Intro to Statistical Learning Theory Exercise 2

- 1) Find the VC dimension of the following hypothesis spaces (prove your claim):
 - a) Parity functions. $\mathcal{X} = \{0,1\}^n$, for any $S \subset [n]$ define $h_S(x) = \left(\sum_{i \in S} x_i\right) \mod 2$. $\mathcal{H} = \{h_S, S \subset [n]\}$.
 - b) The set of rectangles in \mathbb{R}^d , i.e. $\mathcal{H} = \{h_{(c,b)}(x) = \mathbb{1}[\forall i, |x_i c_i| \leq b_i], b, c \in \mathbb{R}^d\}$. We have seen in class d = 2.
 - *c) The set of circles in \mathbb{R}^2 , i.e. $\mathcal{H} = \{h_{(c,r)}(x) = \mathbb{1}[|x-c| \leq r], c \in \mathbb{R}^2, r > 0\}$
- 2) For $\mathcal{X} = \mathbb{R}$, define $\mathcal{H} = \{h_{\theta}(x) = \lceil \sin(\theta x) \rceil, \theta \in \mathbb{R}\}$ where we take $\lceil -1 \rceil = 0$. Prove that $VC(\mathcal{H}) = \infty$. Hint: prove and use the following lemma if $x \in (0,1)$ has binary expansion $x = 0.x_1x_2...x_m...$ then for any natural number m, $\lceil \sin(2^m \pi x) \rceil = 1 x_m$ provided that for some $k \geq m$ we have $x_k = 1$.
- 3) Let \mathcal{H}_1 and \mathcal{H}_2 be binary hypothesis spaces over \mathcal{X} . define $d_i = VC(\mathcal{H})$, $d = \max(d_1, d_2)$ and assume $d \geq 3$.
 - a) Prove that $VC(\mathcal{H}_1 \cup \mathcal{H}_2) \leq 2d + 1$
 - b) Show and prove an upper bound on $VC(\mathcal{H}_1 \cdot \mathcal{H}_2)$, where $\mathcal{H}_1 \cdot \mathcal{H}_2$ is the class of all function of the form $h_1(x) \cdot h_2(x)$ when $h_i \in \mathcal{H}_i$.

Hint: Use the bound we found on the growth function.

4) Structural Risk Minimization: If \mathcal{H} has uniform convergence with complexity $\mathfrak{M}(\epsilon, \delta)$ we define the confidence $\epsilon(m, \delta) = \min_{\epsilon>0} \{m > \mathfrak{M}(\epsilon, \delta)\}$, i.e. the best approximation error we can learn given m examples and probability δ . Prove the following theorem:

Let p_n be a sequence of positive numbers such that $\sum_{n=1}^{\infty} p_n \leq 1$. Let $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$ where \mathcal{H}_n has uniform convergence with complexity $\mathfrak{M}_n(\epsilon, \delta)$ and confidence $\epsilon_n(m, \delta)$. For any distribution \mathcal{D} we have with probability at least $1 - \delta$ over $S \sim \mathcal{D}^m$

$$\forall h \in \mathcal{H}, \quad L_{\mathcal{D}}(h) \leq L_{S}(h) + \min_{n:h \in \mathcal{H}} \epsilon_{n}(m, p_{n} \cdot \delta).$$

can you give a specific bound when $p_n = 2^{-n}$ and $VC(\mathcal{H}_n) = n$?