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Three different types of chaotic behavior and instabilities (homoclinic chaos, hyperbolic resonance
and parabolic resonance) in Hamiltonian perturbations of the nonlinear Schrödinger (NLS) are
described. The analysis is performed on a truncated model using a novel framework in which a
hierarchy of bifurcations is constructed. Then, it is demonstrated numerically that the forced NLS
equation exhibits analogous types of chaotic phenomena. The study reveals that an adjustment of
the forcing frequency sets the behavior near the plane wave solution to one of the three different
types of chaos for any periodic box length.
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The one dimensional nonlinear Schrödinger equation
emerges as a first order model in a variety of fields - from
high intensity laser beam propagation to Bose-Einstein
condensation to water waves theory. The NLS is com-
pletely integrable, hence solvable, in one dimension on
the infinite line or with periodic boundary conditions.
The realization that the integrable structure might not
persist under small perturbations led to the investigation
of the forced and damped NLS [1]. Extensive numeri-
cal studies of this equation and of its two mode Galerkin
truncation showed that indeed the perturbation gives rise
to rich and complicated dynamics and that the finite di-
mensional model faithfully mimics the PDE dynamics
when even and periodic boundary conditions are imposed
and the L2 norm of the initial data is not too large [2, 3],
see also [4] for a similar behavior in a nonlocally coupled
NLS system. In this letter we provide a new classifica-
tion of chaotic orbits in the perturbed, undamped two-
mode model, and reveal a new type of chaotic behavior:
parabolic resonance. Moreover, we suggest that in some
phase-space regimes there exists an analogous classifica-
tion of the chaotic behavior of the forced NLS.

Consider the forced NLS equation (with no damping):

−iψt + ψxx + |ψ|2ψ = iε exp(−iΩ2t), (1)

with periodic boundary conditions and with even so-
lutions in x: ψ(x, t) = ψ(x + L, t) = ψ(−x, t). Let
B = ψ exp(iΩ2t). B satisfies the same boundary con-
ditions as ψ and the autonomous equation:

−iBt + Bxx + (|B|2 − Ω2)B = iε. (2)

In this context, the perturbed NLS was first derived as a
small amplitude envelope approximation of the damped
driven Sine-Gordon Equation when the driving force is
near resonant [2, 5]; then Ω is set to Ω = 1 and the only
parameter appearing in the unperturbed system is the
period L. Here we show that it is possible to tune the
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system into different types of chaos by varying Ω and
keeping L fixed.

For ε = 0 Eq. (2) possesses infinite number of
constants of motion. The first two are the “parti-
cle number” I =

∫ |B|2 dx and the “energy” H0 =∫ (−|Bx|2 + 1
2 |B|4 − Ω2|B|2) dx. The total energy H0 +

εH1 is also preserved when adding the perturbationH1 =
i
∫

(B −B∗) dx. Since the forcing term is x indepen-
dent, the space of spatially uniform solutions (B(x, t) =
1√
2
c(t)) is invariant under the perturbed flow (2). In

the unperturbed system these are the plane waves solu-
tions, which are time periodic and are of the form c(t) =
|c(0)| exp[iγ(t)] = |c(0)| exp[i(Ω2 − 1

2 |c(0)|2)t + iγ(0)], so
γ is the phase of the plane wave. More generally, we
define c(t) to be the (complex) spatial average of a so-
lution, c(t) =

√
2 〈B(x, t)〉x, and γ to be the argument

of this average, γ(t) = arg 〈B(x, t)〉x. Then, the plane
waves appear as circles in the complex c plane, with pe-
riodic motion along these circles whenever Ω2 6= 1

2 |c(0)|2.
When Ω2 = 1

2 |c(0)|2 (so γ̇ = 0) the periodic motion along
the plane wave and the forcing period are in resonance.

Linear stability analysis or “Modulation Stability” of
the plane waves at ε = 0, shows that the solution is sta-
ble (elliptic) when |c(0)| < 2π

L , neutral (parabolic) when
|c(0)| = 2π

L and unstable (hyperbolic) with exactly one
unstable linear mode, cos 2π

L x, when 2π
L < |c(0)| ≤ 4π

L .
We propose that the behavior of the perturbed solutions
near the plane wave depends primarily on its local stabil-
ity and on the rotation rate on it (γ̇).

To demonstrate our approach on the NLS system, we
follow [6–8], and study first a two-mode Galerkin trun-
cation of the forced NLS:

B2(x, t) =
1√
2
c(t) + b(t) cos (kx), (3)

where the periodic boundary conditions imply that k =
2π
L j, j ∈ Z+, so for the first unstable mode k = 2π

L . Sub-
stituting this solution in the forced NLS equation (2), and
neglecting (see [1–3, 5] for discussion of this step) higher
Fourier modes, a two degrees of freedom near integrable
Hamiltonian system is found:

H(c, c∗, b, b∗; ε) = H0(c, c∗, b, b∗) + εH1(c, c∗, b, b∗), (4)
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with the Poisson brackets {·, ·} = −2i
〈

∂
∂c , ∂

∂c∗
〉 −

2i
〈

∂
∂b ,

∂
∂b∗

〉
, where

H0 =
1
8
|c|4 +

1
2
|b|2|c|2 +

3
16
|b|4 − 1

2
(Ω2 + k2)|b|2

− Ω2

2
|c|2 +

1
8
(b2c∗2 + b∗2c2), (5)

H1 =
i√
2
(c− c∗).

At ε = 0, these equations are integrable and possess an
additional integral of motion, I = 1

2 (|c|2 + |b|2), see [3].
A remarkable property of this truncation is that the two
integrals of motion of the truncated model correspond
to the first two invariants of the unforced PDE. Further-
more, the spatial independent solutions of the NLS corre-
spond to the invariant plane (c, b) = (|c(0)| exp[iγ(t)], 0)
of the truncated model. When the plane wave becomes
unstable, both the PDE and the ODE systems possess
homoclinic orbits structure - there exist solutions which
are asymptotic to the plane wave solution as t → ±∞
[9].

FIG. 1: (Color online) The amplitude plot - |B(x, t)| vs. (x, t).
We color the centered profiles (x = 0) by black(red) and the
winged ones (x = ±L/2) by light gray(green) (according to
the spatial position of the maximum of |B(x, t)|). In all fig-
ures: k = 1.025 and ε = 10−4 and the initial conditions
are: B(0) = (Iinit + 10−5(1 + i) cos kx)eiπ/4, where the labels

indicate: HC-homoclinic chaos (Ω = 1, Iinit =
p

3/2), HR-
hyperbolic resonance (Ω = Iinit = 1), PR-parabolic resonance
(Ω = 1.025√

2
, Iinit = 0.5125).

The investigation of this truncated system when the
plane wave is unstable and in resonance led, a decade
ago, to the discovery of a new mechanism of instability -
the hyperbolic resonance [6–8]. New methodologies and
tools introduced to this PDE-ODE study have finally led
to a proof that the homoclinic resonance dynamics, and
in particular the birth of new types of multi-pulse homo-
clinic orbits which is associated with it, has analogous

FIG. 2: (Color online) B-plane plot - B(x, t)|x=0 in the com-
plex plane. Black(Blue) circle correspond to initial plane wave
solution.

behavior in the PDE setting (see [3, 10, 11] and refer-
ences therein). Here, we propose that more generally,
to classify the behavior near the plane waves one needs
to consider both its local stability and its rotation rate,
and in particular, we propose that when the plane wave is
parabolic and in resonance, new type of solutions appear.

To fully classify the perturbed motion in the truncated
model we introduced in [12, 13] the general framework of
“hierarchy of bifurcations” and used it to analyze the
integrable structure. The main tools in this framework
are the energy-momentum bifurcation diagrams (EMBD)
and the Fomenko graphs. These give a succinct rep-
resentation to the structure of the energy surfaces; the
structure of the level sets on a given surface (H0 is fixed
and I is varied) is described by Fomenko graphs (the
first level of the hierarchy). Changes in the energy sur-
faces structure as the energy is varied is described by the
EMBD (second level) and changes in these diagrams as
parameters are varied are described by the critical ener-
gies bifurcation diagram and correspond to the third level
of the hierarchy. Performing this analysis for the trun-
cated model (see [12]), we obtained the following classi-
fication of the solutions; For most values of (c(0), b(0)),
and in particular near the plane wave solutions (b = 0)
with Ipw < 1

2k2 where they are normally elliptic, the
solutions of the unperturbed systems are quasi-periodic.
Hence, under perturbation, most of these quasi-periodic
motions persist (by KAM theory) and small resonance
zones appear as well. Due to the nonlinearity, and the
fact that this is a two-degrees of freedom system, for suffi-
ciently small perturbations the perturbed motion always
stays close to the unperturbed plane wave circle.

For Ipw > 1
2k2 the plane wave is normally hyperbolic

- a figure eight homoclinic loop is created. If Ipw 6= Ω2,
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unperturbed homoclinic solutions have a non-zero spa-
tial average which oscillates in time and a spatial term
which is centered at either x = 0 (“central configura-
tion”) or x = L

2 (“wing configuration”) and decays, as
t → ±∞, to zero. For the unperturbed system, on
the same energy surface, two normally stable periodic
solutions are created. These solutions are of the form
(c, b) = (|c(0)|,±|b(0)|) exp(iγ(t)) - the plus sign corre-
sponds to a central solution whereas the minus sign cor-
responds to a winged solution (the even boundary condi-
tions lead to this selection of relative equilibria). Thus,
on this energy surface, if 1

2k2 > Ω2, unperturbed orbits
with initial conditions near the plane wave with I > Ipw

encircle the figure eight, jumping periodically from cen-
tral to winged configuration. Solutions with I < Ipw

oscillate around the stable periodic orbits, having either
central or winged configuration.

We propose that for particle numbers I < 2k2, near
the plane wave solutions, the above qualitative descrip-
tion of the truncated system applies to the forced NLS as
well, where c(t) represents the spatial average of B(x, t)
and b(t) represents the complex amplitude of the lead-
ing (e.g. most energetic) spatial dependent mode of the
solution: B(x, t) = c(t) + b(t)φ1(x) + .... For small par-
ticle numbers (I(0) < 1

2k2), most solutions starting near
the plane wave exhibit quasi-periodic motion in time,
where one of its frequencies is associated with γ and the
other one with the spatial oscillations around the spa-
tial mean. The spatial center of these solutions moves
periodically from the central to the wing configuration
and back. When the plane wave becomes hyperbolic,
spatial excitations which are periodic in time are cre-
ated - these are the PDE analogs to the two periodic
solutions of the truncated model with non-zero b. These
solutions are the spatially-periodic “solitons” appearing,
because of the even boundary condition, in central or
wing configuration. The figure eight orbits of the trun-
cated model correspond to the NLS asymptotic solutions
in time - the homoclinic orbits to the plane wave solution
Bh−−−−→t→±∞Bpw.

The perturbed solutions near the hyperbolic plane
wave exhibit homoclinic chaos; a chaotic zone is cre-
ated near the unperturbed separatrices and the solutions
change their spatial center chaotically in time, as demon-
strated in Fig. 1 (in the ODE column of the figures we use
equation (3) to reconstruct B(x, t) from the two-mode
model). This chaotic zone is essentially uniform in the γ
variable (different sections in γ are topologically conju-
gate) as demonstrated in Figs. 2 and 4, since for almost
all Ω values the motion rate does not vanish (|γ̇| > 0).
We refer to this behavior as homoclinic chaos.

The uniformity of the perturbed solutions in the phase
is lost when γ̇ vanishes in the unperturbed system,
namely when I = Ipw

r = Ω2. Then, for 1
2k2 < Ω2 (so

Ipw
r > 1

2k2) a hyperbolic resonance appears [6–8], see
Figs. 2 and 4. Notice that when Ω = 1 only small wave
numbers (k <

√
2) satisfy this condition. By introducing

the additional parameter Ω we find that for any k value

there is an interval of Ω values for which the resonant
plane wave circle is hyperbolic: it is hyperbolic for all
Ω > 1√

2
k.

Finally, we observe that the plane wave is normally
parabolic when I = Ipw

p = 1
2k2. For most Ω values the

perturbed motion near the parabolic plane wave remains
close to it just as in the elliptic case, since the separa-
trix is small and its splitting is exponentially small in
the distance from the bifurcation point. However, when
it is parabolic and resonant (so I = Ipw

r = Ipw
p , namely

Ω = Ωpr = 1√
2
k), the situation is dramatically changed

as is demonstrated in all the figures of this letter (see
also [14][12, 13]). In particular, initial conditions near
the parabolic plane wave do not stay close to it. It fol-
lows from [12] that the above list exhausts all types of
dynamical phenomenon which may exist in the truncated
model near the plane wave solution for finite k and Ω, for
I < 2k2.

FIG. 3: (Color online) EMBD diagram. I(t) - particle num-
ber, H0(t) - instantaneous unperturbed energy. Gray(Blue)
curve - (I, H0) on the plane waves. Black(Red) curve -
(I, H0) on the periodic spatial solitons. Solid-stable. Dashed-
unstable.

With this interpretation we can now examine the be-
havior of the forced NLS near the plane wave in the three
situations of interest: the hyperbolic chaos case (HC),
the hyperbolic resonance case (HR) and the parabolic
resonance case (PR). Indeed, with the above analysis
it is clear how to initialize the simulations to obtain
each of these behaviors. In all cases we choose to start
with a small perturbation from the plane wave (small
|b(0)|); to obtain the HC situation we choose for any
(Ω, k) any I(0) ∈ ( 1

2k2, 2k2) which is bounded away from
Ω2. To obtain HR, we take I(0) ≈ Ω2 and 1

2k2 < Ω2,
whereas PR is observed when 1

2k2 ≈ Ω2 and I(0) ≈ Ω2.
In the simulations we set kinit = 1.025 (as in [2, 5])
and set Ω2

init = 1 in the HR and HC cases and take
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Ω2
init = (kinit)

2

2 in the PR case. The ODE simulations
were computed with a standard ODE solver and we ver-
ified that the largest Lyapunov exponents of the three
solutions are positive and thus they are indeed chaotic.
The PDE simulations were computed with a scheme of
4th order Runge-Kutta in time and 8th order central dif-
ferences in space. We verified that the total energy is well
conserved (|H0(t)+εH1(t)−H0(0)−εH1(0)| < 10−5) and
that the numerical simulations in [15] are reproduced.

FIG. 4: (Color online) Action-angle diagram - γ vs. I.

In Fig. 1 we present |B(x, t)| as a function of (x, t)
for a small interval of time - the chaotic hopping be-
tween central and wing configuration is well observed,
as is the similarity between the truncated and the full
model. Furthermore, the strong modulation in the max-
imal amplitude of the PR solutions clearly distinguishes
it from the HC and HR cases. We also observe that the
parabolic resonance solution has two regions - almost pe-
riodic and chaotic. In Fig. 2 we plot, similarly to [3, 15],
(Re{B(0, t)}, Im{B(0, t)}) for some interval t. For ref-

erence, we plot in gray(blue) the circle corresponding to
the plane wave which has the same energy (H0) as the
chosen initial conditions. The strong non-uniformity in
the phase of the parabolic resonant solutions is apparent
in the truncated and the full models alike.

In Fig. 3 a new presentation of the solutions is pro-
posed - the motion in the space of the unperturbed invari-
ants (H0 and I) is presented, so that the phase informa-
tion is filtered out. In addition, the underlying integrable
backbone, which comprises the EMBD is shown; The val-
ues of (H0, I) at the periodic solutions are presented as
curves in the plot. The gray(blue) curve corresponds
to the plane wave solution and the black(red) curve to
the two periodic spatial profiles, dashed when they are
unstable and solid when they are stable. The different
signatures of the HC, HR and PR are clearly seen, as are
the long quasi-integrable segments of the PR solutions.

Finally, to elucidate the different role which is played
by the phase of the spatial average of B, we present the
“action-angle” diagram of (γ, I) (Fig. 4). We observe
that the main difference between the regular homoclinic
chaos and the hyperbolic resonant chaotic motion has to
do with the non-uniformity in the γ variable - thus it is
not observable in the amplitude plot. Furthermore, Figs.
3-4 direct us to a possible description of parabolic reso-
nance. Notice the paths of the trajectory in the EMBD
plot which strongly suggest that adiabatic description of
some segments of the motion is appropriate. It appears
that the action in the normal plane is a key ingredient in
understanding the perturbed motion as it is adiabatically
preserved [16].

Summarizing, the numerical results suggest that near
the plane waves, for particle numbers which are smaller
than 2k2, there are three types of chaotic instabilities
which are well captured by the two mode model. Fur-
thermore, parabolic resonances, which correspond to a
new type of chaotic behavior, were shown to exist in the
forced NLS model and lead to a large variation in the
particle number of the solution.
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