
Realizable Online learning Online Convex Optimization Online Gradient descent

Introduction to Statistical Learning Theory
Lecture 10

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Introduction

We now study a different kind of learning - online learning.

At each step the learner gets xt, predicts pt, receives true label yt and
finally suffers loss `(pt, yt). We wish to minimize

∑T
i=1 `(pt, yt).

Main differences: No separate training stage. No i.i.d assumption - xt, yt
can be adversarial.

Examples: Spam filtering, financial predictions.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Introduction

Assume `(pt, yt) ∈ [0, 1]. Since data might be adversarial,
∑T

i=1 `(pt, yt)
might be T no matter what we do.

We first thing is to consider regret: There is some (known) hypothesis
class H, but instead of

∑T
i=1 `(pt, yt), we look at

RegretT (H) =
∑T

i=1 `(pt, yt)−minh∈H
∑T

i=1 `(h(xt), yt) . We compare
to the best (fixed) hypothesis.

In classification, an adversary can still make the regret at least T/2.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Introduction

To get sublinear regret we look at two further restrictions:

Realizable case: There is some (known) hypothesis class H and h∗ ∈ H,
such that `(h∗(xt), yt) ≡ 0.

Randomization: The learner gives a distribution, which the adversary
knows (but not the random outcome) and suffers the expected loss.

This turns discrete problems to convex problems, and 0− 1 loss to a
Lipschitz loss function.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Introduction

For the realizable case, regret is just the number of mistakes.

we define the mistake bound of algorithm A, MA(H) as the maximum
number of mistakes over any sequence of inputs and labels h(xt) .

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Halving

For binary finite hypothesis spaces, we have this simple algorithm:

Algorithm Halving

Input: Hypothesis space H
Initialize: V1 = H
for t=1,...,T do

recieve xt
predict pt = arg maxb∈{±1} |{h ∈ Vt : h(xt) = b}|
recieve yt
Update: Vt+1 = {h ∈ Vt : h(xt) = yt} .

end for

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Halving

Theorem 1.1

The halving algorithm has mistake bound Mhalving(H) ≤ log2(|H|).

Proof- The halving algorithm is a majority vote. So for each wrong turn
t we have |Vt+1| ≤ |Vt|/2,
so if M mistakes where made in T steps then 1 ≤ |VT+1| ≤ 2−M |H|

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Standard Optimal Algorithm

Consider an adversary that wishes to make you err the first T rounds.

He need to be able to produce xt = f(x1, p1, ..., xt−1, pt−1) and h∗ ∈ H
such that ∀t : h∗(xt) 6= pt. We can think of it as a binary tree of depth
T , each internal node is an input and each leaf a hypothesis.

Figure: From ”Online Learning and Online Convex Optimization”. Shai
Shalev-Shwartz

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Standard Optimal Algorithm

Definition 1.2 (Shattered tree)

A shattered tree of depth d is a complete binary tree of depth d. To each
internal nodes i there is vi ∈ X . To each leaf j corresponds a hypothesis
hj ∈ H. Each sequence of predictions p1, ..., pd defines a path in the tree
vt1 , vt2 , .., vtd from root vt1 = v1 to leaf vfd = h, 0 moves right 1 moves
left, so that h(vti) 6= pi.

Definition 1.3 (Littlestones dimension)

Littlestones dimension Ldim(H) is the maximal integer T such that
there exist a shattered tree of depth T.

By definition, if LDim(H) = T then for any algorithm A, MA(H) ≥ T .

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Standard Optimal Algorithm

Example 1: For finite H, LDim(H) ≤ log2(|H|).

Example 2: X = [d], H = {h1, ..., hd} where hd(x) = 1 iff x = d.
LDim(H) = 1.

Example 3: If V C(H) = d then LDim(H) ≥ d. Proof - Consider tree
with same nodes at each level.

Example 4: X = [0, 1], H threshold functions. V C(H) = 1 but
LDim(H) =∞.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Standard Optimal Algorithm

We now present an optimal learning algorithm for the realizable setting:

Algorithm Standard Optimal Algorithm

Input: Hypothesis space H
Initialize: V1 = H
for t=1,...,T do

recieve xt
for b ∈ {±1} set V b

t = {h ∈ Vt : h(xt) = b}
predict pt = arg maxb∈{±1} LDim(V b

t)
recieve yt
Update: Vt+1 = {h ∈ Vt : h(xt) = yt} .

end for

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Standard Optimal Algorithm

Theorem 1.4

The SOA algorithm has mistake bound MSOA(H) = LDim(H).

Proof - It is enough to show that for every error
LDim(Vt+1) ≤ LDim(Vt)− 1.

Assume by contrary this is not the case. This means
LDim(V 0

t) = LDim(V 1
t) = LDim(Vt). This means we can build a

shattering tree for LDim(Vt) of depth LDim(Vt) + 1 and a contradiction.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

follow-the-leader

We now turn to convex hypothesis spaces and loss function.

As we said before, classification can be convexified via randomization.

Randomization helps the learner, as the adversary does not know the
random outcome (only the distribution).

Another way to convexify - surrogate loss, e.g. hinge loss.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

follow-the-leader

Our basic analysis tool will be online convex optimization.

The scenario is almost the same - We have a convex set S, predict a
vector wt ∈ S, receive a convex loss function ft(w), and suffer loss ft(wt).

For each vector u we define RegretT (u) =
∑T

i=1 ft(wt)−
∑T

i=1 ft(u).

For a set U we define RegretT (U) = maxu∈U RegretT (u).

Usually U = S, but not always, e.g. randomization.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

follow-the-leader

A simple OCO algorithm is the following:

Algorithm Follow-The-Leader (FTL)

Input: Convex set S
for t=1,...,T do

predict wt = arg minw∈S
∑t−1

i=1 ft(w)
end for

The main theorem to bound the regret is

Theorem 2.1

Let w1, ..., wT , ... be the outputs of the FTL. For all u ∈ S we have

RegretT (u) ≤
T∑
t=1

(ft(wt)− ft(wt+1))

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

follow-the-leader

Proof - we need to show that

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

(ft(wt)− ft(wt+1)) (1)

that means,
∑T

t=1 ft(u) ≥
∑T

t=1 ft(wt+1). Proof is by induction.

The case T = 1 is by the definition of w2.

Assume by induction that for all u,
∑T−1

i=t ft(wt+1) ≤
∑T−1

t=t ft(u). We
now get

T∑
t=t

ft(wt+1) ≤
T−1∑
t=t

ft(u) + fT (wT+1) (2)

This holds for all u so we can chose u = wT+1 to conclude

T∑
t=t

ft(wt+1) ≤
T∑
t=t

ft(wT+1) = min
u∈S

T∑
t=t

ft(u) (3)

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Examples

Consider quadratic optimization - ft(w) = 1
2 ||w − zt||

2
2. Assume S = Rd,

and zt ∈ Rd.

The FTL prediction is wt = 1
t−1
∑t−1

i=1 zt.

We can write wt+1 =
(
1− 1

t

)
wt + 1

t zt, so wt+1 − zt =
(
1− 1

t

)
(wt − zt).

ft(wt)− ft(wt+1) =
1

2
||wt − zt||22 −

1

2
||wt+1 − zt||22

=
1

2

(
1−

(
1− 1

t

)2
)
||wt − zt||22 ≤

1

t
||wt − zt||22

If we assume ||zt|| ≤ L, then ||wt − zt||22 ≤ 4L2 and

T∑
t=1

(ft(wt)− ft(wt+1)) ≤ 4L2
T∑
t=1

1

t
≤ 4L2(ln(T) + 1)

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Examples

Consider 1d linear loss ft(w) = zt · w with S = [−1, 1].

Consider the following inputs: z1 = −0.5, for even t zt = 1 and for odd
t > 1 we have zt = −1.

At all even t the FTL will return wt = 1 and suffer loss 1, and at odd
steps wt = −1 and the loss is again 1. The total loss is T , while u = 0
has zero loss.

The reason the linear loss fails (unlike the quadratic), is that it is not
stable.

To stabilize it we will add regularization.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Regularized FTL

Algorithm Follow-The-Regularized-Leader (FoReL)

for t=1,...,T do
predict wt = arg minR(w)+w∈S

∑t−1
i=1 ft(w)

end for

The FoRel has this similar regret bound

Theorem 2.2

Let w1, ..., wT , ... be the outputs of the FoRel. For all u ∈ S we have

RegretT (u) ≤ R(u)−R(w1) +

T∑
t=1

(ft(wt)− ft(wt+1))

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Regularized FTL

Proof is the same to FTL, just adding f0 = R.

Lets return to the linear example: Assume S = Rd, U = {u : ||u|| ≤ B}
and ft(w) = 〈w, zt〉. Further assume 1

T

∑T
t=1 ||Zt||22 ≤ L2.

We pick `2-regularizer R(w) = 1
2η ||w||

2
2. We can see that the FoReL

returns wt+1 = −η
∑T

t=1 zt = wt − ηzt.

RegretT (u) ≤ R(u)−R(0) +
T∑
t=1

(ft(wt)− ft(wt+1))

≤ 1

2η
||u||22 +

T∑
t=1

〈wt − wt+1, zt〉 =
1

2η
||u||22 + η

T∑
t=1

||zt||22 ≤
B2

2η
+ ηL2

Setting η = B
L
√
2T

, we get that the bound is bounded by BL
√

2T .

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Regret bounds

We showed how FoRel has a square root regret bound for linear loss.

We will now generalize for any convex ft(w).

For convex differential functions f(x) we have
f(u) ≥ f(w) + 〈∇f(w), u− w〉.

For general convex functions, there exits vectors z such that
f(u) ≥ f(w) + 〈z, u− w〉 called sub-gradients, and the set of all
sub-gradients at w is marked ∂f(w).

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Regret bounds

For our convex loss function ft(w) we have ft(wt)− ft(u) ≤ 〈zt, wt − u〉
when zt ∈ ∂f(wt).

This means that

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

〈zt, wt − u〉

Trying to minimize the r.h.s as linear loss functions with FoReL we get
sub-gradient descent wt+1 = wt − ηzt.

The previous analysis tells us that the regret is bounded by

RegretT (u) =

T∑
t=1

(ft(wt)− ft(u)) ≤ 1

2η
||u||22 + η

T∑
t=1

||zt||22

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Perceptron

We now show how to analyse some classical online learning algorithms.

We consider linear predictors with 0-1 loss. to convexify the problem we
will use surrogate loss.

We wish to find convex ft(w) such that ft(wt) ≥ `(wt, (xt, yt)).

If we predict correctly we set ft(w) = 0, otherwise we set
ft(w) = [1− yi 〈xi, w〉]+.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Perceptron

If we use the FoReL algorithm with ft, then when we are correct
wt+1 = wt, otherwise wt+1 = wt − ηzt = wt + ηyixi

Notice that the predictions do not depend on η. Setting η = 1 we get the
perceptron algorithm.

Using the previous OCO work, we know the regret of the perceptron is

T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) +
1

2η
||u||22 + η

T∑
t=1

||zt||22 (4)

Also if the perceptron makes M mistakes then M ≤
∑T

t=1 ft(wt).

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Perceptron

Theorem 3.1

Suppose that the perceptron algorithm runs on a sequance
(x1, y1), ..., (xT , yT) and let R = maxt ||xt||. LetM be the rounds on
which the perceptron errs and let ft(w) = 1[t ∈M][1− tt 〈xt, w〉]+. Then
for any u,

|M| ≤
∑
t

ft(u) +R||u||
√∑

t

ft(u) +R2||u||2 (5)

In particular if there exists a u such that yt 〈xt, u〉 ≥ 1 then
|M| ≤ R2||u||2.

Lecture 10

Realizable Online learning Online Convex Optimization Online Gradient descent

Perceptron

Proof - we know

|M| ≤
T∑
t=1

ft(u) +
1

2η
||u||22 + η

T∑
t=1

||zt||22 (6)

We know ||zt||2 ≤ R2, then (defining M = |M|)

M ≤
T∑
t=1

ft(u) +
1

2η
||u||22 + ηR2M (7)

Setting η = ||u||/R
√
M we get

M ≤
T∑
t=1

ft(u) +R||u||
√
M (8)

Lecture 10

	Realizable Online learning
	Introduction
	Halving
	Standard Optimal Algorithm

	Online Convex Optimization
	follow-the-leader
	Examples
	Regularized FTL

	Online Gradient descent
	Regret bounds
	Perceptron

