Introduction to Statistical Learning Theory Lecture 1

What is learning?

"The activity or process of gaining knowledge or skill by studying, practicing, being taught, or experiencing something."

Merriam Webster dictionary

We will focus on supervised learning

The set-up:

- An input space \mathcal{X} . Examples: \mathbb{R}^n , images, texts, sound recordings, etc.
- An output space \mathcal{Y} . Examples: $\{\pm 1\}$, $\{1,...,k\}$, \mathbb{R} .
- An **unknown** distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$.
- A loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$. Examples: 0-1 loss, square loss.
- A set of m i.i.d samples $(x_1, y_1), ..., (x_m, y_m)$ sampled from the distribution \mathcal{D} .

The goal: return a function (hypothesis) $h: \mathcal{X} \to \mathcal{Y}$ that minimizes the expect loss (risk) with respect to \mathcal{D} i.e. find h that minimizes $L_{\mathcal{D}}(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[\ell(h(x),y)]$

Goal of this course: Try to analyse what can we say about the expected risk $L_{\mathcal{D}}(h)$ of the unknown distribution given only a random sample.

We will mainly ignore computational issues, focus on statistical analysis.

This is a purely theoretical course - no programming involved.

Requires good understanding on basic probability.

Pass/fail grade, based only on homework.

- Computer vision: face recognition, face identification, pedestrian detection, pose estimation, ect.
- NLP: spam filtering, machine translation, sentiment analysis, etc.
- Speech recognition.
- Medical diagnostics.
- Fraud detection.
- Many more...

There are a few main paradigms in solving a learning problem:

- Generative approach try to fit P(x, y) by some parametric model, and use it to determine the optimal y given x.
- Discriminative approach try to fit P(y|x) directly by some parametric model.
- Agnostic approach narrow yourself to some hypothesis space \mathcal{H} and try to return the best hypothesis in \mathcal{H} .

We will focus on the agnostic approach.

The strength of the agnostic approach is that it doesn't assume anything on \mathcal{D} , but its weakness is that it depends on the quality of \mathcal{H} .

We want to find h^* that minimizes the risk (expected loss) $h^* = \arg\min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) = \arg\min_{h \in \mathcal{H}} \mathbb{E}_{(x,y) \sim \mathcal{D}}[\ell(h(x), y)].$

We will minimize the empirical risk -

$$h_{ERM} = \arg\min_{h \in \mathcal{H}} L_S(h) = \arg\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^m \ell(h(x_i), y_i).$$

Consider the following scenario: $\mathcal{X} = [0, 2\pi]$ with uniform distribution, $\mathcal{Y} = \mathbb{R}$ and let ℓ be the square loss $\ell(y_1, y_2) = (y_1 - y_2)^2$. We define the probability on y (give x) as $y = \sin(x) + \mathcal{N}(0, 0.05)$, and we are given m = 10 data points.

We will show how ERM preforms with \mathcal{H}_d the set of polynomials of degree d.

d = 1, empirical loss = 0.1

d = 2, empirical loss = 0.1

d = 3, empirical loss = 0.006

d = 4, empirical loss = 0.006

d = 5, empirical loss = 0.002

d = 6, empirical loss = 0.002

d = 7, empirical loss = 0.002

Linear classifier: $h_w(x) = sign(\langle w, x \rangle + b)$

One can generalize using a transformation $\psi : \mathbb{R}^n \to \mathbb{R}^m$ and $h_w(x) = \langle w, \psi(x) \rangle + b$

Examples of hypothesis spaces

The polynomials in the previous example are of that form - $\psi(x) = (x, x^2, ..., x^d), \langle w, \psi(x) \rangle = b + w_1 x + w_2 x^2 + ... + w_d x^d.$

Advantages: Fast to train and to predict, simple "workhorse", tends not to overfit.

Disadvantages: Can be limited, especially in lower dimensions.

Consider a tree (binary most often) where each internal node corresponds to a split of the data, and each leaf corresponds to a prediction.

Advantages: Very flexible, works well with various data types, fast to predict.

Disadvantages: ERM is NP hard, tends to overfit.

Each "neuron" computes a simple function on the sum of its inputs from other neurons, and neurons are connected by some structure.

Advantages: Recently became state of the art in many fields.

Disadvantages: Not as simple and fast as previous methods to train.

If we fix some $h \in \mathcal{H}$, then $\ell(h(x_i), y_i)$ are i.i.d random variables with mean $L_{\mathcal{D}}(h)$.

The law of large numbers shows that

$$L_S(h) = \frac{1}{m} \sum_{i=1}^m \ell(h(x_i), y_i) \xrightarrow{m \to \infty} L_{\mathcal{D}}(h)$$
 with probability 1.

This is will not enough for our purposes, we need to say something for a specific finite m. We will prove upper bounds on $P(|\frac{1}{m}\sum x_i - \mu| > \epsilon)$ for i.i.d random variables x_i with mean μ .

Theorem (Markov's inequality)

Let X be a nonnegative random variable with expected value $\mathbb{E}[X]$, then $P(X > a) < \frac{\mathbb{E}[X]}{a}$ for all a > 0.

Proof.

Define $A = \{\omega : X(\omega) \ge a\}$ then $\mathbb{E}[X] = \mathbb{E}[X \cdot \mathbb{1}_A + X \cdot \mathbb{1}_{A^C}]$ when $\mathbb{1}_A$ is the indicator function and A^C is A's complement. Because X is nonnegative this implies that $\mathbb{E}[X] > \mathbb{E}[X \cdot \mathbb{1}_A] > \mathbb{E}[a \cdot \mathbb{1}_A] = a \cdot P(X > a)$

Theorem (Chebyshev's inequality)

Let X be a random variable with mean and variance μ and σ^2 respectively then $P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$ for all k > 0.

Proof.

Proof.
$$P(|X - \mu| \ge k\sigma) = P\left((X - \mu)^2 \ge k^2\sigma^2\right) \stackrel{Markov}{\le} \frac{\mathbb{E}[(X - \mu)^2]}{k^2\sigma^2} = \frac{1}{k^2}$$

Corollary

 $X_1,...,X_m$ i.i.d variables with with mean and variance μ and σ^2 respectively then $P\left(\left|\frac{1}{m}\sum_{i=1}^{m}X_{i}-\mu\right|\geq\epsilon\right)\leq\frac{\sigma^{2}}{\epsilon^{2}m}$.

Chebyshev's inequality is tight, so in order to improve it (in some respect) we need a further assumption - boundedness.

Theorem (Hoeffding inequality)

Let $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ be the average of bounded independent random variables with $X_i \in [a_i, b_i]$ then

$$P\left(\bar{X} - \mathbb{E}[\bar{X}] \ge \epsilon\right) \le \exp\left(\frac{-2\epsilon^2 n^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

$$P\left(\mathbb{E}[\bar{X}] - \bar{X} \ge \epsilon\right) \le \exp\left(\frac{-2\epsilon^2 n^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

We will prove a slightly weaker version where $X_i \in [0, 1]$.

Proof (restricted case).

We will prove the first inequality (second is similar). Define $S_n = X_1 + ... + X_n$ then for all $\lambda > 0$

$$P(S_n \ge t) = P(\lambda S_n \ge \lambda t) = P(e^{\lambda S_n} \ge e^{\lambda t}) \stackrel{Markov}{\le} e^{-\lambda t} \mathbb{E}[e^{\lambda S_n}] = e^{-\lambda t} \prod_{i=1}^n \mathbb{E}[e^{\lambda X_i}].$$

Let us define $\mathbb{E}[X_i] = p_i$ and $q_i = 1 - p_i$. As $e^{\lambda x}$ is convex, $e^{\lambda x} \leq x e^{\lambda} + 1 - x \Rightarrow \mathbb{E}[e^{\lambda x_i}] \leq p_i e^{\lambda} + q_i$.

Combining all we have so far we have that $P(S_n \ge t) \le e^{-\lambda t} \prod_{i=1}^n (p_i e^{\lambda} + q_i)$.

By the arithmetic-geometric means inequality this is bounded by $\left(\frac{\sum (p_i e^{\lambda} + q_i)}{n}\right)^n = (pe^{\lambda} + q)^n$ for $p = \sum p_i/n$ and q = 1 - p.

Proof (Cont.)

$$P(S_n \ge t) \le e^{-\lambda t} (pe^{\lambda} + q)^n \text{ with } p = \sum p_i / n = \mathbb{E}[\bar{X}].$$

Substituting $(p + \epsilon)n$ for t we get $P(S_n \ge (p + \epsilon)n) \le e^{-\lambda(p+\epsilon)n}(pe^{\lambda} + q)^n$.

Optimizing λ (and some arithmetic) we get $P(S_n \ge (p+\epsilon)n) \le \exp\left(-(p+\epsilon)\ln\left(\frac{p+\epsilon}{p}\right) - (q-\epsilon)\ln\left(\frac{q-\epsilon}{q}\right)\right)^n$

Side note: Inside the exponent is the relative entropy/Kullback Leibler divergance $D_{KL}((p+\epsilon, q-\epsilon)||(p,q))$ between (p,q) distribution and $(p+\epsilon, q-\epsilon)$.

This is stronger then the bound we want to prove, but less convenient and therefore less used.

Proof (finished).

We have
$$P(S_n \ge (p+\epsilon)n) \le \exp(-nf(\epsilon))$$
 for $f(\epsilon) = (p+\epsilon)\ln\left(\frac{p+\epsilon}{p}\right) + (q-\epsilon)\ln\left(\frac{q-\epsilon}{q}\right)$.

Derivating twice we get $f'(\epsilon) = \ln(\frac{p+\epsilon}{p}) - \ln(\frac{q-\epsilon}{q})$ and $f''(\epsilon) = \frac{1}{(p+\epsilon)(q-\epsilon)}$.

Now f(0) = f'(0) and $f''(\epsilon) \ge 4$ for all $0 < \epsilon < q$ as $x(1-x) \le \frac{1}{4}$ for all 0 < x < 1.

By the Tylor theorem we have for all $0 \le \epsilon \le q$ $f(\epsilon) = f(0) + f'(0)t + f''(\xi)\frac{\epsilon^2}{2!} \ge 2\epsilon^2$. Plugging it in the first equation and we are done (for $\epsilon > q$ the bound is trivial).

