
Intro to Statistical Learning Theory

Exercise 3

1) Read the lecture notes of lecture 5.

a) Prove lemma 1.2.

b) Prove lemma 1.3.

c) The SVM bound that we got does not depend on the dimension.
Why does this not contradict the fundamental theorem for binary
classification?

2) Define H1 = {x → 〈x,w〉 : ||w||1 ≤ 1} where ||x||1 =
d∑
i=1

|xi|. Let

S = {x1, ..., xm} be vectors in Rn. Prove that

R(H1◦S) = R({〈w, x1〉 , ..., 〈w, xm〉 ||w||2 ≤ 1}) ≤ max
i
||x||∞

√
2 log(2n)

m
.

Where ||x||∞ = maxi |xi|.
Hint: You can use a result from the Holder inequality, 〈x, y〉 ≤ ||x||1 ·||y||∞
to reduce the problem to a finite set, and then use the Massart lemma.

3) LetH andH′ be hypothesis classes. Either prove or give a counter example
to RD(H ∪H′,m) ≤ RD(H,m) +RD(H′,m)

4) Multi-class labeling problem: For every parameter vector θ ∈ R define

the prediction function hθ(x) =
∑k
i=1 1[x ≥ θi], i.e. k thresholds. The

loss function is `(ỹ, y) = |y − ỹ|. For a sample S of m i.i.d. examples,
Compute a (non-trivial) upper bound on the Rademacher complexity of
F ◦ S = {(`(y1, hθ(x1), ..., `(ym, hθ(xm)) : θ ∈ Rk} .
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