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Strongly Convex FoReL Expert Advice Bandits

Regret Bounds

Last time we looked at FoReL

Algorithm Follow-The-Regularized-Leader (FoReL)

Input: Convex set S, regularization R.
for t=1,...,T do

predict wt = arg minw∈S R(w) +
∑t−1

i=1 ft(w)
end for

and we have seen a regret bound

Theorem 1.1

Let w1, ..., wT , ... be the outputs of the FoReL algorithm. For all u ∈ S
we have

RegretT (u) ≤ R(u)−R(w1) +
T∑
t=1

(ft(wt)− ft(wt+1))

Lecture 11



Strongly Convex FoReL Expert Advice Bandits

Regret Bounds

We will see more concrete regret bounds for strongly convex regularizers.

Definition 1.2

Let S be a convex set and f : S → R. The function f is σ-strongly
convex over S with respect to the norm || · || if for all w ∈ S we have

f(u) ≥ f(w) + 〈z, u− w〉+
σ

2
||u− w||2

for all z ∈ ∂f(w).

This is not exactly how we defined it earlier, but is equivalent.

An intimidate corollary of this definition - If f is σ-strongly convex and
w = arg minv∈S f(v) then f(u) ≥ f(w) + σ

2 ||u− w||
2.

For twice differentiable functions f , it is enough to show
xT∇2f(w)x ≥ σ||x||2 for strong convexity (Taylor).
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Regret Bounds

Theorem 1.3

Let f1, .., ft be convex functions such that ft is Lt-Lipschitz with respect
to a norm || · ||. Let L satisfy 1

T

∑T
t=1 L

2
t ≤ L2. If the FoReL is run with

a σ-strongly convex regularizer R with respect to the same norm, then
for all u ∈ S,

RegretT (u) ≤ R(u)−min
v∈S

R(v) + TL2/σ

Proof - Using Lipschitz-ness of ft we have
ft(wt)− ft(wt+1) ≤ Lt||wt − wt+1||.

We can define Ft(w) =
∑t−1

i=1 fi(w) +R(w). So by definition
wt = arg minw∈S Ft(w).
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Regret Bounds

Using strong convexity we get

Ft(wt+1) ≥ Ft(wt) +
σ

2
||wt − wt+1||2

and similarly

Ft+1(wt) ≥ Ft+1(wt+1) +
σ

2
||wt − wt+1||2

Summing both inequalities and removing duplicates we get

ft(wt)− ft(wt+1) ≥ σ||wt − wt+1||2

We can now conclude that ||wt − wt+1|| ≤ Lt/σ to finish the proof.
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Entropic Regularization

We know that R(w) = σ
2 ||w||

2 is σ-strongly convex with regard to `2
norm.

We will now show another regularizer that is strongly convex with
respect to `1 norm on the probability simplex.

Define R(w) =
∑d

i=1w[i] log(w[i]), then it is easy to show that
∂2R

∂w[i]∂w[j] = δij
1
w[i] . we now have -

xT∇2R(w)x =
∑
i

x[i]2

w[i]
=

(∑
i

w[i]

)(∑
i

x2[i]

w[i]

)
≥
〈√

w,
|x|√
w

〉2

=||x||21

We conclude that the entropic regularizer is 1-strongly convex over the
|| · ||1 norm.
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introduction

The prediction with expert advice framework is the following:

At each round the learner receives advice from each of the d experts, he
then chooses an expert pt and finally receives a loss vector yt ∈ [0, 1]d

and suffers loss yt[pt].

As we have seen before, it is impossible to get sublinear regret bounds.
The solution - convexification by randomization. The learner will return
a distribution pt ∈ ∆d, and suffer loss Ept [yt] =

∑
i pt[i]yt[i] = 〈pt, yt〉.
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introduction

Consider running FoReL with R(w) = σ
2 ||w||

2
2 regularization. We have

ft(w) = 〈yt, w〉 is ||yt||2-Lipschitz, so L =
√
d. The regert bound is

RegretT (u) ≤ σ

2
||u||22 + dT/σ

As u ∈ ∆d then ||u||2 ≤ ||u||1 ≤ 1 so by fixing the optimal learning rate
σ =
√

2dT we get

RegretT (∆d) ≤
√

2dT

Lecture 11



Strongly Convex FoReL Expert Advice Bandits

Entropic regularization

Can we do better? What about entropic regularization
R(w) = σ

∑
w[i] log(w[i])?

To get a regret bound we first need to bound R(u)−minv∈∆d
R(v). It is

easy to see that R(u) ≤ 0, and with Lagrange multipliers we can get
minv∈∆d

R(v) = − log(d).

Next we notice that |ft(w)− ft(u)| = | 〈w − u, yt〉 | ≤ ||w − u||1||yt||∞
from the Holder inequality. As ||yt||∞ = 1, we get that ft is 1-Lipschitz
with respect to the || · ||1 norm.

Pluging everything in the formula we get RegretT (∆d) ≤ σ log(d) + T/σ

and with σ =
√

T
log(d) we get RegretT (∆d) ≤ 2

√
log(d)T which scales

much better with d.
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Entropic regularization

How does the entropic update look like?

We have wt = arg minw∈∆d

∑t−1
i=1 〈yi, w〉+ σ

∑d
j=1w[i] log(w[i]). Consider

the constraint
∑

iw[i] = 1, then by Lagrange multipliers we have

t−1∑
i=1

yi[j] + σ log(w[j]) + 1 = λ

Which means that wt[j] ∝ exp(−
∑t−1

i=1 yi[j]/σ) and we get the simple

update rule wt[j] = wt−1[j] exp(−yt[j]/σ)∑d
i=1 wt−1[i] exp(−yt[i]/σ)

.

This algorithm is called exponentiated gradient descend.
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Littlestone dimension

Last week we have seen that the realizable case (binary classification) is
controlled by the Littlestone dimension. We also presented an optimal
learning algorithm for that case.

Algorithm Standard Optimal Algorithm

Input: Hypothesis space H
Initialize: V1 = H
for t=1,...,T do

recieve xt
for b ∈ {±1} set V b

t = {h ∈ Vt : h(xt) = b}
predict pt = arg maxb∈{±1} LDim(V b

t )
recieve yt
Update: Vt+1 = {h ∈ Vt : h(xt) = yt} .

end for
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Littlestone dimension

We will use the learning with expect advice to show that
O(
√
Ldim(H) log(T )T ) regret can be achieved in the general case.

The idea - we will simulate every h ∈ H using a finite set of expects.

Each expert will perform a SOA run which fails at time steps t1, ..., tL
for L ≤ LDim(H)
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Littlestone dimension

Algorithm Expert(t1, ..., tL)

Input: Hypothesis space H
Initialize: V1 = H
for t=1,...,T do

recieve xt
for b ∈ {±1} set V b

t = {h ∈ Vt : h(xt) = b}
define ỹt = arg maxb∈{±1} LDim(V b

t )
if t ∈ {t1, ..., tL} then

predict yt = 1− ỹt
else

predict yt = ỹt
end if
Update: Vt+1 = {h ∈ Vt : h(xt) = yt} .

end for

Lecture 11



Strongly Convex FoReL Expert Advice Bandits

Littlestone dimension

Lemma 2.1

Let H be a hypothesis class with Ldim<∞. For each h ∈ H and inputs
x1, ..., xT there exists L ≤ Ldim(H) and indices t1, ..., tL such that
Expert(t1, ..., tL)[xt] = h(xt)

Proof - Consider running the SOA on inputs (x1, h(x1)), ..., (xT , h(xT )).
The SOA will err at at most L ≤ Ldim(H) indices t1, ..., tL.

The expert Expert(t1, ..., tL) agrees with the SOA except on t1, ..., tL so
he agrees with h on every input.

The immediate corollary - the regret compared to each expert is the
same regret compared to H.
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Littlestone dimension

We need d =
∑Ldim

L=1

(
T
L

)
experts to simulated H.

Using the Saur-Shelach lemma we get d ≤
(

eT
Ldim(H)

)Ldim(H)

The regret is bounded by√
2 log(d)T ≤

√
2Ldim(H)T log(T )

for Ldim(H) ≥ 3.
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Introduction

We now present a variation of PEA with partial information.

Consider d slot machines, with losses at step t of yt[i].

At each step we pick machine pt and suffer loss yt[pt].

The difference - we are only given yt[pt] afterwards and not the whole yt
vector.

This means we cannot do exact gradient descend.

As before we randomize - we predict a distribution wt ∈ ∆d, and pick
pt ∼ wt.
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Introduction

Our basic tool (which we will not prove) will be based on local norms
||z||t ≡

√∑
wt[i]z[i]2

Theorem 3.1

Assume you run the exponentiated gradient algorithm with linear loss
〈zt, w〉 such that zt[i]/σ > −1, then the following holds for all u ∈ ∆d

T∑
t=1

〈wt − u, zt〉 ≤ σ log(d) +

T∑
t=1

d∑
i=1

zt[i]
2wt[i]/σ
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Introduction

We do not know the real gradient zt, but we can estimate it.

Consider the distribution wt and pt ∼ wt. We can set
zptt [pt] = zt[pt]/wt[pt] and zero otherwise. We get that

E[zptt [j]|z1, ..., zt−1]=

d∑
i=1

P [pt = i]zit[j]= wt[j]z
j
t [j]= wt[j]

yt[j]

wt[j]
= yt[j]

This means that our zptt is an unbiased estimator.
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Introduction

Algorithm Multi-armed bandit algorithm

Initialize: w1 = (1/d, ..., 1/d)
Pick bandit pt from distribution wt
Recieve loss yt[pt] ∈ [0, 1]
Update:
For i 6= pt w̃[i] = wt[i]
w̃[pt] = wt[pt] exp(−yt[pt]/σwt[pt])
wt+1 = w̃/||w̃||1.
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Regret

To bound the regret we first use the inequality

T∑
t=1

〈wt − u, zptt 〉 ≤ σ log(d) +

T∑
t=1

d∑
i=1

zptt [i]2wt[i]/σ

We can take expectation on both side and notice that

E[〈wt − u, zptt 〉] = E[E[〈wt − u, zptt 〉 |z1, ..., zt−1]]

= E[〈wt − u,E[zptt |z1, ..., zt−1]〉] = E[〈wt − u, zt〉]

We can conclude that

E

[
T∑
t=1

〈wt − u, zt〉

]
≤ σ log(d) + E

[
T∑
t=1

d∑
i=1

zptt [i]2wt[i]

]
/σ
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Regret

So we get, as zt are the subgradients, that

E

[
T∑
t=1

(ft(wt)− ft(u))

]
≤ σ log(d) + E

[
T∑
t=1

d∑
i=1

zptt [i]2wt[i]

]
/σ

To bound the r.h.s we have

E

[
d∑
i=1

zptt [i]2wt[i]|z1, ..., zt−1

]
=
∑
j

P [pt = j]

d∑
i=1

zjt [i]
2wt[i]

∑
j

wt[j]

(
yt[j]

wt[j]

)2

wt[j] ≤ d.
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Regret

The bandit algorithm has regret therefore expected regret bound

E

[
T∑
t=1

yt[pt]

]
−min

i∈[d]

T∑
t=1

yt[i] ≤ σ log(d) + Td/σ

In particular - setting σ =
√
dT/ log(d) we get 2

√
d log(d)T bound.
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