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Assume we have a discrete/non-convex function f(z) we wish to
optimize.

Example: knapsack problem. Given m items with weights
w = (wy, ..., wy,) and values v = (v1, ..., vy, ) Find the subset with
maximal value under a weight constraint.

max ’UTZ

st.wlz<C
Zi € {O, 1}

These problems are in general NP-hard.

For simplicity we will assume the search space X is finite, but our
results can be generalized easily.
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Motivation

Stochastic approach - pick items randomly z1, ..., zx from your search
space X, and return arg max f(z;).
1€[N]

What probability distribution should we use?

Simple (bad) distribution: pick z uniformly from X. Problem - we
might spend most of the time sampling junk.

Great distribution: Softmax p(z) = e/®)/T /7 where T is a parameter

and Z = > ef (#)/T ig the partition function. Problem - how can you
zeX
sample from p(z) when you cannot compute Z?

To solve this problem we use MCMC (Markov chain Monte carlo)
sampling.
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Definition 1.1 (Markov chain)

A series of random variables X7, ..., Xy, ..., is a Markov chain if
P(Xit1 = y|Xis o, X1) = P(Xi1 = y|Xi).

Example: random walk X; 11 = X; + Ax; where Ax; are i.i.d is a
Markov chain.

Example: X;1; is an element of [IV] not seem before. This is not a
Markov chain.

We will consider homogeneous Markov chains where P(X;11 = y|X;)
does not depend on 1.
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We will use matrix notation: Define distributions as as a row vector w
such that 7(z) is the probability of z. We can think of a Markov chain
as & SEries T, M1, «evy Ty «eee

Define the transition matrix P such that
Pij = Piyj = P(Xn11 = j| Xp = 9).

We then have 7,41 = 7, P, and therefore m,, = moP".

Pt (7) =P(Xnss = 3) = 3 P(Xos1 = §1Xa = ) P(X = )

7

— Z Pijmn(i) = (mnP)(5).
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Stationary distribution

For well-behaved Markov chains the nice property holds -
T, = moP™" — 7* independent of .

Definition 1.2 (Irreducibility)

A Markov chain is called irreducible if for all 7, j there is a k such that
le; > (, i.e. you can get to any state from any state.

Definition 1.3 (Aperiodicity)

A Markov chain is called aperiodical if there exist a k such that Pilj- >0
for all 7, j.

A simple trick to turn a Markov chain aperiodical is to have P; > 0.
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Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for
any distribution my we have m, — 7 where 7* is the unique solution to
m=maP.

Proof sketch.

Since P is row-stochastic, P1 = 1. Therefore there exits 7* such that
7" P = 7*. From Perron-Frobenius the vector is positive, unique (up to
scalar) and each other eigenvalue A, we have |[A\| < 1. P may not have a
eigen-decomposition but this is enough (with some work) to prove
convergence. ]

How is this helpful? We will show how to build a Markov chain with any
7*, then sampling from 7* is easy, just go over the chain to convergence
(hopefully fast...).
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Our interest is in reversible Markov chain where detailed balance holds.

Lemma 1.5 (detailed balance)

If the detailed balance equation m;P;j = 7;Pj; holds then m = m*.

Proof - (7P)(j) = 3, m(0) Py = >, m(5) Pji = 7 (4).

T

. P;;
So in order to have 7 steady state we need 52 = —
i i

One can show that there exists a symmetric postive matrix A, such that
P is A after row-normalization.
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Theorem 1.6 (Mixing time)

If a Markov chain P has all previous requirements and is reversible then

bmin(€) <1 L L
mizi€) = “08 emin; () / 1 — A,

1 A*
timiz(€) > log (2—6) T x

This shows that the spectral gap controls the rate of convergence.
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The Metropolis-Hastings algorithms allows us to build a Markov chain
with a desired stationary distribution. The algorithm requires:

1) A desired distribution known up to a constant, e.g.

m(x) = exp(f(x)/T)/Z.

2) A Markov chain Q(i — j) called the proposal distribution. This is
where we should look around state ¢. For example in the knapsack
problem it could we uniform over all possibilities of switching a single
element Z;. For continuous state spaces Q(zo — ) = N (xg,01) is a
common choice.
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Algorithm Metropolis-Hastings

Input: zg, 7 and Q.
fort=0:N do

Pick proposition z, from distribution Q(z; — -)

—mi (22 ) Q@+ — ;)
a = min{l, ~ xi)Q(wi—m*)}
With probability « set x;41 = x«, else z;41 = x;

end for

Notice we only ratio of m so the unknown constant is eliminated.

For example if @ is symmetric and 7 o< exp(f(x)/T) then if
f(zy) > f(x;) we always move to x,, else we move with probability

exp(=|Af]/T)
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Theorem 2.1

The MH algorithm defines a Markov chain P with stationary
distribution ™™ = 7.

We will show P has detailed balance: Assume w.l.o.g m;Qj—; < mQi;.

o Qi Q)i
7 Piy; =miQiy; min{l, LY = @,
e " iQimsj T Qi
‘ 7iQis i
=m;jQji = TjQ i min{l, ==L} = m; P;_,;
T Qj—i
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Remarks:
m Q must be irreducible!

m The convergence rate depends heavily on the auxiliary distribution
Q.

m The algorithm is derivative-free.

Convergence can be exponentially slow.
m Can have low complexity per iteration, depends on Q.

m 7 can be known up to a constant.

Optimization is just one application of the MH algorithm.
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|—Simula‘ned Annealing

While simulated annealing is not a homogeneous process, if T changes
slow enough it is a close approximation.

One can show that for finite/compact spaces simulated annealing with
T, = m converges to the global optimum.
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Online demo - http://www.youtube.com/watch?v=iaq_Fpr4KZc

Counter-example: On the blackboard.


http://www.youtube.com/watch?v=iaq_Fpr4KZc
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Rejectionless Sampling

If we are at a local maxima or a high probability state, we might reject
any proposal with high probability. This is very wasteful.

The idea - sample directly the next accepted state.

This only works for discrete problems such that Q(z¢o — x) has a
reasonable size support.



L Algorithms

L Rejectionless Sampling

Define w(z) = Q(zo — x) - min{1, Wz(lx)gg(;:xr 5y} the probability to
chose and accept x.




Rejectionless Sampling

Dheﬁne wc(ix) = Q(zo — z) - min{1, wz(f)gg(mix } the probability to
chose and accept x.

Define W = %" w(x). This is computable if the support of Q(zg — -) is
small and simple.



ejectionless Sampling

Dheﬁne wc(ix) = Q(zo — z) - min{1, Wz(lx)gg(:fll_lm } the probability to
chose and accept x.

Define W = %" w(x). This is computable if the support of Q(zg — -) is
small and simple.

The probability that x is the next accepted state in the MH run is
w(z)/W. Use this to pick the next state instead of the regular iteration.
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Algorithm Rejectionless-MH

Input: zg, 7 and Q.
fort=0:N do

For z € supp(Q(z; — -)) compute w(z),
7(z)Q(z—wi—1)

w(.’]:) = Q(.’L’O — x) . mll’l{l, W(mi—l)Q(xi—lﬁz)
W =3 esum(@e.) V(@)
Select ;41 with probability w(x)/W

end for

}




ejectionless Sampling

Algorithm Rejectionless-MH

Input: zg, 7 and Q.

fori=0:N do
For z € supp(Q(z; — -)) compute w(z),
w(z) = Q(xg — x) - min{1, W&@S&Zﬁ‘j@}
W= Zmesupp(Q(mi,:)) w('r)
Select ;41 with probability w(x)/W

end for

This can be much slower per iteration, but worth it if W is low enough.
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