Intro to Statistical Learning Theory Exercise 1

1) Binary classification - finite realizable case: A distribution \mathcal{D} is realizable by \mathcal{H} if there exists some $h^* \in \mathcal{H}$ such that $L_{\mathcal{D}}(h^*) = 0$.

Assume $\mathcal{Y} = \{\pm 1\}$, 0-1 loss, and \mathcal{H} is a finite hypothesis class. Prove that \mathcal{H} can PAC learn any realizable distribution \mathcal{D} with $\mathfrak{M}(\epsilon, \delta) = \mathcal{O}\left(\frac{\log\left(\frac{|\mathcal{H}|}{\delta}\right)}{\epsilon}\right)$. You can use the inequality $1 - x \leq e^{-x}$.

- 2) Bayes optimal predictor: We define the Bayes-optimal predictor h_b as $h_b(x) = \arg\min_{\bar{y} \in \mathcal{Y}} \mathbb{E}_y[\ell(\bar{y},y)|x]$.
 - a) Show that for classification with $\mathcal{Y} = \{1, ..., k\} = [k]$ and 0 1 loss, $h_b(x) = \arg\max_{y \in [k]} P(y|x)$.
 - b) Show that for regression, $\mathcal{Y} = \mathbb{R}$ with squared loss $\ell(y, \bar{y}) = (y \bar{y})^2$, that $h_b(x) = \mathbb{E}[y|x]$.
- 3) From bounded expected risk to agnostic PAC learning: Let A be an algorithm that guarantees the following: If $m > \mathfrak{M}(\epsilon)$ then for every distribution \mathcal{D} it holds that $\mathbb{E}_S[L_{\mathcal{D}}(A(S))] < \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$.
 - a) Show that for every $\delta \in (0,1)$, if $m > \mathfrak{M}(\epsilon \cdot \delta)$ then with probability of at least 1δ it holds that $L_{\mathcal{D}}(A(S)) < \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$ (hint: Markov's inequality).
 - b) For every $\delta \in (0,1)$ let $k = \lceil \log_2(1/\delta) + 1 \rceil$ and $\bar{\mathfrak{M}}(\epsilon,\delta) = \mathfrak{M}(\epsilon/2)k + \left\lceil 2\frac{\ln(2/\delta) + \ln(k)}{\epsilon^2} \right\rceil$ Suggest a procedure that PAC learns the problem with sample complexity of $\bar{\mathfrak{M}}(2\epsilon,\delta)$ assuming that the loss function is bounded by 1. Hint: Divide the data into k+1 chunks, where each of the first k chunks is of size $\mathfrak{M}(\epsilon/2)$ examples.

4) Show that there exists a hypothesis space \mathcal{H} with $|\mathcal{H}|=2$ and an unbounded loss ℓ such that \mathcal{H} is not PAC learnable.