
Intro to Statistical Learning Theory

Exercise 1

1) Binary classification - finite realizable case:
A distribution D is realizable by H if there exists some h∗ ∈ H such that
LD(h∗) = 0.

Assume Y = {±1}, 0-1 loss, and H is a finite hypothesis class. Prove that

H can PAC learn any realizable distributionD with M(ε, δ) = O
(

log( |H|
δ )
ε

)
.

You can use the inequality 1− x ≤ e−x.

2) Bayes optimal predictor: We define the Bayes-optimal predictor hb as
hb(x) = arg min

ȳ∈Y
Ey[`(ȳ, y)|x].

a) Show that for classification with Y = {1, ..., k} = [k] and 0 − 1 loss,
hb(x) = arg max

y∈[k]
P (y|x).

b) Show that for regression, Y = R with squared loss `(y, ȳ) = (y− ȳ)2,
that hb(x) = E[y|x].

3) From bounded expected risk to agnostic PAC learning:
Let A be an algorithm that guarantees the following: If m > M(ε) then
for every distribution D it holds that ES [LD(A(S))] < min

h∈H
LD(h) + ε.

a) Show that for every δ ∈ (0, 1), if m > M(ε · δ) then with probabil-
ity of at least 1 − δ it holds that LD(A(S)) < min

h∈H
LD(h) + ε (hint:

Markov’s inequality).

b) For every δ ∈ (0, 1) let k = dlog2(1/δ) + 1e and M̄(ε, δ) = M(ε/2)k+⌈
2 ln(2/δ)+ln(k)

ε2

⌉
Suggest a procedure that PAC learns the problem

with sample complexity of M̄(2ε, δ) assuming that the loss function
is bounded by 1. Hint: Divide the data into k+1 chunks, where each
of the first k chunks is of size M(ε/2) examples.
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4) Show that there exists a hypothesis space H with |H| = 2 and an un-
bounded loss ` such that H is not PAC learnable.
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