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Stochastic Optimization

Introduction

Motivation

Assume we have a discrete/non-convex function f(x) we wish to
optimize.

Example: knapsack problem. Given m items with weights
w = (w1, ..., wm) and values v = (v1, ..., vm) Find the subset with
maximal value under a weight constraint.

max vT z

s.t. wT z ≤ C
zi ∈ {0, 1}

These problems are in general NP-hard.

For simplicity we will assume the search space X is finite, but our
results can be generalized easily.
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Stochastic Optimization

Introduction

Motivation

Stochastic approach - pick items randomly x1, ..., xN from your search
space X, and return arg max

i∈[N ]
f(xi).

What probability distribution should we use?

Simple (bad) distribution: pick x uniformly from X. Problem - we
might spend most of the time sampling junk.

Great distribution: Softmax p(x) = ef(x)/T /Z, where T is a parameter
and Z =

∑
x∈X

ef(x)/T is the partition function. Problem - how can you

sample from p(x) when you cannot compute Z?

To solve this problem we use MCMC (Markov chain Monte carlo)
sampling.
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Definition 1.1 (Markov chain)

A series of random variables X1, ..., Xt, ..., is a Markov chain if
P (Xi+1 = y|Xi, ..., X1) = P (Xi+1 = y|Xi).

Example: random walk Xi+1 = Xi + ∆xi where ∆xi are i.i.d is a
Markov chain.

Example: Xi+1 is an element of [N ] not seem before. This is not a
Markov chain.

We will consider homogeneous Markov chains where P (Xi+1 = y|Xi)
does not depend on i.
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We will use matrix notation:

Define distributions as as a row vector π
such that π(x) is the probability of x. We can think of a Markov chain
as a series π0, π1, ..., πn, ....

Define the transition matrix P such that
Pij = Pi→j = P (Xn+1 = j|Xn = i).

We then have πn+1 = πnP , and therefore πn = π0P
n.

πn+1(j) =P (Xn+1 = j) =
∑
i

P (Xn+1 = j|Xn = i)P (Xn = i)

=
∑
i

Pijπn(i) = (πnP )(j).
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Stationary distribution

For well-behaved Markov chains the nice property holds -

πn = π0P
n → π∗ independent of π0.

Definition 1.2 (Irreducibility)

A Markov chain is called irreducible if for all i, j there is a k such that
P kij > 0, i.e. you can get to any state from any state.

Definition 1.3 (Aperiodicity)

A Markov chain is called aperiodical if there exist a k such that P kij > 0
for all i, j.

A simple trick to turn a Markov chain aperiodical is to have Pii > 0.
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Theorem 1.4 (Stationary distribution)

If a Markov chain P is homogeneous, irreducible and aperiodical then for
any distribution π0 we have πn → π∗ where π∗ is the unique solution to
π = πP .

Proof sketch.

Since P is row-stochastic, P1 = 1. Therefore there exits π∗ such that
π∗P = π∗. From Perron-Frobenius the vector is positive, unique (up to
scalar) and each other eigenvalue λ, we have |λ| < 1. P may not have a
eigen-decomposition but this is enough (with some work) to prove
convergence.

How is this helpful? We will show how to build a Markov chain with any
π∗, then sampling from π∗ is easy, just go over the chain to convergence
(hopefully fast...).
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Our interest is in reversible Markov chain where detailed balance holds.

Lemma 1.5 (detailed balance)

If the detailed balance equation πiPij = πjPji holds then π = π∗.

Proof - (πP )(j) =
∑

i π(i)Pij =
∑

i π(j)Pji = π(j).

So in order to have π steady state we need
Pij

Pji
=

πj
πi

One can show that there exists a symmetric postive matrix A, such that
P is A after row-normalization.
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Mixing time

How fast does a Markov chain converge? There is a huge literature on
mixing time, we will state one simple result.

The mixing time tmix(ε) is the minimal time such that no mater where
we started, for n ≥ tmix(ε) we have ||πn − π∗||TV = ||πn − π∗||1 ≤ ε

If P is reversibel it has an eigen-decomposition with
1 = λ1 > λ2 ≥ ... ≥ λ|X| > −1. Define λ∗ = max{λ2, |λ|X||}.
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Theorem 1.6 (Mixing time)

If a Markov chain P has all previous requirements and is reversible then

tmix(ε) ≤ log

(
1

εmini π∗(i)

)
1

1− λ∗

tmix(ε) ≥ log

(
1

2ε

)
λ∗

1− λ∗

This shows that the spectral gap controls the rate of convergence.



Stochastic Optimization

Introduction

Mixing time

Theorem 1.6 (Mixing time)

If a Markov chain P has all previous requirements and is reversible then

tmix(ε) ≤ log

(
1

εmini π∗(i)

)
1

1− λ∗

tmix(ε) ≥ log

(
1

2ε

)
λ∗

1− λ∗

This shows that the spectral gap controls the rate of convergence.



Stochastic Optimization

Algorithms

Metropolis-Hastings

1 Introduction
Motivation
Markov chains
Stationary distribution
Mixing time

2 Algorithms
Metropolis-Hastings
Simulated Annealing
Rejectionless Sampling



Stochastic Optimization

Algorithms

Metropolis-Hastings



Stochastic Optimization

Algorithms

Metropolis-Hastings

The Metropolis-Hastings algorithms allows us to build a Markov chain
with a desired stationary distribution. The algorithm requires:

1) A desired distribution known up to a constant, e.g.
π(x) = exp(f(x)/T )/Z.

2) A Markov chain Q(i→ j) called the proposal distribution. This is
where we should look around state i. For example in the knapsack
problem it could we uniform over all possibilities of switching a single
element Zk. For continuous state spaces Q(x0 → x) = N (x0, σI) is a
common choice.
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Algorithm Metropolis-Hastings

Input: x0, π and Q.
for i = 0 : N do

Pick proposition x∗ from distribution Q(xi → ·)
α = min{1, π(x∗)Q(x∗→xi)

π(xi)Q(xi→x∗) }
With probability α set xi+1 = x∗, else xi+1 = xi

end for

Notice we only ratio of π so the unknown constant is eliminated.

For example if Q is symmetric and π ∝ exp(f(x)/T ) then if
f(x∗) ≥ f(xi) we always move to x∗, else we move with probability
exp(−|∆f |/T )
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Theorem 2.1

The MH algorithm defines a Markov chain P with stationary
distribution π∗ = π.

Proof.

We will show P has detailed balance: Assume w.l.o.g πjQj→i ≤ πiQi→j .

πiPi→j =πiQi→j min{1, πjQj→i
πiQi→j

} = πiQi→j
πjQj→i
πiQi→j

=πjQj→i = πjQj→i min{1, πiQi→j
πjQj→i

} = πjPj→i
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Remarks:

Q must be irreducible!

The convergence rate depends heavily on the auxiliary distribution
Q.

The algorithm is derivative-free.

Convergence can be exponentially slow.

Can have low complexity per iteration, depends on Q.

π can be known up to a constant.

Optimization is just one application of the MH algorithm.
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Consider running MH with π ∝ exp(f(x)/T ). What value of T to use?

For large T - rapid mixing time, but π∗ is almost uniform.

For small T - π∗ is highly concentrated on the maximum, but there can
be (exponentially) long mixing time.

The idea behind simulated annealing - start with high T , then decrease
it slowly over time.
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While simulated annealing is not a homogeneous process, if T changes
slow enough it is a close approximation.

One can show that for finite/compact spaces simulated annealing with
Ti = 1

C ln(T0+i)
converges to the global optimum.
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Online demo - http://www.youtube.com/watch?v=iaq_Fpr4KZc

Counter-example: On the blackboard.

http://www.youtube.com/watch?v=iaq_Fpr4KZc
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If we are at a local maxima or a high probability state, we might reject
any proposal with high probability. This is very wasteful.

The idea - sample directly the next accepted state.

This only works for discrete problems such that Q(x0 → x) has a
reasonable size support.
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Define w(x) = Q(x0 → x) ·min{1, π(x)Q(x→xi−1)
π(xi−1)Q(xi−1→x)} the probability to

chose and accept x.

Define W =
∑

xw(x). This is computable if the support of Q(x0 → ·) is
small and simple.

The probability that x is the next accepted state in the MH run is
w(x)/W . Use this to pick the next state instead of the regular iteration.
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Algorithm Rejectionless-MH

Input: x0, π and Q.
for i = 0 : N do

For x ∈ supp(Q(xi → ·)) compute w(x),

w(x) = Q(x0 → x) ·min{1, π(x)Q(x→xi−1)
π(xi−1)Q(xi−1→x)}

W =
∑

x∈supp(Q(xi,:))
w(x)

Select xi+1 with probability w(x)/W
end for

This can be much slower per iteration, but worth it if W is low enough.
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