamiltonian H0(x, y, I) can alter this property and induce

strong instabilities.

Figure 10. A perturbed orbit near the plane wave parabolic resonant circle for k =
√

2,

ε = 1√
2
10−3. Initial Conditions: (c(0), b(0)) = (−1.4132 − 0.001i,−0.001 + 0.001i) i.e.

(x(0), y(0), I(0), γ(0)) = (0.001,−0.001, 0.9986,−π).

In figure 10 the perturbed motion near the plain-wave circle (b = 0) under parabolic resonance conditions

(k =
√

2,Ω = 1) is shown11. The projections of the trajectory on the energy-momentum bifurcation

diagram demonstrate that the singularity surfaces dominate the perturbed motion. The appearance of

11Similar behavior is observed near the circle c = 0 in the (u, v, I, θ) coordinates at k = 1/
√

2,Ω = 1 when the perturbation

is of the form H2(c, c∗, b, b∗) = − i√
2
(c− c∗)− Γ1i√

2
(b− b∗), so it does not vanish on c = 0.
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these trajectories in the B-plane plot and in the amplitude plots demonstrate that their character is

different then the orbits appearing in the homoclinic and hyperbolic resonant chaotic orbits.

7.0.6. Resonant global bifurcation. When the global bifurcation curve and the curve corresponding to a

fold (circle of fixed points) intersect, a heteroclinic connection between an invariant hyperbolic circle of

fixed points and an invariant hyperbolic circle is created. Such intersections occur when: hgb = hpw
r and

when hgb = hsm
r . Simple calculation shows that these scenarios occur at k = Ω

2 and k = Ω√
5

respectively:

Ipw
r = Ω2 = Igb = 4k2 ⇔ k =

Ω
2

Ism
r =

2(Ω2 + k2)
3

= Igb = 4k2 ⇔ k =
Ω√
5

= .4472 Ω

In fact, as is seen from figure 9, and may be easily verified at k = Ω
2 (respectively at k = Ω√

5
) the curves

hgb and hpw
r (respectively hsm

r ) are tangent. It implies that for k values in the range (.4472Ω, .5Ω) near

resonant behavior of both circles involved in the global bifurcations are expected if ε is not very small

(generally, we expect that with two parameters a global bifurcation between two resonant circles may be

found - but this is not the case here).

Geometrically, at these values of k the unperturbed system has a circle of fixed points ( at ppw(Irgb−pw)

and psm(Irgb−sm) respectively, see Table 3) which has four families of heteroclinic connections to a periodic

orbit (at psm(Irgb−pw) and ppw(Irgb−sm) respectively). The behavior of such a structure under small

perturbations has not been analyzed yet to the best of our knowledge. Simulations near these two values

reveal an intriguing picture of instability which are not well understood yet. Below a representative

simulation is presented. We note again that the relevance of such trajectories to the PDE model is

questionable (remark 1), yet the general phenomena of a family of heteroclinic connections between a

circle of fixed points and a periodic orbit is robust as a co-dimension one phenomena in 2 d.o.f. systems

(and hence is expected to be a persistent phenomena in n d.o.f. systems with n > 2).

7.0.7. Other crossings. Notice that several other crossings exist - these do imply topological changes on

the sequences of the Fomenko graphs but do not imply that the local qualitative behavior of solutions will

be altered. For example, the global bifurcation energy and the parabolic bifurcation energy of the two

corresponding circles cross when hgb = hpw
p and when hgb = hsm

p . However, it is immediately seen that the
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Figure 11. A perturbed orbit near a resonant global bifurcation for k = 1
2 ,ε =

1√
2
10−3. Initial Conditions: (c(0), b(0)) = (−1.4132 − 0.001i,−0.001 + 0.001i) i.e.

(x(0), y(0), I(0), γ(0)) = (0.001,−0.001, 0.9986,−π).

I values at which the global bifurcations occurs (Igb = 4k2) and the I values at which parabolicity appears

(Ipw
p = 1

2k
2, Ism

p = 2k2) are well separated for all k values which are bounded away from 0. Hence the

dynamics associated with these two phenomena appear on separate phase space regions and the coincidence

of these two energy bifurcation values is not dynamically significant.

Finally, at k = 0 many of the curves cross, thus, in the limit of small k we expect quite a complicated

behavior as many of the bifurcations occur for very close-by I values and the curvature of all the curves

in the EMBD are quite small. As we have mentioned - small curvature means degeneracies and strongest

possible instabilities. However, by remark 1, all these phenomena are relevant only for small I (quadratic

in k) values.

8. Conclusions

Two main themes were developed in parallel in this paper - on one hand global analysis of a specific

model - the truncated forced NLS system was studied, and on the other a general framework for analyzing

such near integrable systems was suggested. Let us first summarize the main features of this framework

and then relate to the specific results regarding the truncated forced NLS.
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Given an integrable family of Hamiltonian systems H0(q, p, J ;µ) depending on the vector of parameters

µ we propose that the following three level hierarchy of bifurcation scenario organizes all possible behaviors

under small perturbations:

• The first level consists of the values of the constants of motion across which the topology of the

level sets on a given energy surface H0(q, p, J ;µ) = h is changed. These are the values at which

the singularity surfaces cross the vertical hyperplane H0 = h on the energy momentum bifurcation

diagrams, and correspond to the vertices in the Fomenko graphs.

• The second level consists of the energy bifurcation values hb at which the form of the Fomenko

graph changes, namely across which the energy surfaces are no longer C1 conjugate by a near

identity mapping. Thus, it describes how the energy surface differential topology is changed with

h.

• The third level consists of the bifurcating parameter values µb at which the bifurcation sequence

of the second level changes.

Most previous works have concentrated on the first level alone, by which the topology of level sets on a

given energy surface are studied. For a large class of systems the Fomenko graphs (and the corresponding

branched surfaces in higher dimensions) provide a full description of this level. The second and third level

of this hierarchy have not been explicitly identified and described12. The bifurcations of the second level

are the energy values at which the singular surfaces of the first level are singular with respect to projections

on the energy axis. For n = 2 we have described four types of such singularities: folds, cusps, crossings and

asymptotes. We have shown that these singularities may be associated with certain dynamical phenomena:

(1) Folds are associated with n− 1 dimensional resonant tori.

(2) Cusps are associated with n− 1 dimensional parabolic tori

(3) Crossings of two surfaces are associated with either n − 2 dimensional tori, global bifurcations or

unrelated dynamical phenomena which occur simultaneously (this list may be non exhaustive).

(4) The asymptotes to infinity were not investigated in this context yet.

12though [11] discusses the second level, it is mainly done with respect to the appearance of fixed points in two degrees of

freedom systems.
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The third level, at which the singularities of the projection of the energy bifurcation surfaces onto

the parameter space are found, reveals the existence of locally degenerate solutions. In particular, we

have shown that the parabolic resonance phenomena and the resonant global bifurcation phenomena are

associated with such singularities and that these appear in the truncated NLS model.

Indeed, applying these tools to analyze the truncated forced NLS equations lead to several new insights.

First, we were lead by the analysis to introduce a second parameter, the frequency of the forcing Ω and

showed that for any given wave number k hyperbolic resonance appears for an open interval of Ω values,

whereas parabolic resonance appears at isolated Ω values. For any k, both types of resonances appear with

amplitudes for which the two-mode model is expected to be valid, thus, by tuning the forcing frequency

inherently different dynamics may be produced. Second, we observe that each of the bifurcations listed in

the hierarchical structure produces, in the near integrable system, a different type of perturbed orbits in

an open neighborhood of the bifurcation values. In particular, we demonstrate that orbits associated with

elliptic resonances, homoclinic chaos, hyperbolic resonances, parabolic resonances, global bifurcations and

resonant global bifurcations have different characteristics in various projections. Presently we seek tools

for making a more precise distinction between these various types of trajectories.

The relation between the new Hamiltonian finite dimensional results (the appearance of parabolic reso-

nances and resonant global bifurcations in this model) and the PDE solutions is under current investigation.

One would hope that these will turn out to produce finite dimensional dissipative analogs and infinite di-

mensional conservative and dissipative analogs as did the hyperbolic resonance scenario.

Acknowledgements. This research is supported by the Minerva foundation and by the ISF.

Appendix A

Closeness of perturbed and unperturbed energy surfaces. Here we prove theorem 1:

Consider a near integrable Hamiltonian H(q, p; ε) = H0(q, p)+ εH1(q, p; ε), ε� 1, (q, p) ∈M , where M

is a 2n-dimensional symplectic manifold and H satisfies the boundness property 1. Consider the energy

surface Mε(h) = {(qε, pε)|H(qε, pε; ε) = h}. Then, for each δ > 0 there exists an ε0(δ) and a constant K(δ)
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(independent of h) such that for all 0 ≤ ε < ε0(δ), and for all (qε, pε) ∈Mε(h) satisfying

(26) ‖∇H0(qε, pε)‖ > δ,

there exists (q0, p0) ∈M0(h) (i.e. H0(q0, p0) = h) such that
∥∥(qε, pε)− (q0, p0)

∥∥ < K(δ)ε.

Proof. Roughly, the proof is a simple application of the implicit function theorem, with a continuation

argument which shows that a sufficiently small ε0(δ) may be chosen so that the gradient of H is bounded

away from zero on the interval [0, ε) for all 0 ≤ ε < ε0(δ).

First, let us prove that there exists an ε2(δ) such that for all 0 ≤ ε < ε2(δ) there exists at least one

coordinate, say, with no loss of generality, q1, such that
∣∣∣∣ ∂H

∂q1

∣∣∣
(qε,pε)

∣∣∣∣ > 1
2

δ√
2n
.

Choose L1, ε1 so that property 1 is satisfied with L2 = 1. Let

(27) K1 = max
ε∈[0,ε1]

{max
B2L1

‖∇H1(q, p; ε)‖}

where BL = {(q, p)| ‖(q, p)‖ ≤ L}. Consider a point (which is not a fixed point) on the perturbed energy

surface (qε, pε) ∈ Mε(h), so that H(qε, pε; ε) = h and
∥∥∇H0(qε, pε)

∥∥ > δ for some δ. It follows that

there exists at least one coordinate, say, with no loss of generality, q1, such that
∣∣∣∣ ∂H0

∂q1

∣∣∣
(qε,pε)

∣∣∣∣ > δ′ =

δ√
2n

. Hence, for (qε, pε) ∈ Mε(h) ∩ BL1 satisfying (26), for all ε < min{ε1, δ′

2K1
} we immediately get

that
∣∣∣∣ ∂H

∂q1

∣∣∣
(qε,pε)

∣∣∣∣ > δ′ − εK1 > 1
2δ
′. If Mε(h) is large, so that there exist (qε, pε) ∈ Mε(h) satisfying∥∥(qε, pε)

∥∥ > L1, then by property 1, for all ε < ε1,
∥∥∇H1(qε, pε; ε)

∥∥ < ∥∥∇H0(qε, pε)
∥∥. Assume WNLG

that
∣∣∣∣ ∂H0

∂q1

∣∣∣
(qε,pε)

∣∣∣∣ = maxi∈{1,..,n}{
∣∣∣∣ ∂H0

∂qi

∣∣∣
(qε,pε)

∣∣∣∣ , ∣∣∣∣ ∂H0
∂pi

∣∣∣
(qε,pε)

∣∣∣∣}. Then

∣∣∣∣∣ ∂H1

∂q1

∣∣∣∣
(qε,pε)

∣∣∣∣∣ ≤ ∥∥∇H1(qε, pε; ε)
∥∥ < ∥∥∇H0(qε, pε)

∥∥ < √2n

∣∣∣∣∣ ∂H0

∂q1

∣∣∣∣
(qε,pε)

∣∣∣∣∣
thus, ∣∣∣∣∣ ∂H∂q1

∣∣∣∣
(qε,pε)

∣∣∣∣∣ >
∣∣∣∣∣ ∂H0

∂q1

∣∣∣∣
(qε,pε)

∣∣∣∣∣ (1−√2nε) >
1
2
δ′

for ε < min{ε1, 1
2
√

2n
}.

Summarizing, we established that
∣∣∣∣ ∂H

∂q1

∣∣∣
(qε,pε)

∣∣∣∣ > 1
2δ
′ = δ

2
√

2n
for all (qε, pε) ∈Mε(h) satisfying eq. (26)

provided ε < ε2(δ) = min{ 1
2
√

2n
, δ

2
√

2n
1

K1
, ε1} where K1 is defined by (27) and L1 is the smallest constant

for which eq. (11) is satisfied with L2 = 1.
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By the implicit function theorem, since (qε, pε) solves H(qε, pε; ε) = h , and there exists one coordinate,

say q1, such that
∣∣∣∣ ∂H1

∂q1

∣∣∣
(qε,pε)

∣∣∣∣ is bounded away from zero it follows that for ε < ε2(δ) the equation

H(qε, pε; ε) = h has a solution for |ε− ε| small. Moreover, a unique solution of the form (qε, pε) =

(x(ε), qε
2, ..., q

ε
n, p

ε) where x(ε) = q1(qε
2, ..., q

ε
n, p

ε, ε) may be found by solving the initial value problem:

dx

dε
= −

H1(x, qε
2, ..., q

ε
n, p

ε, ε) + ε
∂H1(x,qε

2 ,...,qε
n,pε,ε)

∂ε
∂H(x,qε

2 ,...,qε
n,pε,ε)

∂q1

= F (x, ε),(28)

x(ε) = qε
1.

Since F (x, ε) is smooth and bounded near (qε
1, ε) a unique solution locally exists. We need to show that this

solution may be extended to the interval [0, ε]. For (qε, pε) ∈ B 3
2 L1

, H1 and its derivatives are bounded, and

since
∣∣∣∣ ∂H

∂q1

∣∣∣
(qε,pε)

∣∣∣∣ > δ
2
√

2n
independent of ε (for all ε < ε2(δ)), it follows that |F (x, ε)| remains bounded

on the interval [0, ε] for sufficiently small ε. For
∥∥(qε, pε)

∥∥ > 3
2L1, rescale eq. (28) by

∥∥(qε, pε)
∥∥, then

eq. (11) and the choice of q1 as the direction at which ∇H0(qε, pε) is maximal, guarantees again that

|F (x,ε)|
‖(qε,pε)‖ remains bounded on the interval [0, ε] for sufficiently small ε (the choice of 3

2L1 guarantees that

for sufficiently small ε the inequalities (11) and the bound K1 will hold for all x(ε))

Application to the truncated NLS model. Since the unperturbed energy may be written in the form:

(29) H0 =
1
8
|c|4 +

3
16
|b|4 +

1
2
|b|2|c|2(1 +

1
2

cos(2 arg(bc∗))− 1
2
(1 + k2)|b|2 − 1

2
|c|2

namely all its quartic terms have positive coefficients, whereas the perturbation is linear in |c|, |b| it follows

immediately that indeed for sufficiently large |c|, |b| both the unperturbed energy and its gradient magnitude

are much larger than the perturbation and its gradient as needed for the theorem to apply.

Denote by ch,ε
max, b

h,ε
max the maximal amplitude of c, b on the energy surface H(c, c∗, b, b∗; ε) = h:

ch,ε
max = max{|c| : H(c, c∗, b, b∗; ε) = h}

bh,ε
max = max{|b| : H(c, c∗, b, b∗; ε) = h}

it follows from (29) that for h � 1, ch,0
max, b

h,0
max = O( 4

√
h). Furthermore, it can be shown, using the form

of eq. (7), that for large values of h the system cannot have fixed points. In fact, one can prove the following:
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Lemma. There exists an h∗(k) such that for all h > h∗(k)
∥∥∥∇H0|H0(c,c∗,b,b∗)=h

∥∥∥ 6= 0.

Proof. Let us find all solutions to
∥∥∥∇H0|H0(c,c∗,b,b∗)=h

∥∥∥ = 0. Clearly at c = b = 0 ∇H0|H0(c,c∗,b,b∗)=h

so h∗(k) > 0 = H0(0, 0, 0, 0). Using the non-singular transformation to the (x, y, I, γ) co-ordinates for

c 6= 0, and the non-singular transformation to the (u, v, I, θ) co-ordinates when b 6= 0, it follows that∥∥∥∇H0|H0(c,c∗,b,b∗)=h

∥∥∥ = 0 only when the invariant circles of table 1 are circles of fixed points, namely at

the resonant I values, I = Ir, of table 3.2. Plugging these resonant I values in table 3, we find that circles of

fixed points appear at the following h values: H0(pf−res) = {− 1
2 ,−

1
3k

4− 2
3k

2− 1
3 ,

1
15k

4− 4
15k

2− 7
30 ,−

1
2−k

4}.

It follows that for all h > 1
15k

4 there are no fixed points on the energy surfaces.

In fact, it follows from (7) that for h sufficiently large, for all (c, b) satisfying H0(c, c∗, b, b∗) = h we

have:

max{
∣∣∣∣∂H0(c, c∗, b, b∗)

∂b∗

∣∣∣∣ , ∣∣∣∣∂H0(c, c∗, b, b∗)
∂c∗

∣∣∣∣} ≥ Ch3/4.

It follows from the implicit function theorem and the form of the perturbation (namely since Hi (i = 1, 2)

are linear in c, b so that |Hi| < O( 4
√
h)), that for ε = o(

√
h)

ch,ε
max = ch,0

max +O(
ε√
h

)

bh,ε
max = bh,0

max +O(
ε√
h

)

So formally, the larger the h the larger is the extent of the energy surface and the larger is the range of

unperturbed energy surfaces which we need to consider. However, if h is very large the structure of H0

remains asymptotically unchanged and one can verify that in fact this limit may be studied by rescaling;

substituting

c =
c

4
√
h
, b =

b
4
√
h

leads to:

H(c, c∗, b, b∗) = h

(
H0(c, c∗, b, b

∗
) +O

(
1√
h

)
+

ε

h3/4
Hi(c, c∗, b, b

∗
)
)

namely to the near-integrable motion with finite h.
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Appendix B

A few representative EMBD and Fomenko graphs are presented. In the EMBD the thick (thin) black

line corresponds to the plane wave family ppw (the mixed mode emanating from it, ppwm). The thick (thin)

grey line corresponds to the symmetric mode family psm (the mixed mode emanating from it, psmm). These

curves are dashed (full) when the corresponding circle is hyperbolic (elliptic). On the Fomenko graphs, we

denote the invariant circles corresponding to the plane wave family (ppw) and the invariant circles which

emanate from them (p±pwm), by open and full black triangles respectively (for clarity, the boundary of the

triangle is dashed when it is normally hyperbolic and full when it is normally elliptic). The invariant circles

corresponding to the symmetric mode family ( psm) and the invariant circles which emanate from them

(p±smm ), are denoted by open and full grey circles, again with the usual convention for the stability.

Figure 12. EMBD graph for k =
√

1
10 .

Appendix C: From Sine-Gordon to NLS

Bishop et al. [5, 3, 9, 6, 4, 7, 8] investigated the chaotic attractor of the damped driven Sine-Gordon

Equation (SGE) with even spatial symmetry and periodic boundary conditions:
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Figure 13. Fomenko graphs figure for k =
√

1
10 .

Figure 14. EMBD graph for k =
√

9
40 .

utt − uxx + sinu = δ(−α̂ut + Λ̂utxx + Γ̂ cos(ωt)),(30)

u(x, t) = u(x+ L, t), ux(0, t) = 0.

ω is the driving frequency, L is the box size, δΓ̂ is the driving amplitude, δα̂ is the damping and δΛ̂ is an

additional wave-number dependent damping term which was introduced in [25]. The NLS approximation

for the SGE is obtained by developing a small amplitude envelope approximation for the near resonance

frequency (ω = 1− δω̃) case. More precisely, one looks for solutions of the SGE of the form:
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Figure 15. Fomenko graphs figure k =
√

9
40 .

Figure 16. EMBD graph for k =
√

3
8 .

(31) u = 2
√
δω̃[Bδ(X,T )eiωt +Bδ(X,T )∗e−iωt],

where Bδ(X,T ) is assumed to be analytic in δ, and

ω = 1− δω̃, X =
√

2δω̃ x, T = δω̃t.
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Figure 17. Fomenko graphs figure for k =
√

3
8 .

Introducing a small parameter ε such that

Λ̂ = εΛ, Γ̂ = ε8δ3/2ω̃3/2Γ, α̂ = ε2ω̃α,

with all other parameters of order one, one finds that provided13

δ � ε� 1

the leading order term in δ, B(X,T ) = B0(X,T ), satisfies the following forced and damped NLS equation

(3) with Ω2 = 1:

(32) −iBT +BXX + (|B|2 − 1)B = iε(αB − ΛBXX + Γ).
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Cushman.

[2] V. I. Arnol’d. Dynamical Systems III, volume 3 of Encyclopedia of Mathematical Sciences. Springer-Verlag, second

edition, 1993.

[3] A. Bishop, R. Flesch, M. Forest, D. McLaughlin, and E. Overman II. Correlations between chaos in a perturbed sine-

gordon equation and a trunctaed model system. SIAM J. Math. Anal., 21(6):1511–1536, 1990.

13This consistency conditions has not been set explicitly in previous publications.



44 ELI SHLIZERMAN AND VERED ROM-KEDAR

[4] A. Bishop, M. Forest, D. McLaughlin, and E. Overman II. A quasi-periodic route to chaos in a near-integrable pde.

Physica D, 23:293–328, 1986.

[5] A. Bishop, M. Forest, D. McLaughlin, and E. Overman II. A modal representation of chaotic attractors for the driven,

damped pendulum chain. Physics Letters A, 144(1):17–25, 1990.

[6] A. Bishop, D. McLaughlin, M. Forest, and E. I. Overman. Quasi-periodic route to chaos in a near-integrable pde:

Homoclinic crossings. Phys. Lett. A, 127:335–340, 1988.

[7] A. R. Bishop, K. Fesser, P. S. Lomdahl, W. C. Kerr, M. B. Williams, and S. E. Trullinger. Coherent spatial structure

versus time chaos in a perturbed sine-Gordon system. Phys. Rev. Lett., 50(15):1095–1098, 1983.

[8] A. R. Bishop and P. S. Lomdahl. Nonlinear dynamics in driven, damped sine-Gordon systems. Phys. D, 18(1-3):54–66,

1986. Solitons and coherent structures (Santa Barbara, Calif., 1985).

[9] S. Bishop and M. Clifford. The use of manifold tangencies to predict orbits, bifurcations and estimate escape in driven

systems. CHAOS SOLITONS & FRACTALS, 7(10):1537–1553, 1996.

[10] S. V. Bolotin and D. V. Treschev. Remarks on the definition of hyperbolic tori of Hamiltonian systems. Regul. Chaotic

Dyn., 5(4):401–412, 2000.

[11] A. V. Bolsinov. Methods of calculation of the Fomenko-Zieschang invariant. In Topological classification of integrable

systems, volume 6 of Adv. Soviet Math., pages 147–183. Amer. Math. Soc., Providence, RI, 1991.

[12] H. W. Broer, G. B. Huitema, and M. B. Sevryuk. Quasi-periodic tori in families of dynamical systems: order amidst

chaos, volume 1645 of LNM 1645. Springer Verlag, 1996.

[13] D. Cai, D. W. McLaughlin, and K. T. R. McLaughlin. The nonlinear Schrödinger equation as both a PDE and a dynamical

system. In Handbook of dynamical systems, Vol. 2, pages 599–675. North-Holland, Amsterdam, 2002.

[14] R. H. Cushman and L. M. Bates. Global Aspects of Classical Integrable Systems. Birkhauser Verlag AG, 1997.

[15] H. R. Dullin, P. H. Richter, and A. P. Veselov. Action variables of the kovalevskaya top. Regular and Chaotic Dynamics,

3(3):18–26, 1998.

[16] A. T. Fomenko, editor. Topological Classification of Integrable Systems, volume 6 of Advances in Soviet Mathematics.

American Mathematical Society, 1991. Translated from the Russian.

[17] A. T. Fomenko, editor. Topological classification of integrable systems, volume 6 of Advances in Soviet Mathematics.

American Mathematical Society, Providence, RI, 1991. Translated from the Russian.

[18] A. Giorgilli, A. Delshams, E. Fontich, L. Galgani, and C. Simó. Effective stability for Hamiltonian systems near an
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