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Abstract

We propose a method for constructing a video sequence of high space-time res-
olution by combining information from multiple low-resolution video sequences of
the same dynamic scene. Super-resolution is performed simultaneously in time and
in space. By “temporal super-resolution” we mean recovering rapid dynamic events
that occur faster than regular frame-rate. Such dynamic events are not visible (or
else observed incorrectly) in any of the input sequences, even if these are played in
“slow-motion”.

The spatial and temporal dimensions are very different in nature, yet are inter-
related. This leads to interesting visual tradeoffs in time and space, and to new
video applications. These include: (i) treatment of spatial artifacts (e.g., motion-
blur) by increasing the temporal resolution, and (ii) combination of input sequences
of different space-time resolutions (e.g., NTSC, PAL, and even high quality still
images) to generate a high quality video sequence.

We further analyze and compare characteristics of temporal super-resolution to
those of spatial super-resolution. These include: How many video cameras are needed
to obtain increased resolution? What is the upper bound on resolution improvement
via super-resolution? What is the optimal camera configuration for various scenarios?
What is the temporal analogue to the spatial “ringing” effect?
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1 Introduction

A video camera has limited spatial and temporal resolution. The spatial resolution is
determined by the spatial density of the detectors in the camera and by their induced
blur. These factors limit the minimal size of spatial features or objects that can be visually
detected in an image. The temporal resolution is determined by the frame-rate and by the
exposure-time of the camera. These limit the maximal speed of dynamic events that can
be observed in a video sequence.

Methods have been proposed for increasing the spatial resolution of images by combin-
ing information from multiple low-resolution images obtained at sub-pixel displacements
(e.g. [1, 2, 3, 6, 7, 11, 13, 14, 15, 16]. See [4] for a comprehensive review). An extension
of [15] for increasing the spatial resolution in 3-dimensional (x,y,z) medical imagery has
been proposed in [12], where MRI data was reconstructed both within image slices (x and
y axis) and between the slices (z axis).

The above mentioned methods, however, usually assume static scenes with limited
spatial resolution, and do not address the limited temporal resolution observed in dynamic
scenes. In this thesis we extend the notion of super-resolution to the space-time domain.
We propose a unified framework for increasing the resolution both in time and in space by
combining information from multiple video sequences of dynamic scenes obtained at (sub-
pixel) spatial and (sub-frame) temporal misalignments. As will be shown, this enables new
visual capabilities of dynamic events, gives rise to visual tradeoffs between time and space,
and leads to new video applications. These are substantial in the presence of very fast
dynamic events. From here on we will use SR as an abbreviation for the frequently used
term “super-resolution”.

Rapid dynamic events that occur faster than the frame-rate of video cameras are not
visible (or else captured incorrectly) in the recorded video sequences. This problem is often
evident in sports videos (e.g., tennis, baseball, hockey), where it is impossible to see the
full motion or the behavior of the fast moving ball/puck. There are two typical visual
effects in video sequences which are caused by very fast motion. One effect (motion blur)
is caused by the exposure-time of the camera, and the other effect (motion aliasing) is due
to the temporal sub-sampling introduced by the frame-rate of the camera:
(i) Motion Blur: The camera integrates the light coming from the scene during the
exposure time in order to generate each frame. As a result, fast moving objects produce
a noted blur along their trajectory, often resulting in distorted or unrecognizable object
shapes. The faster the object moves, the stronger this effect is, especially if the trajectory
of the moving object is not linear. This effect is notable in the distorted shapes of the
tennis ball shown in Fig. 1. Note also that the tennis racket also “disappears” in Fig. 1.b.
Methods for treating motion blur in the context of image-based SR were proposed in [2, 1].
These methods however, require prior segmentation of moving objects and the estimation
of their motions. Such motion analysis may be impossible in the presence of severe shape
distortions of the type shown in Fig. 1. We will show that by increasing the temporal
resolution using information from multiple video sequences, spatial artifacts such as motion
blur can be handled without the need to separate static and dynamic scene components or
estimate their motions. However, unlike spatial SR, in temporal SR a minimum number
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(a) (b)

Figure 1: Motion blur. Distorted shape due to motion blur of very fast moving objects (the
tennis ball and the racket) in a real tennis video. The perceived distortion of the ball is marked
by a white arrow. Note, the “V”-like shape of the ball in (a), and the elongated shape of the ball
in (b). The racket has almost “disappeared”.

of input cameras (video sequences) is needed for motion-deblurring. Using less cameras
might cause the opposite effect of increased motion-blur. A practical lower bound on the
number of cameras will be derived.
(ii) Motion-Based (Temporal) Aliasing: A more severe problem in video sequences of fast
dynamic events is false visual illusions caused by aliasing in time. Motion aliasing occurs
when the trajectory generated by a fast moving object is characterized by frequencies which
are higher than the frame-rate of the camera (i.e., the temporal sampling rate). When that
happens, the high temporal frequencies are “folded” into the low temporal frequencies. The
observable result is a distorted or even false trajectory of the moving object. This effect
is illustrated in Fig. 2, where a ball moves fast in sinusoidal trajectory of high frequency
(Fig. 2.a). Because the frame-rate is much lower (below Nyquist frequency of the trajec-
tory), the observed trajectory of the ball over time is a straight line (Fig. 2.b). Playing that
video sequence in “slow-motion” will not correct this false visual effect (Fig. 2.c). Another
example of motion-based aliasing is the well-known visual illusion called the “wagon wheel
effect”: When a wheel is spinning very fast, beyond a certain speed it will appear to be
rotating in the “wrong” direction.

Neither the motion-based aliasing nor the motion blur can be treated by playing such
video sequences in “slow-motion”, even when sophisticated temporal interpolations are used
to increase the frame-rate (as in video format conversion or “re-timing” methods [10, 20]).
This is because the information contained in a single video sequence is insufficient to
recover the missing information of very fast dynamic events. The high temporal resolution
has been lost due to excessive blur and excessive subsampling in time. Multiple video
sequences, on the other hand, provide additional samples of the dynamic space-time scene.
While none of the individual sequences provides enough visual information, combining the
information from all the sequences allows to generate a video sequence of high space-time
resolution, which displays the correct dynamic events. Thus, for example, a reconstructed
high-resolution sequence will display the correct motion of the wagon wheel despite it
appearing incorrectly in all of the input sequences.

The spatial and temporal dimensions are very different in nature, yet are inter-related.
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(a) (b) (c)

Figure 2: Motion aliasing. (a) shows a ball moving in a sinusoidal trajectory over time.
(b) displays an image sequence of the ball captured at low frame-rate. The perceived motion is
along a straight line. This false perception is referred to in the thesis as “motion aliasing”. (c)
Illustrates that even using an ideal temporal interpolation for “slow-motion” will not produces the
correct motion. The filled-in frames are indicated by dashed blue line. In other words, the false
perception cannot be corrected by playing the video sequence in slow-motion, as the information
is already lost in the video recording (b).

This introduces visual tradeoffs between space and time, which are unique to spatio-
temporal SR, and are not applicable in traditional spatial (i.e., image-based) SR. For
example, output sequences of different space-time resolutions can be generated from the
same input sequences. A large increase in the temporal resolution usually comes at the
expense of a large increase in the spatial resolution, and vice versa.

Furthermore, input sequences of different space-time resolutions can be meaningfully
combined in our framework. In traditional image-based SR there is no benefit in combin-
ing input images of different spatial resolutions, since a high-resolution image will subsume
the information contained in a low-resolution image. This, however, is not the case here.
Different types of cameras of different space-time resolutions may provide complementary
information. Thus, for example, we can combine information obtained by high-quality
still cameras (which have very high spatial-resolution, but extremely low “temporal reso-
lution”), with information obtained by standard video cameras (which have low spatial-
resolution but higher temporal resolution), to obtain an improved video sequence of high
spatial and high temporal resolution.

Differences in the physical properties of temporal vs. spatial imaging lead to marked
differences in performance and behavior of temporal SR vs. spatial SR. These include issues
such as: the upper bound on improvement in resolution, optimal camera configurations,
and more. These issues are also analyzed and discussed in this thesis.

The rest of this thesis is organized as follows: Sec. 2 describes our space-time SR
algorithm. Sec. 3 shows some examples of handling motion aliasing and motion blur in
dynamic scenes. Sec. 4 analyzes how temporal SR can treat motion blur, and provides a
lower bound on the number of input cameras needed for effective motion deblurring. In
Sec. 5 we discuss the visual tradeoffs between space and in time. Finally in Sec. 6 we
analyze the commonalities and the differences between spatial SR and temporal SR.
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2 Space-Time Super-Resolution

Let S be a dynamic space-time scene. Let {Sl
i}n

i=1 be n video sequences of that dynamic
scene recorded by n different video cameras. The recorded sequences have limited spatial
and temporal resolution (the subscript “l” stands for “low” space-time resolution). Their
limited resolutions are due to the space-time imaging process, which can be thought of as
a process of blurring followed by sampling both in time and in space.

The blurring effect results from the fact that the color at each pixel in each frame
(referred to as a “space-time point” and marked by the small boxes in Fig. 3.a) is an
integral (a weighted average) of the colors in a space-time region in the dynamic scene S
(marked by the large pink and blue boxes in Fig. 3.a). The temporal extent of this region is
determined by the exposure-time of the video camera (i.e., how long the shutter is open),
and the spatial extent of this region is determined by the spatial point-spread-function
(PSF) of the camera (determined by the properties of the lens and the detectors [5]).

The sampling process also has a spatial and a temporal component. The spatial sam-
pling results from the fact that the camera has a discrete and finite number of detectors
(the output of each detector is a single pixel value), and the temporal sampling results
from the fact that the camera has a finite frame-rate resulting in discrete frames (typically
25 frames/sec in PAL cameras and 30 frames/sec in NTSC cameras).

The above space-time imaging process inhibits high spatial and high temporal frequen-
cies of the dynamic scene, resulting in video sequences of low space-time resolutions. Our
objective is to use the information from all these sequences to construct a new sequence Sh
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Figure 3: The space-time imaging process. (a) illustrates the continuous space-time
scene and two of the low resolution sequences. The large pink and blue boxes are the support
regions of the space-time blur corresponding to the low resolution space-time measurements marked
by the respective small boxes. (b,c) show two different possible discretizations of the continuous
space-time volume S resulting in two different possible types of high resolution output sequences
Sh. (b) has a low frame-rate and high spatial resolution, whereas (c) has a high frame-rate but
low spatial resolution.
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of high space-time resolution. Such a sequence will ideally have smaller blurring effects and
finer sampling in space and in time, and will thus capture higher space-time frequencies
of the dynamic scene S. In particular, it will capture fine spatial features in the scene
and rapid dynamic events which cannot be captured (and are therefore not visible) in the
low-resolution sequences.

The recoverable high-resolution information in Sh is limited by its spatial and temporal
sampling rate (or discretization) of the space-time volume. These rates can be different in

space and in time. Thus, for example, we can recover a sequence Sh of very high spatial
resolution but low temporal resolution (e.g., see Fig. 3.b), a sequence of very high temporal
resolution but low spatial resolution (e.g., see Fig. 3.c), or a bit of both. These tradeoffs
in space-time resolutions and their visual effects will be discussed in more detail later in
Sec. 5.3.

We next model the geometrical relations (Sec. 2.1) and photometric relations (Sec. 2.2)

between the unknown high-resolution sequence Sh and the input low-resolution sequences
{Sl

i}n
i=1.

2.1 The Space-time Coordinate Transformations

In general a space-time dynamic scene is captured by a 4D representation
(x, y, z, t). For simplicity, in this thesis we deal with dynamic scenes which can be modelled
by a 3D space-time volume (x, y, t) (see in Fig. 3.a). This assumption is valid if one of
the following conditions holds: (i) the scene is planar and the dynamic events occur within
this plane, or (ii) the scene is a general dynamic 3D scene, but the distances between the
recording video cameras are small relative to their distance from the scene. (When the
camera centers are very close to each other, there is no relative 3D parallax.) Under those
conditions the dynamic scene can be modelled by a 3D space-time representation.

W.l.o.g., let Sl
1 (one of the input low-resolution sequences) be a “reference” sequence.

We define the coordinate system of the continuous space-time volume S (the unknown
dynamic scene we wish to reconstruct), so that its x, y, t axes are parallel to those of the

reference sequence Sl
1. Sh is a discretization of S with a higher sampling rate than that of

Sl
1 (see Fig. 3.b). Thus, we can model the transformation T1 from the space-time coordinate

system of Sl
1 to the space-time coordinate system of Sh by a scaling transformation (the

scaling can be different in time and in space). Let Ti→1 denote the space-time coordinate

transformation from the i-th low resolution sequence Sl
i to the reference sequence Sl

1 (see

below). Then the space-time coordinate transformation of each low-resolution sequence Sl
i

is related to that of the high-resolution sequence Sh by Ti = T1 · Ti→1.
The space-time coordinate transformation Ti→1 between two input sequences results

from the different setting of the different cameras. A temporal misalignment between two
video sequences occurs when there is a time-shift (offset) between them (e.g., if the two
video cameras were not activated simultaneously), or when they differ in their frame rates
(e.g., one PAL and the other NTSC). Such temporal misalignments can be modelled by
a 1-D affine transformation in time, and is typically at sub-frame time units. The spatial
misalignment between the two sequences results from the fact that the two cameras have
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different external and internal calibration parameters. In our current implementation, as
mentioned above, because the camera centers are assumed to be very close or else the scene
is planar, the spatial transformation between the two sequences can thus be modelled by
an inter-camera homography (even if the scene is a cluttered 3D scene). We computed
these space-time coordinate transformations using the method of [9], which provides high
sub-pixel and high sub-frame accuracy.

Note that while the space-time coordinate transformations ({Ti}n
i=1) between the se-

quences are very simple (a spatial homography and a temporal affine transformation), the
motions occurring over time within each sequence (i.e., within the dynamic scene) can be
very complex. Our space-time SR algorithm does not require knowledge of these complex
intra-sequence motions, only the knowledge of the simple inter-sequence transformations
{Ti}n

i=1. It can thus handle very complex dynamic scenes. For more details see [9].

2.2 The Space-Time Imaging Model

As mentioned earlier, the space-time imaging process induces spatial and temporal blurring
in the low-resolution sequences. The temporal blur in the low-resolution sequence Sl

i is
caused by the exposure-time (shutter-time) of the i-th video camera (denoted henceforth

by τi). The spatial blur in Sl
i is due to the spatial point-spread-function (PSF) of the i-th

camera, which can be approximated by a 2D spatial Gaussian with std σi. (Methods to
estimate the PSF of a camera can be found in [14, 8].)

Let Bi = B(σi,τi,pl
i)

denote the combined space-time blur operator of the i− th video

camera corresponding to the low resolution space-time point pl
i = (xl

i, y
l
i, t

l
i). Let

ph = (xh, yh, th) be the corresponding high resolution space-time point ph = Ti(p
l
i) (ph is

not necessarily an integer grid point of Sh, but is contained in the continuous space-time
volume S). Then the relation between the unknown space-time values S(ph), and the

known low resolution space-time measurements Sl
i(p

l
i), can be expressed by:

Sl
i(p

l
i) = (S ∗Bh

i )(ph) =

∫
x

∫
y

∫
t

p = (x, y, t) ∈ Support(Bh
i )

S(p) Bh
i (p− ph)dp (1)

where Bh
i = Ti(B(σi,τi,pl

i)
) is a point-dependent space-time blur kernel represented in the

high resolution coordinate system. Its support is illustrated by the large pink and blue
boxes in Fig. 3.a. To obtain a linear equation in the terms of the discrete unknown values
of Sh we used a discrete approximation of Eq. (1). In our implementation we used a non-
isotropic approximation in the temporal dimension, and an isotropic approximation in the
spatial dimension. See [7] for a discussion of the different spatial discretization techniques
in the context of image-based SR. See Appendix E for details about the discretization
we used for the temporal blur kernel. Eq. (1) thus provides a linear equation that re-

lates the unknown values in the high resolution sequence Sh to the known low resolution
measurements Sl

i(p
l
i).

When video cameras of different photometric responses are used to produce the input
sequences, then a preprocessing step is necessary that histogram-equalizes all the low res-
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olution sequences. This step is required to guarantee consistency of the relation in Eq. (1)
with respect to all low resolution sequences.

2.3 The Reconstruction Step

Eq. (1) provides a single equation in the high resolution unknowns for each low resolution
space-time measurement. This leads to the following huge system of linear equations in
the unknown high resolution elements of Sh:

A
−→
h =

−→
l (2)

where
−→
h is a vector containing all the unknown high resolution color values (in YIQ) of

Sh,
−→
l is a vector containing all the space-time measurements from all the low resolution

sequences, and the matrix A contains the relative contributions of each high resolution
space-time point to each low resolution space-time point, as defined by Eq. (1).

When the number of low resolution space-time measurements in
−→
l is greater than

or equal to the number of space-time points in the high-resolution sequence Sh (i.e., in−→
h ), then there are more equations than unknowns, and Eq. (2) can be solved using LSQ
methods. This, however, implies that a large increase in the spatial resolution (which

requires very fine spatial sampling in Sh) will come at the expense of a significant increase in

the temporal resolution (which also requires fine temporal sampling in Sh), and vice versa.

This is because for a given set of input low-resolution sequences, the size of
−→
l is fixed,

thus dictating the number of unknowns in Sh. However, the number high resolution space-
time points (unknowns) can be distributed differently between space and time, resulting
in different space-time resolutions (This issue is discussed in more detail in Sec. 5.3).
Directional space-time regularization: When there is an insufficient number of
cameras relative to the required improvement in resolution (either in the entire space-time
volume, or only in portions of it), then the above set of equations (2) becomes ill-posed.
To constrain the solution and provide additional numerical stability (as in image-based
SR [11, 6]), a space-time regularization term can be added to impose smoothness on the

solution Sh in space-time regions which have insufficient information. We introduce a
directional (or steerable [16]) space-time regularization term which applies smoothness
only in directions within the space-time volume where the derivatives are low, and does

not smooth across space-time “edges”. In other words, we seek
−→
h which minimize the

following error term:

min(||A−→h −−→l ||2 + ||WxLx
−→
h ||2 + ||WyLy

−→
h ||2 + ||WtLt

−→
h ||2) (3)

Where Lj (j = x, y, t) is matrix capturing the second-order derivative operator in the
direction j, and Wj is a diagonal weight matrix which captures the degree of desired regu-
larization at each space-time point in the direction j. The weights in Wj prevent smoothing
across space-time “edges”. These weights are determined by the location, orientation and
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magnitude of space-time edges, and are approximated using space-time derivatives in the
low resolution sequences.
Solving the equation: The optimization problem of Eq. (3) has a very large dimension-
ality. For example, even for a simple case of four low resolution input sequences, each of
one-second length(25 frames) and of size 128×128 pixels, we get: 1282×25×4 ≈ 1.6×106

equations from the low resolution measurements alone (without regularization). Assum-
ing a similar number of high resolution unknowns poses a severe computational problem.
However, because the matrix A is sparse and local (i.e., all the non zero entries are located
in a few diagonals), the system of equations can be solved using “box relaxation” [22]. For
more details see Appendix B.

3 Examples of Temporal Super-Resolution

Before proceeding with more in-depth analysis and details, we first show a few examples
of applying the above algorithm for recovering higher temporal resolution of fast dynamic
events. In particular, we demonstrate how this approach provides a solution to the two
previously mentioned problems encountered when fast dynamic events are recorded by slow
video cameras: (i) motion aliasing, and (ii) motion blur.

Example 1: Handling Motion Aliasing

We used four independent PAL video cameras to record a scene of a fan rotating clock-
wise very fast. The fan rotated faster and faster, until at some stage it exceeded the
maximal velocity that can be captured correctly by the video frame-rate. As expected,
at that moment all four input sequences display the classical “wagon wheel effect” where
the fan appears to be falsely rotating backwards (counter clock-wise). We computed the
spatial and temporal misalignments between the sequences at sub-pixel and sub-frame
accuracy using [9] (the recovered temporal misalignments are displayed in Fig. 4.a-d using
a time-bar). We used the SR method of Sec. 2 to increase the temporal resolution by a
factor of 3, while maintaining the same spatial resolution. The resulting high-resolution
sequence displays the true forward (clock-wise) motion of the fan, as if recorded by a high-
speed camera (in this case, 75 frames/sec). Example of a few successive frames from each
low resolution input sequence are shown in Fig.4.a-d for the portion where the fan falsely
appears to be rotating counter clock-wise. A few successive frames from the reconstructed
high temporal-resolution sequence corresponding to the same time are shown in Fig.4.e,
showing the correctly recovered (clock-wise) motion. It is difficult to perceive these strong
dynamic effects via a static figure. We therefore urge the reader to view the video clips in
www.wisdom.weizmann.ac.il/∼vision/SuperRes.html, where these effects are very vivid.

Note that playing the input sequences in “slow-motion” (using any type of temporal
interpolation) will not reduce the perceived false motion effects, as the information is
already lost in any individual video sequence (as illustrated in Fig. 2). It is only when
the information is combined from all the input sequences, that the true motion can be
recovered.

13



(a) (b)

(c) (d)

(e)

Figure 4: Example 1: Handling motion aliasing - The “wagon wheel effect”.
(a)-(d) display 3 successive frames from four PAL video recordings of a fan rotating clock-
wise. Because the fan is rotating very fast (almost 90o between successive frames), the
motion aliasing generates a false perception of the fan rotating slowly in the opposite direc-
tion (counter clock-wise) in all four input sequences. The temporal misalignments between
the input sequences were computed at sub-frame temporal accuracy, and are indicated by
their time bars. The spatial misalignments between the sequences (e.g., due to differences
in zoom and orientation) were modeled by a homography, and computed at sub-pixel ac-
curacy. (e) shows the reconstructed video sequence in which the temporal resolution was
increased by a factor of 3. The new frame rate (75frames

sec
) is also indicated by a time

bars. The correct clock-wise motion of the fan is recovered. For video sequences see:
www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

Example 2: Handling Motion Blur

In the following example we captured a scene of fast moving balls using 4 PAL video
cameras of 25 frames/sec and exposure-time of 40 msec. Fig. 5.a-d shows 4 frames, one
from each low-resolution input sequence, that were the closest to the time of collision of
the two balls. In each of these frames at least one of the balls is blurred. We applied the
SR algorithm and increased the frame-rate by factor 4. Fig. 5.e shows an output frame at
time of collision. Motion-blur is reduced significantly. Such a frame did not exist in any of
the input video sequences. Note that this effect was obtained by increasing the temporal
resolution (not the spatial), and hence did not require the estimation of the motions of the
balls. This phenomena is explained in more details in Sec. 4.

To examine the capabilities of the algorithm treating severe effects of motion-blur of the
kind shown in Fig. 1, one needs many (usually more than 10) video cameras. A quantitative
analysis of the amount of input data needed appears in Sec. 4. Since we didn’t have so
many cameras we used simulation as described in the next example.
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Figure 5: Example 2: Handling motion blur via temporal SR. A “tic-tac” toy (2 balls
hanging on strings and bouncing against each other) was shot by 4 video cameras. (a)-(d) display
the 4 frames one from each of the input sequences, which were closest to the time of collision. In
each one of these frames, at least one of the balls is blurred. The 4 input sequences were plugged
into the temporal SR algorithm and the frame-rate was increased by a factor of 4. (e) shows the
frame from the output, closest to the time of collision. Motion-blur is evidently reduced.

Example 3: Handling Motion Aliasing & Motion Blur

In the following example we simulated a sports-like scene with an extremely fast moving
object (of the type shown in Fig. 1) recorded by many video cameras (in our example -
18 cameras). We examined the capabilities of temporal SR in the presence of both strong
motion aliasing and strong motion blur.

To simulate such a scenario, we recorded a single video sequence of a slow moving
object (a basketball bouncing on the ground). To simulate high speed of the ball relative
to frame-rate and relative to the exposure-time, we temporally blurred the sequence using
a large (9-frame) blur kernel, followed by a large subsampling in time by factor of 1 :
30. Such a process results in a low temporal-resolution sequence of a very fast dynamic
event having an “exposure-time” of about 1

3
of its frame-time. We generated 18 such low

resolution sequences by starting the temporal sub-sampling at arbitrary starting frames.
Thus, the input low-resolution sequences are related by non-uniform sub-frame temporal
offsets. Because the original video sequence contained 250 frames, each generated “low-
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resolution” sequence contains only 7 frames. Three of the 18 sequences are presented in Fig
6.a-c. To visually display the event captured in each of these sequences, we super-imposed
all 7 frames in each sequence. Each ball in the super-imposed image represents the location
of the ball at a different frame. None of the 18 low resolution sequences captures the correct
trajectory of the ball. Due to the severe motion aliasing, the perceived ball trajectory is
roughly a smooth curve, while the true trajectory was more like a cycloid (the ball jumped
5 times on the floor). Furthermore, the shape of the ball is completely distorted in all
input image frames, due to the strong motion blur.

We applied the SR algorithm of Sec. 2 on these 18 low-resolution input sequences, and
constructed a high-resolution sequence whose frame-rate is 30 times higher than that of the
input sequences. (In this case we requested an increase only in the temporal sampling rate).
The reconstructed high-resolution sequence is shown in Fig. 6.d. This is a super-imposed
display of some of the reconstructed frames (every 8’th frame). The true trajectory of
the bouncing ball has been recovered. Furthermore, Figs. 6.e-f show that this process has
significantly reduced effects of motion blur and the true shape of moving ball has been
automatically recovered, although no single low resolution frame contains the true shape
of the ball. Note that no estimation of the ball motion was needed to obtain these results.
This effect is explained in more details in Sec. 4.2.

The above results obtained by temporal SR cannot be obtained by playing any low-
resolution sequence in “slow-motion” due to the strong motion aliasing. Moreover, such
results cannot be obtained by interleaving frames from the 18 input sequences, due to the
non-uniform time shifts between the sequences and due to the severe motion-blur observed
in the individual image frames.

A method for treating motion blur in the context of image-based SR was proposed
by [2, 1]. However, these methods require a prior segmentation of moving objects and
the estimation of their motions. These methods will have difficulties handling complex
motions or motion aliasing. The distorted shape of the object due to strong blur (e.g.,
Fig. 1) will pose severe problems in motion estimation. Furthermore, in the presence of
motion aliasing, the direction of the estimated motion will not align with the direction of
the induced blur. For example, the motion blur in Fig. 6.a-c. is along the true trajectory
and not along the perceived one. In contrast, our approach does not require separation
of static and dynamic scene components, nor their motion estimation, thus can handle
very complex scene dynamics. However, we require multiple cameras. These issues are
explained in more details in sec. 4.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Example 3: Handling motion blur & motion aliasing. We simulated
18 low-resolution video recordings of a rapidly bouncing ball inducing strong motion blur and
motion aliasing (see text). (a)-(c) Display the dynamic event captured by three representative
low-resolution sequences. These displays were produced by super-position of all 7 frames in each
low-resolution sequence. All 18 input sequences contain severe motion aliasing (evident from
the falsely perceived curved trajectory of the ball) and strong motion blur (evident from the dis-
torted shapes of the ball). (d) The reconstructed dynamic event as captured by the recovered
high-resolution sequence. The true trajectory of the ball is recovered, as well as its correct shape.
(e) A close-up image of the distorted ball in one of the low resolution sequences. (f) A close-up
image of the ball at the exact corresponding frame in time in the high-resolution output sequence.
For video sequences see: www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

4 Temporal Treatment of Spatial Artifacts

When an object moves fast relative to the exposure time of the camera, it induces observable
motion-blur (e.g., see Fig. 1). The perceived distortion is spatial, however the cause is
temporal. We next show that by increasing the temporal resolution we can handle the
spatial artifacts caused by motion blur.

4.1 Why is Temporal Treatment Enough?

The camera integrates over its exposure time any temporal changes in the intensity of a
point. Temporal changes in intensity can be caused by motion, by changes in illumination,
etc. In Fig. 7 we show the intensity changes of one pixel that observes a bouncing ball
(Fig. 7.a). Temporal integration of the camera may be expressed as a convolution with
a rectangular function over time (Fig. 7.b). The result is a “smearing” of the intensity
changes in each point/pixel over time. The percieved global visual effect is spatial, in
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Figure 7: Motion-blur - pixel-wise temporal blurring. Consider the space-time volume
in (a) and the dynamic event of the falling ball in front of a static background. We will concentrate
on the effect of motion-blur on the observed intensity at the red pixel as a function of time. The
intensity (color) profile over time of that pixel is shown in (b). A frame of the ball when it
crosses the pixel is shown on the right. The integration operation of the camera can be modelled
by convolution with a rectangular kernel. The convolution result in (c) shows that the intensity
profile is smoothed, and the temporal extent of the dynamic event is increased. The resulting visual
effect is the elongated shape on the right. More pixels “observe” the ball during the exposure-time,
causing the motion-blur effect. Fig. (d) shows that by applying SR in time, we can reduce the
temporal extent of the intensity, and therefore reduce the visual effect of motion-blur (on the
right). Therefore we can treat the spatial effect of motion-blur by temporal SR , without any
motion estimation of the ball.

the form of an elongated blob along the trajectory, since many pixels “experience” the
integration (Fig. 7.b on the right). Fig. 7.d shows that by applying SR in time, we can
reduce the temporal extent of the intensity, and therefore reduce the visual effect of motion-
blur (on the right).

The crucial observation is that we can treat the spatial effect of motion-blur by decreas-
ing the temporal blur in each pixel independently. Trying to treat motion-blur spatially
(e.g., by applying spatial filters to the images), would require different filters for different
motions. However, when motion blur is treated temporally, the same operation is applied to
the entire space-time volume, without the need to detect or compute the different motions.
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This allows for treatment of motion blur in very complex dynamic scenes.
We show next that by applying our temporal SR algorithm, the “effective” support of

the temporal blur in the output sequence can be decreased relative to the exposure-time of
the input cameras, leading to a reduction in motion blur. However, this effect is achieved
only if there is a minimal increase in the temporal sampling rate of the output. If we do
not increase the output temporal sampling-rate enough, we will not obtain a decrease in
the motion blur. Moreover, an insufficient increase in the temporal sampling-rate might
introduce additional motion-blur. This dictates the minimum number of input cameras
needed for an effective decrease in the motion-blur.

4.2 What is the Minimum Number of Required Video Cameras?

The reconstructed high resolution sequence represents the ideal continuous signal convolved
with a new temporal blur kernel. In Appendix A we derive an approximation to the
“effective” exposure-time τout of the output sequence of the SR algorithm.

The residual temporal blur in the high resolution output sequence depends on its frame-
rate FRout in the following way:

τout ≈ 1

FRout

Note that the output frame-rate cannot be increased by a factor larger than the number of
input sequences, since we must have more measurements (equations) than unknowns, i.e.,

FRout ≤ FRin ·Ncam

Given the above observation we obtain the following practical connection between the
required number of input video sequences (cameras) Ncam, and the desired exposure time
of the high resolution output sequence. Assuming that all the input cameras have the
same frame-rate and the same exposure-time τin, and assuming the optimal case where the
cameras are activated at uniform gaps in time, then:

τout ≈ 1

FRout

≥ 1

FRin ·Ncam

(4)

To get an effective decrease in the motion-blur, τout should be smaller than the exposure
time of the input sequences τin, i.e.,

τin > τout (5)

Combining Eqs. (4) and (5) we obtain the following lower bound on the number of
video cameras required to obtain an effective reduction in the motion blur:

Ncam >
1

FRin · τin

(6)

We verified this bound empirically using the example of Fig. 6. The relation between
the exposure-time and the frame-rate was τin = 1

3·FRin
. In this case the lower bound on
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the number of cameras for motion-blur reduction is Ncam > 3. Recall that in this example
we increased the frame-rate by a factor of 15 (Ncam = 15) input cameras1. This explains
the prominent effect of motion deblurring in the example of Fig. 6.f.

Now suppose we had fewer than 15 input cameras, then we would be bound to increase
the frame-rate by a factor smaller than 15. Fig. 8 shows the resulting motion deblurring
of the basketball when the number of input cameras is 15, 10, 5, 2 and 1, respectively
(the output frame-rate is determined accordingly). We can see that the bound of Eq. (6)
is validated. When the number of input cameras exceeds the lower bound of Eq. (6)
(Fig. 8.a-d), then the effects of motion-blur are decreased relative to the input sequences.
However, when there are only 2 input cameras (Fig. 8.e), the visual effect of the motion-
blur is more pronounced in the output sequence than that observed in the original input
sequences! Moreover, when we have only one input camera (Fig. 8.f), and the output
frame-rate equals to the input frame-rate, the motion-blur is significantly increased, and
the output sequence is visibly poorer than the input sequence.

This example shows that in order to achieve an effective motion-deblurring in standard
video recording where the exposure-time τin is approximately 1

3·FRin
≈ 1

75
sec, at least

3 cameras (preferably more) are needed. Shorter exposure-time τin will dictate using
more input cameras for decreasing motion-blur. A real example showing that the output
motion-blur might be degraded if the output frame-rate is not increased enough, appears
in Fig. 11.c.3 where the bound is Ncam > 3 and the frame-rate is increased only by a factor
of 2.

1In fact we had 18 input cameras, but since the “effective” exposure-time is determined by the output
frame-rate, having more input cameras than needed cannot improve motion-deblurring

Figure 8: Motion deblurring vs. number of input sequences. In (a) appear a
motion-blurred ball fragment from one of the input sequences in Fig. 6. The relation between
the exposure-time (marked by the blue rectangles) and the frame-rate was τin = 1

3·FRin
, and the

lower bound on the number of cameras Ncam > 3 . We have tried to reconstruct output sequences
the following number of input cameras - 15, 10, 5, 2 and 1 (Figs. (b)-(f) respectively). The
“effective” exposure-time in the output sequence is marked by the red rectangles). As can be seen,
the amount of motion-blur increases as we use more input cameras as explained in the text. Note
also that if we are not above the lower bound, and the “effective” exposure-time of the output is
larger than the exposure-time in the input (Figs. (e),(f)), than we get larger motion-blur in the
high resolution sequence than in any one of the input low resolution sequences.
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5 Space-Time Visual Tradeoffs

The spatial and temporal dimensions are very different in nature, yet are inter-related. This
introduces visual tradeoffs between space and time, which are unique to spatio-temporal
SR, and are not applicable to traditional spatial (i.e., image-based) SR.

5.1 Combining Different Space-Time Inputs

So far we assumed that all input sequences were of similar spatial and temporal resolutions.
The space-time SR algorithm of Sec. 2 is not restricted to this case, and can also handle
input sequences of varying space-time resolutions. Such a case is meaningless in image-based
super-resolution SR (i.e., combining information from images of varying spatial resolution),
because a high resolution input image would always contain the information of a low
resolution image. In space-time SR, however, this is not the case. One camera may have
high spatial resolution but low temporal resolution, and the other vice-versa. Thus, for
example, it is meaningful to combine information from NTSC and PAL video cameras.
NTSC has higher temporal resolution than PAL (30 frames/sec vs. 25 frames/sec), but
lower spatial resolution (640×480 pixels vs. 768×576 pixels). An extreme case of this idea
is to combine information from still and video cameras. Such an example is shown in Fig. 9.
Two high quality still images (Fig. 9.a) of high spatial resolutions (1120×840 pixels) but
extremely low “temporal resolution” (the time gap between the two still images was 1.4
sec), were combined with an interlaced (PAL) video sequence using the algorithm of Sec. 2.
The video sequence (Fig. 9.b) has 3 times lower spatial resolution (we used fields of size
384×288 pixels), but a high temporal resolution (50 frames/sec). The goal is to construct
a new sequence of high spatial and high temporal resolutions (i.e., 1120×840 pixels at 50
frames/sec). The output sequence shown in Fig. 9.c contains the high spatial resolution
from the still images (the sharp text) and the high temporal resolution from the video
sequence (the rotation of the toy dog and the brightening and dimming of illumination).

In the example of Fig. 9 we used only one input video sequence and two still images,
thus we did not attempt to exceed the temporal resolution of the video or the spatial
resolution of the stills. However, when multiple video sequences and multiple still images
are used (so that the number of input measurements exceeds the number of output high
resolution unknowns), then an output sequence can be recovered, that exceeds the spatial
resolution of the still images and temporal resolution of the video sequences.

In the example of Fig. 9, the number of unknowns was significantly larger than the
number of low resolution measurements (the input video and the two still images). Al-
though theoretically this is an ill-posed set of equations, the reconstructed output is of high
quality. This is achieved by applying physically meaningful space-time directional regu-
larization, that exploits the high redundancy in the video sequence. This issue is further
discussed in Sec. 5.2.
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Figure 9: Combining Still and Video. A dynamic scene of a rotating toy-dog and varying
illumination was captured by: (a) A still camera with spatial resolution of 1120×840 pixels, and
(b) A video camera with 384×288 pixels at 50 f/sec. The video sequence was 1.4sec long (70
frames), and the still images were taken 1.4sec apart (together with the first and last frames).
The algorithm of Sec. 2 is used to generate the high resolution sequence (c). The output sequence
has the spatial dimensions of the still images and the frame-rate of the video (1120× 840×50).
It captures the temporal changes correctly (the rotating toy and the varying illumination), as well
the high spatial resolution of the still images (the sharp text). Due to lack of space we show only
a portion of the images, but the proportions between video and still are maintained. For video
sequences see: www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

5.2 Space-Time Regularization

Video sequences, as opposed to images, have an additional temporal dimension, that in-
creases the data redundancy. The data redundancy in the space-time volume (x, y, t) is
significantly larger than the redundancy in spatial information (x, y) alone. The redun-
dancy provides more flexibility in applying physically meaningful space-time directional
regularization. This will be demonstrated on the example of Fig. 4.
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Figure 10: Space-Time Regularization. The above figure shows the space-time volume
with one high resolution resolution frame from the example of Fig. 4. In our algorithm we can
apply space-time regularization in a physical meaningful way. In regions that have high spatial
resolution but small (or no) motion (such as in the static background)the temporal regularization
is strong (green arrow). Similarly, in regions with fast dynamic changes but low spatial resolution
(such as in the rotating fan) the spatial regularization is strong (yellow arrows).

In Fig. 10 we can see the space-time volume with one high resolution frame of that
example. In this example, regions that have high spatial resolution but small (or no)
motion (such as the static background), strong temporal regularization can be applied
without decreasing the space-time resolution (the green arrows in Fig. 10). Similarly, in
regions with fast dynamic changes but low spatial resolution (such as in the rotating fan),
strong spatial regularization can be employed without degradation in space-time resolution
(the yellow arrows in Fig. 10). More generally, because a video sequence has much more
data redundancy than an image has, the use of directional space-time regularization in
video-based SR is physically more meaningful and gives rise to recovery of higher space-
time resolution than that obtainable by image-based SR with image-based regularization.
More quantitative details about the regularization can be found in Appendix C.
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5.3 Producing Different Space-Time Outputs

In standard spatial SR the increase in sampling rate is equal in all spatial dimensions.
This is necessary in order to maintain the aspect ratio of image pixels, and to prevent
distorted-looking images. However, this is not the case in space-time SR. As explained in
Sec. 2, the increase in sampling rate in the spatial and temporal dimensions need not be
the same. Moreover, increasing the sampling rate in the spatial dimension comes at the
expense of increase in the temporal frame rate, and vice-versa. This is because the number
of unknowns in the high-resolution space-time volume depends on the manner in which
the space-time volume is discretized, whereas the number of equations provided by the low
resolution measurements is fixed.

For example, assume that 8 video cameras are used to record a dynamic scene. One
can increase the temporal frame-rate alone by a factor of 8 on increase the spatial sampling

rate alone by a factor of
√

8 in x and in y (i.e., increase the number of pixels by a factor of
8), or do a bit of both: increase the sampling rate by a factor of 2 in all three dimensions
x, y, t. Such an example is shown in Fig. 11. Fig. 11.a1 displays one of 8 low resolution
input sequences. (Here we used only 4 video cameras, but split them into 8 sequences of
even and odd fields). Figs. 11.a2 and 11.a3 display two possible outputs. In Fig. 11.a2 the
increase is by a factor of 8 in the temporal axis with no increase in the spatial axes, and in
Fig. 11.a3 the increase is by a factor of 2 in all three axes x,y,t. Rows (b) and (c) display
the resulting visual tradeoffs. The “×1×1×8” option (column 2) decreases the motion
blur of the moving object (the toothpaste in (c.2)), while the “×2×2×2” option (column
3) improves the spatial resolution of the static background (b.3). Note that although the
temporal sampling rate (frame-rate) in column 3 was increased by a factor of 2, there was
no decrease in the motion blur of the moving object. On the contrary, there was an increase
in the motion blur of the toothpaste (c.3). The latter is because the increase in frame rate

was only by factor 2 and did not exceed 1
exposure time

of the video camera (see Sec. 4.2).

In order to obtain any reduction in motion blur in this example, the minimum required
increase in the frame-rate is 3.

5.4 Optimal Camera Configurations

The task of SR requires there to be sub-unit shifts between the input samples (sub-pixel
shifts for spatial SR , and sub-frame shifts for temporal SR ). So far (and in all our ex-
amples) we assumed the video sequences are recorded arbitrarily, and then the spatial and
temporal misalignment between them are estimated (at sub-pixel and sub-frame accuracy)
using [9]. However, if we could somehow control those spatio-temporal shifts in the acqui-
sition process already, then we would ideally like to acquire them at uniform distances to
obtain uniform sampling at the high-resolution space-time volume.

One of the differences between spatial SR and temporal SR tasks, is the ability to
control the shifts between the input data source. It is very difficult to a-priori control the
spatial “synchronization” between video cameras at sub-pixel accuracy, since the spatial
misalignment depends on the relative positions and orientations of the cameras, their in-
ternal calibration parameters, and their distance from the scene. This, however, is not the
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a.1 a.2 a.3

b.1 b.2 b.3

c.1 c.2 c.3

Figure 11: Tradeoffs between spatial and temporal resolution. This figure com-
pares the visual tradeoffs resulting from applying space-time super-resolution SR with different
discretization of the space-time volume. (a.1) displays one of eight low-resolution input se-
quences of a toothpaste in motion against a static background. (b.1) shows a close-up image
of a static portion of the scene (the writing on the poster), and (c.1) shows a dynamic por-
tion of the scene (the toothpaste). Column 2 (a.2, b.2, c.2) displays the resulting spatial and
temporal effects of applying SR by a factor of 8 in time only. Motion blur of the toothpaste is
decreased. Column 3 (a.3, b.3, c.3) displays the resulting spatial and temporal effects of ap-
plying SR by a factor of 2 in all three dimensions x, y, t. The spatial resolution of the static
portions is increased (see “British” and the yellow line above it in b.3), but the motion blur is
also increased (c.3). See text for an explanation of these visual tradeoffs. For video sequences
see: www.wisdom.weizmann.ac.il/∼vision/SuperRes.html

case with sub-frame temporal synchronization. The temporal misalignments between the
cameras are determined only by their activation time, and by their frame-rate (e.g., NTSC
or PAL). The sub-frame shifts between the input sequences can be controlled externally
at sub-frame accuracy with simple electronic devices. If the input sequences are of the
same frame-rate, then an initial offset at half-frame time-unit would be enough, and the
time-shifts between them will remain the same throughout the entire sequence.
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The ability to synchronize the input videos gives rise to several practical optimal ar-
rangement of the video equipment for the various SR tasks. Some of these are listed below:

• Task 1: Increasing only temporal resolution - In order to get the best improve-
ment in temporal resolution, the video cameras should be temporally “synchronized”
so that their temporal offsets are uniformly distributed in time. Such a configuration
guarantees greatest numerical stability (or noise immunity) and fastest convergence
of the linear system. We have shown analytically that the conditional number of the
linear system increases if it is perturbed from the uniform temporal distribution. The
uniform distribution is also needed for achieving similar decrease of the “induced” ex-
posure time in all frames. We have also shown that in order to achieve best decrease
in the “induced” exposure time, one should increase the frame-rate by the maximal
factor, i.e. by the number of input sources.

• Task 2: Increasing only spatial resolution - In order to get best improvement
in the spatial resolution both in static and in dynamic regions, one should fully
synchronize all the video cameras to have no temporal offset between their sequences,
and then increase only the spatial resolution. In this case the output frame-rate will
remain the same as in the input sequences. This case is equivalent to perform the
traditional spatial image-based SR using all the corresponding frames in time in all
the input sequences.

• Task 3: Capturing fast and dark events - One possible application of the
temporal SR may be to replace an expensive fast video camera (e.g., 300 frames/sec)
by using several slow cheap video cameras. Except for the price matter, the main
drawback of using the fast camera is its very short exposure-time (that is limited by
the high frame-rate). Recording with a very fast video camera usually requires adding
strong external illumination to the scene, to compensate for the short exposure time.
Without such external light sources, the video would be noisy and dark objects
would not be visible. However, it is not always possible to illuminate the scene
with additional light sources. We claim that one can use several slow (or “regular”)
cameras with long exposure times and apply temporal SR to achieve the same effective
exposure time at the output, without require additional artificial lighting.
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6 Differences between Super Resolution in Time and

in Space

The space-time resolution of a video sequence is determined by the blur and the sub-
sampling of the camera. These have different characteristics in time and in space. The
temporal blur induced by the exposure time has approximately the shape of a rectangular
kernel, while the spatial blur has a Gaussian-like shape. Furthermore, the supports of the
spatial and temporal blurs are very different. The spatial blur has typically a radius larger
than one pixel (its “standard deviation” σ is approximately 1 pixel), whereas the exposure
time is usually smaller than a single frame-time (i.e., τ <frame-time). This is depicted in
Fig. 12.

(a) (b)

Figure 12: Temporal vs. Spatial Blur Kernels. The temporal blur (a) induced by the
exposure time has approximately the shape of a rectangular kernel, while the spatial blur (b) has
a Gaussian-like shape (here shown only the x-axis). Furthermore, the supports of the spatial
and temporal blurs are very different. The spatial blur has a radius of approximately one pixel
(i.e., σ ≈ 1 pixel), whereas the exposure time is usually smaller than a single frame-time (i.e.,
τ <frame-time).

The different support and shapes of the blur kernels result in much stronger temporal
aliasing in the input sequences than spatial aliasing. This in turn leads to the following
three differences between temporal and spatial SR :

(i) The upper bound on the possible increase in temporal resolution is significantly larger
than the upper bound on the possible increase in spatial resolution.

(ii) Artifacts of temporal “ringing” in temporal SR are more prominent than spatial
“ringing” in spatial SR .

(iii) All spatial samples in images are viewed simultaneously. However, the temporal
samples are viewed sequentially in time. This leads to two different types of temporal
aliasing: “motion aliasing” and “gray-level aliasing”, whereas in space there is only
“gray-level aliasing”.

These issues are discussed in more detail in the next few sub-sections.
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6.1 Upper Bound on Space-Time Super-Resolution

The upper limit of spatial SR has been discussed thoroughly in [3, 18]. Baker & Kanade [3]
showed that the noise related to high frequencies which are not “suppressed” by the SR
algorithm, grow quadratically with the SR magnification factor, and that large magnifica-
tion factors are therefore not practical. Lin & Shum [18] showed using the least squares
perturbation theorem that in practical conditions the maximal effective SR magnification
factor for real images is 1.6 (and a theoretical factor of 5.7 is claimed for synthetic images
with very low noise). Other image-based SR algorithms (e.g. [1, 2, 6, 7, 11, 13, 14, 15, 16])
were also performed with limited magnification factors (usually up to 2).

Because of the differences between the spatial and temporal properties of the imaging
process, the upper-bound on temporal SR is significantly larger than the upper-bound on
spatial SR. In other words, the temporal resolution can be increased effectively by higher
magnification factors than the spatial resolution. We refer here to an actual increase in
resolution, i.e., a decrease in the width (support) of the blurring kernel (the exposure-time
in the case of temporal SR, and the point spread function in the case of spatial SR), and
not an artificial increase of the frame-rate/sampling-rate.

The reason for this difference has to do with the rectangular shape of the temporal blur
and the extent of its support. When the blur function is an “ideal” low-pass filter, no SR
can be obtained, since all high frequencies are eliminated in the blurring process. However,
when the blur function is not an ideal low-pass filter, high frequencies are not completely

Figure 13: Frequency support of the rectangular and gaussian blurs. Two discrete
exposure functions are presented: a rectangular kernel (a) and a Gaussian kernel (b). Both
kernels are with the same width (marked by the green arrows), and with the same “energy” (the
sum of the discrete weights in each one of them is 1). Their absolute Discrete Fourier Transform
(DFT) is shown in (c) and (d) correspondingly. We can see that due to its rectangular shape,
the frequency spectrum of the rectangular kernel has a sinc shape (c), while the frequency shape
of the Gaussian kernel is Gaussian (d). The frequency support of the rectangular kernel is larger
than the Gaussian kernel. Therefore, blurring a signal with a rectangular function causes higher
frequencies to be preserved (in aliased form due to sampling), that can be resolved by SR.
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eliminated and are found in aliased form in the low resolution data. It is those frequencies
that are recovered in the SR process. The spatial blur function (the point spread function)
has a Gaussian shape, and its support extends over several pixels (samples). As such, it
a much “stronger” low-pass filter than the temporal blur function (the exposure time),
which has a rectangular shape, and whose extent is sub-frame (i.e., less than one sample).
The spatial blur function thus eliminates more high frequencies. Fig. 13 compares the
frequency support of typical Gaussian and rectangular blurs of approximately the same
width. We can see that the rectangular kernel contains much many high frequencies than
the Gaussian one. Shrinking its width (support) in Fig. 13.a will result in a streching of
its Fourier transform, thus allowing for even higher frequencies. Therefore more aliased
frequencies can be reconstructed by temporal SR than by spatial SR.

Several empirical examples were shown (Fig. 8, Fig. 16) where the “induced” exposure-
time was decreased by a factor of up to 5. Fig. 14 shows that significant larger magnification
factors can be expected in temporal SR.

To show this, we took 4 sets of 30 input sequences with different exposure times. Each
set was synthetically generated by temporal blurring followed by subsampling, similarly
to the way described in Sec. 3. Small Gaussian noise was added to the input sequences
in a way that in all of them the temporal noise would be the same (σ ≈ 2.5 gray-levels).
Fig. 14.a shows one frame of the ball in the original basketball sequence (before temporal
blurring). Figs. 14.b-e show matching frames from each set of the simulated sequences

with exposure times: τin,1 = 5
30

, τin,2 = 13
30

, τin,3 = 21
30

and τin,4 = 29
30

, respectively (in units

of 1
FRin

). We increased the frame-rate by factor 15 in each of the sets using the temporal

SR algorithm. No regularization was applied to show the “pure” output of the temporal
SR algorithm without any smoothing. Figs. 14.f-i are the corresponding frames in the
reconstructed sequences. The measured noise was amplified linearly (from 5.6 to 14.7) with

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 14: Temporal SR with large magnification factors. In the following example we
simulated 4 sets of 30 sequences with different exposure times for each set. (a) One frame of the
ball in the original basketball sequence (before temporal blurring). (b)-(e) The corresponding frame
from each set of the simulated low resolution sequences. (f)-(i) The corresponding frames in the
reconstructed sequence with frame-rate increased by a factor of 15. The resulting SR magnification
factors (of temporal resolution) for the four sets are: M1 = 2.5, M2 = 6.5, M3 = 10.5 and
M4 = 14.5, respectively.
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the SR magnification factor. However, the residual motion-blur in the output sequences is
small and similar regardless of the SR magnification (the reconstructed shape of the ball
is correct). Hence, the “induced” exposure behaves according to Eq. (4), i.e τout ≈ 1/15 in
all output sequences. The resulting SR magnification factors (Mk = τin,k/τout k = 1..4)
for each of the four sets are: M1 = 2.5, M2 = 6.5, M3 = 10.5 and M4 = 14.5, respectively.

The upper bound on SR depends on the allowable output noise. However it is evident
that typical magnifications factors of temporal SR are likely to be larger than in spatial
super resolution. Furthermore, temporal noise is integrated by the eye and is therefore
more tolerable than spatial noise. Adding temporal regularization would reduce the output
noise, but would also increase τout, and therefore will not increase the upper bound (as was
similarly shown in the analysis for the spatial case [3, 18]).

6.2 “Ringing” Effects

So far we have shown that the rectangular shape of the blur kernel has an advantage over
a Gaussian shape in the ability to increase resolution. On the other hand the rectangular
shape of the temporal blur is more likely to introduce a temporal artifact which is similar
to the spatial “ringing” ([11, 7, 3]). This effect is expressed in temporal super-resolved
video sequences as a trail that is moving before and after the fast moving object. We refer
to this temporal effect as “ghosting”. Fig. 15.a-c shows an example of the “ghosting” effect
resulting in the basketball example when temporal SR is applied without any space-time
regularization. (The effect is magnified by factor of 5 to make it more visible).

The explanation of the “ghosting” effect is simple if we look in the frequency domain.
The SR algorithm (spatial or temporal) can reconstruct correctly the true temporal signal
in the entire spectrum domain except for those specific frequencies that have been set to
zero by the temporal rectangular blur. The system of equations (2) will not provide any
constraints on those frequencies. If such frequencies are somehow “born” in the iterative
process, they will stay in the solution and will not be suppressed. These “unsuppressed”
frequencies are connected directly to the shape of the rectangular blur kernel through
its exposure-time width. The integral over a periodic signal whose time period that is
contained an integer number of times in the exposure-time, will be always zero. This
is illustrated in Fig. 15.d where the “unsuppressed” frequencies are shown as temporal
sinusoidal signals in one of the pixels of the “ghosting” trail. Those frequencies are upper-
bounded by the frame-rate of the output sequence.

Figure 16 shows a quantitative example of the reconstruction and the “ghosting” effect
using a simple linear and constant velocity motion of synthesized objects. We performed
several such tests with different velocities. We noticed that unlike effects of motion blur
(where different velocities of moving objects induce different degrees of motion blur), the
temporal frequency of the “ghosts” remained the same regardless of the velocity of the
object. We derived an analytical expression for the frequencies that generate the “ghosting”
in Appendix D. We have also performed a spectral analysis to the SR system of equations
and verified empirically the expression.

The “ghosting” effect, is significantly reduced by the space-time regularization. The
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(a) (b) (c)

(d)

Figure 15: “Ghosting” effect in video sequence. In order to show the “ghosting” effect
caused by temporal SR , we applied the algorithm without any regularization to the basket-ball
example (see Sec. 3). One input frame of the blurred ball is shown in (a). The temporal SR
matching frame is shown in (b). The “ghosting” effect is usually hard to see in a single frame but
is observable when watching a video sequence (due to the high sensitivity of the eye to motion).
In order to show the effect in a single frame we magnified by factor 5 the difference between the
frame in (b) and a matching frame of the background. The resulting “ghosting” trail of the ball
is shown in (c). Note that some of the trail values are positive (bright) and some are negative
(dark). (d) illustrates that although this effect has spatial artifacts, its origin is purely temporal.
As explained in the text, due to the rectangular shape of the temporal blur, for each pixel (as the
one marked in green) there are some specific temporal frequencies (e.g., the sinusoids marked in
black) that will remain in the reconstructed sequence. The reason is that the integral over those
frequencies whose temporal wave-length is contained a whole number in the exposure-time, is 0,
and they will contribute nothing to the minimized error.

space-time regularization naturally smoothes those trails in regions where no spatial or
temporal edges are expected to be. This is why the ghosting effect is barely visible in our
example output videos.
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(a)

(b)

(c)

(d)

Figure 16: Empirical measurement of the “ghosting” effect. We have synthetically
generated a set of 10 video sequences of bright squares moving against a dark background. All
squares were moving along a straight line with the same constant velocity. For simplification
the sequences were uniformly distributed in time (1/10 frame-time shift between them) and no
noise was added. Fig. (a) shows a frame with a moving square, where the arrows represent the
direction of motion. Motion-blur in (b) was applied by using an exposure-time of 1/2 frame-time.
The 10 sequences were plugged into the algorithm and the frame-rate was increased by factor
10. Fig. (c) shows an output frame where the reconstruction quality and the “ghosting” trail
can be seen. Figs. (d)(1)-(3) shows quantitatively the gray levels of (a)-(c), where the x-axis is
represented in frame-time units and the y-axis is in gray-levels. In order to validate that the
reconstructed sequence is a theoretically valid solution, we re-applied to it the same temporal blur
kernel as we used to generate the blurred low resolution sequences (b) from the high resolution
ground truth sequences (a) (i.e., exposure-time of 1/2 frame-time). The result looked similar to
the blurred sequences (as in (b)), and the residual difference was smaller than 3 gray levels as
seen in Fig. (d)(4).

6.3 Resolving Aliasing

Spatial aliasing is a known phenomenon in images. It occurs when an image is sampled
below the Nyquist sampling rate, and high spatial frequencies are “folded” into the low
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frequencies. The visible result is artificial gray-level patterns at low frequencies (see for ex-
ample [23] where spatial aliasing is caused by image warping interpolation). Unlike spatial
aliasing in images, there are two kinds of temporal aliasings in video sequences: “motion
aliasing” and “gray-level aliasing”. Both are caused by sampling a rapidly changing func-
tion over time below the Nyquist rate (due to the camera frame-rate). Motion aliasing
is caused by large changes in image coordinates of moving objects over time (i.e., large
displacements from frame to frame), while gray-level aliasing is caused by strong intensity
changes over time at a pixel. Note that gray-level aliasing may occur even for static objects
that change their intensity faster than frame-rate (e.g., a flickering flash-light).

Resolving gray-level aliasing in temporal SR means increasing the frame-rate and re-
ducing the “effective” exposure-time in the output sequence (i.e., motion deblurring), just
like in image-based SR it means increasing the pixel density and reducing the “effective”
PSF width in the output image. Resolving motion aliasing means increasing the frame-rate
such that true trajectories of objects are revealed.

In video sequences, changes in motion of pixels are often much “slower” than changes
in intensity of pixels. Thus gray-level aliasing usually occurs before motion aliasing occurs.
For example, if a bright object is moving faster than 1 pixel/frame on a dark background,
then the intensity of a pixel located on the object boundary will change rapidly from bright
to dark from one frame to the next. In this case, gray-level aliasing will occur at that pixel.
However, as long as the object moves with constant velocity, no motion aliasing will occur.
In general, motion aliasing is evident in the presence of high acceleration in the motion of
an object (e.g. when there is a sudden change of direction or in radial motion).

Consequently, if we apply temporal SR to video sequences containing motion aliasing,
and increase the SR factor gradually, then we will first resolve the motion aliasing by
recovering object’s true trajectory, and only then, if the magnification factor is high enough
(beyond the bound of Sec. 4.2), will we be able to resolve the gray-level aliasing and
recover object’s shape (motion deblurring). As opposed to spatial SR, temporal SR may
be meaningful even if motion blur is not resolved, since motion aliasing may still be resolved,
thus providing new information about the object trajectory, even if not about its accurate
shape. Such an example was shown in Fig. 4, where by increasing the frame-rate by a factor
of 3, the true motion of the vent was revealed, even though the “induced” exposure-time
remained approximately the same.
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A The Induced Temporal “Exposure” in the Output

Sequence

In this appendix we derive the expected shape of the output blur kernel, that is “induced”
by temporal SR. While we cannot find the exact shape, we can estimate its width, i.e. the
“effective” exposure-time of the output sequence. This “effective” exposure-time estimate
leads to the lower bound (derived in Sec. 4.1) on the number of input sequences (cameras)
needed for obtaining an effective reduction in the motion-blur.

The “induced” high resolution blur kernel:
Eq. (1) describes the relation between the low resolution space-time measurements and

the unknown high resolution space-time sequence. As explained in Sec. 4.1, to analyze
effects of temporal SR, it is enough to look at 1D temporal signals at each pixel. Thus, the
low resolution and high resolution sequences of Eq. (1) become 1D temporal signals - Sl

i

and Sh, and the space-time blur kernels are now simple continuous exposure-time functions
- Bi = B(τi).

The discretization of Eq. (1) then becomes:

Sl
i = Sh ∗Wi (7)

where Wi is the discretization of the continuous low resolution blur kernel Bi on the high
resolution grid points (see for example the discretization method we chose in Appendix E).

In addition, we can express the input measurements Sl
i by the unknown continuous

input signal S convolved with the continuous blur Bi and sampled at the low resolution
points ti:

Sl
i = (S ∗Bi)(ti) (8)

Our goal is to find the high resolution continuous blur kernel denoted by Bind, that is
“induced” by the SR algorithm, such that it relates the recovered high resolution sequence
Sh at the high resolution points tj to the continuous space-time volume S (similar to
Eq. (8)):

Sh = (S ∗Bind)(tj) (9)

By substituting Eq. (9) into Eq. (7) we get:

Sl
i = S ∗Bind ∗Wi (10)

Comparing Eq. (10) with Eq. (8) yields:

Bi = Bind ∗Wi (11)

Since Wi is generated by discretizing Bi at the high resolution points, then Bi is in-
terpolated from Wi with Bind as an “interpolation function”. Eq. (11) is illustrated in
Fig. 17.
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≈ ∗
(a) (b) (c)

Figure 17: High resolution blur kernel as an “interpolation function”. As explained
in the text - the low resolution blur function Bi may be interpolated by its samples Wi on the high
resolution grid (the discretization weights of the blur), and some “interpolation function” bind. For
the temporal exposure-time function (a), a typical Wi would look like in (b) and the “induced”
high resolution blur kernel would be some “interpolation function” (c) of width ∼1 frame-time
unit.

An “interpolating function” is used to interpolate accurately a continuous signal from
its discrete samples. There are many families of analytical “interpolation functions” that
differ by their shape, support and interpolation accuracy (a comprehensive survey and
comparison can be found in [21]). Fig. 18 shows a few common functions. Interpolation
functions have several properties in common. First, their value is 1 at the origin, and 0 in
all other sampling points (marked by the red circles). Second, these functions should be
well bandlimited.

It is a known property of the Fourier transform [19], that the width2 of a band-limited
signal is approximately the inverse to its frequency bandwidth:

width ≈ 1

BW
.

Since the bandwidth of an interpolation function is limited by the sampling rate (Nyquist
sampling theorem [19]):

BW ≈ sampling−rate.

Combining the above two approximations we get that the width of the output blur kernel
is approximately 1 sampling-unit. The widths of the functions in Fig. 18 (marked by the
green arrows), show that this approximation is tight.

B Solving the Equations

The large dimensionality of the optimization problem was noted in [11, 4, 6] for the simpler
case of image-based SR. This is amplified here because of the added temporal dimension.
As we saw in Sec. 2.3 the size of the equation system is usually huge, and therefore it is
practically infeasible to solve them straightforward.

However the system is very sparse and local. It is sparse because the space-time blur
kernel is small relatively to the entire sequence (typically 5× 5× τ where τ ∈ [3..10]), and

2Usually defined as the length between signal points that are at half of the maximum amplitude.
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Figure 18: Interpolation functions and their “effective” width. (a) The nearest
neighbor interpolation function. (b) The linear interpolation function. (c) The cubic cardinal
spline. (d) The sinc function (which is the optimal according to the sampling theorem). The
green arrows mark the “effective” width of each of the interpolation functions. W.l.o.g., the width
is measured here as the length between points that are at amplitude of 0.5. The red arrow marks
the sampling-unit length. As can be seen, typical interpolation function are of approximately 1
sampling-unit length.

local since each pixel in each frame depends only on its nearby space-time neighborhoods
(algebraically, matrix A from Eq. (2) can be arranged such that it is sparse matrix with
75..250 diagonals). Therefore, it can be solved using “box relaxation” [22].

The underlying idea is to divide the high resolution space-time volume into small over-
lapping space-time blocks, and thus solve multiple independent and substantially smaller
systems of equations. These boxes are solved using an iterative method with an initial
state. Following the iterative methods presented in [17, 11], we chose the Conjugate-
Gradient algorithm to solve each box as its convergence is relatively fast. The only thing
to be aware is the unknown boundaries unknowns of the boxes, which are solved with defi-
cient (“cropped”) equations. The solution in these boundaries will therefore be wrong. To
prevent this boundary error from diffusing into the “good” variables, we chose the boxes
to be overlapping, and throw away the boundary values at the end of each iteration. An
ad-hoc optimization was done for the size of the blocks, where the trade-off is between the
box size (and the time for each box iteration) and the number of overall iterations. Typical
sizes were: 11 × 11 × τ, τ ∈ [10..50] for the original blocks, and 2 pixel wide boundaries
were thrown from all 6 directions of the box to get the resulting “good” variables.

In order to increase the speed of convergence we made a few global sweep iterations,
where each iteration started with the results of the previous iteration as the initial state.
The first initial state was generated by interpolating the low resolution inputs.

Fig. 19 shows convergence process on the example of Sec. 5.1. Since this example is
inherently ill-posed (many more high resolution unknowns than low resolution data points),
a strong space-time regularization was needed, and the convergence was relatively slow -
up to 20 local and 4 global iterations were needed. An interesting thing happened in this
example when several boxes “converged” closely to their initial blurry state already at the
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(a) (b) (c)

Figure 19: “Box Relaxation” - Example. A demonstration of the equation solution using
“box relaxation” on the example of Sec. 5.1 (showing only a small part of the mid frame of the
sequence). The boxes in this example were of size 7 × 7[pixels] × 79[frames]. (a) The initial
state generated by an interpolation. Since the mid frame is far from the still images, the bi-linear
interpolation is done only from the corresponding video frame (enlarging it by factor 3). (b)
The solution after the first global iteration. Note the “blocky” texture over the image due to bad
convergence of box boundaries There are also trails of the moving toy that also did not converge
well. (c) After 4 iterations the solution mostly converges.

first conjugate-gradient iteration. The reason for this behavior was that the residual error
increased in the first few iterations and only then decreased to the global minimum after a
few more iterations. Therefore, we requested a minimum of 5 local box iterations.

C Implementation of Regularization

In this appendix we provide more implementation details on the space-time regularization
terms Wj and Lj that were introduced in Eq. (3).

Lj is a matrix which applies the second order derivative operator in the direction j
(based on the [-1 2 -1] kernel). Tests were also done with a first order derivative operator
but with less success. The matrix Wj contains weights that represent the amount of the
desired smoothness for each high resolution pixel in each direction j. It has two roles.

The first is to reflect the relative weighting of the pixels according to an “inverse”
function of the second derivative. The second derivative is estimated at the closest input
samples, i.e. the exact value for each high resolution pixel is an interpolation of values
of the nearest low resolution neighborhood data points3. The “inverse” relation that we
implemented was:

Wj(p
h) = (1− rmin)γ−α∗(Dj(p

h))β

+ rmin,

where rmin is the minimal regularization value, Dj(p
h) is the absolute second derivative

value at high resolution point ph, and α, β and γ are parameters that depend on the
histograms of Dj. The above expression gives each pixel for each direction a basic weight
between 0 and 1, representing the relative regularization strength. The exact parameter
values were defined manually for each input data set, so that only real edges would be
above the “soft” threshold.

3In an iterative algorithm, the derivatives in the current iteration can be updated directly from the
reconstructed high resolution sequence from previous iteration.
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(a)

(b)

(c)
(1) (2) (3)

Figure 20: Space-Time Regularization - Example. This figure shows the regularization
weights used for controlling the convergence in the extreme example of Sec. 5.1). Images (a1)-(a3)
are the first, mid and last output frames. The dominating data at the first and last frames are
the two still images of high (spatial) resolution, while in the middle of the sequence the only data
comes from the low spatial resolution video frames. The role of the regularization operators is
to preserve the high resolution spatial features at static regions along the entire sequence, while
avoiding temporal smoothing across dynamic edges. (b1)-(b3) are the corresponding regularization
weights in the x direction (Wx from Eq. (3)), where brighter values correspond to larger weights,
i.e., stronger smoothing in the x direction. These weights are inversely proportional to the second
derivative of the input data, and were calculated from the still images (spatial weights of middle
frames, where there were no still images, were generated by interpolation). Analogously (c1)-
(c3) are the regularization weights in the t direction, that were calculated as the inverse of the
temporal derivatives from the video data. Because nothing was moving at the sequence, (c1) and
(c3) contain no temporal derivatives, whereas in the middle of the sequence the toy was moving
fast, showing strong temporal derivatives in (c2).

The second role of Wj is to determine the relative balance between the regularization
and the “real” data equations, as well as the relative strength between the temporal and the
spatial regularization terms. A global scalar λj is used for multiplying the basic weighting
terms in Wj independently for each direction j (usually λx = λy 6= λt). λj are typically
small (0.1-0.5) for well-posed cases, where the number of data equations (i.e., low resolution
measurements) is larger than the number of unknowns, leading to weak regularization for
slight smoothing. However, where the number of unknowns is larger than the number of
equations (measurements), then λj must be larger. In the extreme case of the example
in Fig. 9, where the number of unknowns was larger by factor of 7.5 than the number of
measurements, we have used λj = 20. That example was therefore strongly controlled by
the space-time regularization. We illustrate the implementation of the weight matrices Wj

in Fig. 20.
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D Analysis of Temporal “Ghosting”

This appendix analyzes the “ghosting” effects introduced in Sec. 6.2, and provides an
analytical description of these “undesired” temporal frequencies. As we mentioned, the
“ghosting” effect consists of specific temporal frequencies fghost, whose time-period Tghost =

1
fghost

is contained an integer number of times Ng in the exposure time of the inputs τin:

τin = Ng ∗ Tghost, Ng = 1, 2, ...

Those frequencies are also upper-bounded by the Nyquist sampling rate induced by the
output sequence frame-rate FRout:

fghost ≤ FRout

2

Therefore,

fghost =
Ng

τin
[frames/sec], Ng = 1, 2, ...,

⌊
FRout · τin

2

⌋
(12)

As can be seen, the larger the frame-rate of the output is, the more undesired “ghosting”
frequencies will appear in the output. A similar analysis for the evolution of high spatial
frequencies in spatial image-based SR algorithms was presented in [3]. A major difference
between spatial “ringing” and temporal “ghosting” effects, is their growth rate with the
increase of the SR magnification factor: quadratic in the spatial 2D case, and linear in
the temporal 1D case. This is another justification why larger magnification factors are
feasibly possible in temporal SR than in spatial SR.

In order to verify empirically that our system of equations indeed behaves according
to Eq. (12), we performed a spectral analysis and measured the transfer function of the
system. We generated as input data 10 “empty” (blank) sequences (uniformly 0 gray level)

of small frames4. Those sequences were used as input to the space-time SR algorithm, and
the frame-rate of the output was increased by a factor 10. In principle, the true output
should also be an “empty” sequence. Since the system of equations is solved iteratively, we
took as the initial guess, a sequence that contained one “pure” temporal frequency, i.e. the
uniform gray-level of the frames was changing over time as a sine function with the desired

frequency. By sweeping the frequency from 0 to FRout

2
= 5FRin we measured the frequency

transfer function as the ratio between the output signal amplitude and the initial guess sine
amplitude. The exact ratio values depend on the kind of iterations we use, the number of
iterations, the length of the sequences, and the effect of boundary inaccuracies. However
the overall behavior of the transfer function clearly matched the prediction of Eq. (12).

A typical transfer function is shown in Fig. 21.a. The parameters in this example are:

τin = 0.5
FRin

, FRout = 10FRin, FRout·τin

2
= 2.5. Substituting these parameters into Eq. (12)

we get:
fghost = 2NgFRin [frames/sec], Ng = 1, 2, ..., b2.5c

4In fact, a single pixel would have been enough since the “ghosting” effect is a completely temporal
phenomenon.
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(a)

(b) (c)

Figure 21: Blur kernels and the Super-Resolution Transfer Function. (a) One
measured transfer function of the SR system. The conditions of this example are described in the
text. The frequency axis units are relative to FRin. The “ghosting” non-suppressed frequencies
are f1

ghost = 2FRin and f2
ghost = 4FRin as predicted by Eq. (12). (b) The rectangular blur function

of the example and the discretized kernel weights that where used in the algorithm to represent this
function. (c) DFT of the rectangular weights, showing the zero-crossing points at the “ghosting”
points. Signals at these frequencies may be added to the input data (or be “born” during the
solution process) without changing the output.

Therefore we get the two “ghosting” frequencies from Fig. 21.a:
fghost,1 = 2FRin and fghost,2 = 4FRin.

The rectangular continuous exposure-time function and its discretization (as was used
in the algorithm) are shown in Fig. 21.b. The DFT (Discrete Fourier Transform) of the
function is shown in Fig. 21.c. The source to the two frequencies is evident from the two
zero-crossing points of the graph.

E Non-Isotropic Discretization of the Temporal Blur

Because the output high resolution sequence is discrete, an important part in construction
of the SR equations is transforming the continuous temporal blur of the cameras into dis-
crete weights. These discrete weights are applied to the high resolution samples to simulate
the imaging process (see illustration in Fig. 22). There are two different possible discrete
approximations to the continuous form of Eq. (1) - an isotropic and a non-isotropic approx-
imation. In the non-isotropic approximation, the analytic blur function is transformed and
discretized for each input sample separately, and the original input data is not changed. In
the isotropic approximation the same weights are used for all samples but all input data
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(a)

(b)

Figure 22: Blur Kernel Discretization. (a) shows the continuous blur function caused by
the temporal integration of the camera, referring to one low resolution sample (ending in t0). (b)
is the discrete high resolution weights that simulate the continuous function. See text for a method
to calculate the weights.

is warped to the high resolution coordinate system. This warping process involves inter-
polation errors and distorts the aliased frequencies that are needed for SR , and therefore
the isotropic approximation is less accurate. See [8] for more discussion of the different
discretization techniques in the context of image-based SR .

In our implementation we used a non-isotropic approximation in the temporal dimen-
sion, and an isotropic approximation in the spatial dimension. Therefore, in the spatial
case, the same weights were used for all low resolution points. In the temporal case how-
ever, we used several different sets of weights5. We next explain how to construct this set of
weights for the temporal blur discretization (i.e., how to translate the continuous warped
function (Fig. 22.a) into a discrete kernel (Fig. 22.b)). [8] showed several discretization
methods for Gaussian functions. We adopted one common discretization method based
on linear interpolation. The key assumption is that the values of the gray levels (of each
pixel) change smoothly enough, so that any mid-value between two consecutive high res-
olution frames can be expressed as a linear combination of the two. Then the continuous
integration operation over the continuous space-time volume can be translated to a linear
operation on the high resolution frames.

We now show how to calculate the discrete kernel using the example of Fig. 22. If we are
interested in the weights corresponding to the low resolution sample whose exposure-time
is marked in Fig. 22.a, then the weights on the left to tk will receive the value 1 and the
weights on the right to tk+1 will be 0. According to the linear interpolation assumption
the intensity of each pixel between tk and tk+1 is: I(t) = (1− α)I(tk) + αI(tk+1), where

α = t−tk
T

and T is the high resolution frame-time (T = tk+1− tk). Therefore the weights of

5When the temporal transformation is a simple shift in time (which is the case when all input sequences
have the same frame-rate), the same weights are used for all frames within a single low resolution sequence.
These weights, however, vary from one sequence to another.
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tk and tk+1 will be:

Wk = 1
2

+ 1
T

∫ t0−tk
0 (T−t′

T
)dt′ = 1

2
+ t0−tk

T
− (t0−tk)2

2T 2

Wk+1 = 1
T

∫ t0−tk
0 ( t′

T
)dt′ = (t0−tk)2

2T 2

(13)

Finally, all weights corresponding to a low resolution sample should be normalized so that
their sum is 1.

Note that the rectangular blur function is very “non-bandlimited” (much of the energy
exists in frequencies that are beyond the Nyquist sampling rate of the high resolution
output). Hence this discretization is only an approximation, and the real function cannot be
interpolated accurately from these weights. This means that the “induced” high resolution
temporal blur kernel (Bind in Apendix A) cannot be an exact interpolator of the low
resolution blur kernel.

As we mentioned earlier, the underlying assumption in the above-described discretiza-
tion is that the gray-level values for each pixel that are between high resolution frames
can be represented as a linear combination of the values at same pixels in these frames
(i.e., that there is no gray-level aliasing in the high resolution sequence). We call this the
“gray-level interpolation” assumption. However this assumption is not always true. When-
ever the fast moving object induces temporal frequencies that are higher than the Nyquist
frequency defined by the output frame-rate, then these frequencies cannot be interpolated
using regular “grid-based” gray level interpolation. This can be solved either by increasing
the high resolution frame-rate (up to a certain limit dictated by the number of inputs), or
by replacing the grid-based interpolation with “motion based interpolation”.

By motion based interpolation we refer to computing intermediate gray levels by linear
combination of pixels that are correlated by the motion within a sequence. This is op-
posed to gray level interpolation where the interpolated values are linear combination of
neighboring pixels.
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