Intro to Statistical Learning Theory
Fxercise 1

1) Binary classification - finite realizable case:
A distribution D is realizable by H if there exists some h* € H such that
Lp(h*) =0.

Assume Y = {1}, 0-1 loss, and H is a finite hypothesis class. Prove that
og( 24l
‘H can PAC learn any realizable distribution D with (e, 0) = O <lg(€5)) .

You can use the inequality 1 —ax < e™7".

2) Bayes optimal predictor: We define the Bayes-optimal predictor h; as
ho() = arg min E, ((7. ) .

a) Show that for classification with ) = {1,...,k} = [k] and 0 — 1 loss,
hy(x) = arg m%P(ylw)
ye

b) Show that for regression, Y = R with squared loss £(y,%) = (y — 3)?,
that hy(x) = Ely|z].

3) From bounded expected risk to agnostic PAC learning:
Let A be an algorithm that guarantees the following: If m > 9t(e) then
for every distribution D it holds that Eg[Lp(A(S))] < im% Lp(h) +e.
€

a) Show that for every ¢ € (0,1), if m > (e - §) then with probabil-
ity of at least 1 — ¢ it holds that Lp(A(S)) < hIIH?I_ll Lp(h) + € (hint:
€

Markov’s inequality).

b) For every 6 € (0,1) let k = [logy(1/) + 1] and M(e, 5) = M(e/2)k +
{21]“(2/52%(@} Suggest a procedure that PAC learns the problem

with sample complexity of 9(2¢, ) assuming that the loss function
is bounded by 1. Hint: Divide the data into k+1 chunks, where each
of the first k chunks is of size Mi(e/2) examples.



4) Show that there exists a hypothesis space H with |H| = 2 and an un-
bounded loss ¢ such that H is not PAC learnable.



