
Introduction ERM algorithm Examples of hypothesis spaces Concentration of measure

Introduction to Statistical Learning Theory
Lecture 1

Lecture 1



Introduction ERM algorithm Examples of hypothesis spaces Concentration of measure

What is learning?

”The activity or process of gaining knowledge or skill by
studying, practicing, being taught, or experiencing something.”

Merriam Webster dictionary

We will focus on supervised learning
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Supervised learning framework

The set-up:

An input space X . Examples: Rn, images, texts, sound
recordings, etc.

An output space Y. Examples: {±1}, {1, ..., k}, R.

An unknown distribution D on X × Y.

A loss function ` : Y × Y → R. Examples: 0− 1 loss,
square loss.

A set of m i.i.d samples (x1, y1), ..., (xm, ym) sampled from
the distribution D.

The goal: return a function (hypothesis) h : X → Y that
minimizes the expect loss (risk) with respect to D i.e. find h
that minimizes LD(h) = E(x,y)∼D[`(h(x), y)]

Lecture 1



Introduction ERM algorithm Examples of hypothesis spaces Concentration of measure

Supervised learning framework

Goal of this course: Try to analyse what can we say about the
expected risk LD(h) of the unknown distribution given only a
random sample.

We will mainly ignore computational issues, focus on statistical
analysis.

This is a purely theoretical course - no programming involved.

Requires good understanding on basic probability.

Pass/fail grade, based only on homework.
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Applications

Computer vision: face recognition, face identification,
pedestrian detection, pose estimation, ect.

NLP: spam filtering, machine translation, sentiment
analysis, etc.

Speech recognition.

Medical diagnostics.

Fraud detection.

Many more...
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Approaches

There are a few main paradigms in solving a learning problem:

Generative approach - try to fit P (x, y) by some parametric
model, and use it to determine the optimal y given x.

Discriminative approach - try to fit P (y|x) directly by
some parametric model.

Agnostic approach - narrow yourself to some hypothesis
space H and try to return the best hypothesis in H.

We will focus on the agnostic approach.

The strength of the agnostic approach is that it doesn’t assume
anything on D, but its weakness is that it depends on the
quality of H.
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Definition

We want to find h∗ that minimizes the risk (expected loss) -
h∗ = arg minh∈H LD(h) = arg minh∈HE(x,y)∼D[`(h(x), y)].

We will minimize the empirical risk -

hERM = arg minh∈H LS(h) = arg minh∈H
1
m

m∑
i=1

`(h(xi), yi).
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Enlightening example

Consider the following scenario: X = [0, 2π] with uniform
distribution, Y = R and let ` be the square loss
`(y1, y2) = (y1 − y2)2. We define the probability on y (give x) as
y = sin(x) +N (0, 0.05), and we are given m = 10 data points.

We will show how ERM preforms with Hd the set of
polynomials of degree d.
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Enlightening example

If Hd gets too ”big”, LS(hERM ) goes down yet LD(hERM ) goes
up.

This is known as overfitting and is the main difficulty in ML.

Our first goal: Formulate what makes a hypothesis space ”big”,
and understand when we can say something on LD based on a
finite sample.
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Linear predictors

Linear regression: hw(x) = 〈w, x〉+ b

Linear classifier: hw(x) = sign(〈w, x〉+ b)

One can generalize using a transformation ψ : Rn → Rm and
hw(x) = 〈w,ψ(x)〉+ b

The polynomials in the previous example are of that form -
ψ(x) = (x, x2, ..., xd), 〈w,ψ(x)〉 = b+ w1x+ w2x

2 + ...+ wdx
d.

Advantages: Fast to train and to predict, simple ”workhorse”,
tends not to overfit.
Disadvantages: Can be limited, especially in lower dimensions.
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Decision trees

Consider a tree (binary most often) where each internal node
corresponds to a split of the data, and each leaf corresponds to
a prediction.

Advantages: Very flexible, works well with various data types,
fast to predict.

Disadvantages: ERM is NP hard, tends to overfit.
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Neural networks

Each ”neuron” computes a simple function on the sum of its
inputs from other neurons, and neurons are connected by some
structure.

Advantages: Recently became state of the art in many fields.

Disadvantages: Not as simple and fast as previous methods to
train.
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If we fix some h ∈ H, then `(h(xi), yi) are i.i.d random variables
with mean LD(h).

The law of large numbers shows that

LS(h) = 1
m

m∑
i=1

`(h(xi), yi)
m→∞−−−−→ LD(h) with probability 1.

This is will not enough for our purposes, we need to say
something for a specific finite m. We will prove upper bounds
on P (| 1m

∑
xi − µ| > ε) for i.i.d random variables xi with mean

µ.
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Markov’s and Chebyshev’s inequalities

Theorem (Markov’s inequality)

Let X be a nonnegative random variable with expected value
E[X], then P (X ≥ a) ≤ E[X]

a for all a > 0.

Proof.

Define A = {ω : X(ω) ≥ a} then E[X] = E[X · 1A +X · 1AC ]
when 1A is the indicator function and AC is A’s complement.
Because X is nonnegative this implies that
E[X] ≥ E[X · 1A] ≥ E[a · 1A] = a · P (X ≥ a)
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Markov’s and Chebyshev’s inequalities

Theorem (Chebyshev’s inequality)

Let X be a random variable with mean and variance µ and σ2

respectively then P (|X − µ| ≥ kσ) ≤ 1
k2 for all k > 0.

Proof.

P (|X − µ| ≥ kσ) = P
(
(X − µ)2 ≥ k2σ2

) Markov
≤ E[(X−µ)2]

k2σ2 =
1
k2

Corollary

X1, ..., Xm i.i.d variables with with mean and variance µ and σ2

respectively then P

(
| 1m

m∑
i=1

Xi − µ| ≥ ε
)
≤ σ2

ε2m
.
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Hoeffding inequalities

Chebyshev’s inequality is tight, so in order to improve it (in
some respect) we need a further assumption - boundedness.

Theorem (Hoeffding inequality)

Let X̄ = 1
n

n∑
i=1

Xi be the average of bounded independent random

variables with Xi ∈ [ai, bi] then

P
(
X̄ − E[X̄] ≥ ε

)
≤ exp

(
−2ε2n2∑n

i=1(bi − ai)2

)

P
(
E[X̄]− X̄ ≥ ε

)
≤ exp

(
−2ε2n2∑n

i=1(bi − ai)2

)

We will prove a slightly weaker version where Xi ∈ [0, 1].
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Hoeffding inequalities

Proof (restricted case).

We will prove the first inequality (second is similar). Define
Sn = X1 + ...+Xn then for all λ > 0

P (Sn ≥ t) = P (λSn ≥ λt) = P
(
eλSn ≥ eλt

) Markov
≤

e−λtE[eλSn ] = e−λt
∏n
i=1E[eλXi ].

Let us define E[Xi] = pi and qi = 1− pi. As eλx is convex,
eλx ≤ xeλ + 1− x⇒ E[eλxi ] ≤ pieλ + qi.

Combining all we have so far we have that
P (Sn ≥ t) ≤ e−λt

∏n
i=1(pie

λ + qi).

By the arithmetic-geometric means inequality this is bounded

by
(∑

(pie
λ+qi)
n

)n
= (peλ + q)n for p =

∑
pi/n and q = 1− p.
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Hoeffding inequalities

Proof (Cont.)

P (Sn ≥ t) ≤ e−λt(peλ + q)n with p =
∑
pi/n = E[X̄].

Substituting (p+ ε)n for t we get
P (Sn ≥ (p+ ε)n) ≤ e−λ(p+ε)n(peλ + q)n.

Optimizing λ (and some arithmetic) we get

P (Sn ≥ (p+ ε)n) ≤ exp
(
−(p+ ε) ln

(
p+ε
p

)
− (q − ε) ln

(
q−ε
q

))n
Side note: Inside the exponent is the relative entropy/Kullback
Leibler divergance DKL((p+ ε, q − ε)||(p, q)) between (p, q)
distribution and (p+ ε, q − ε).

This is stronger then the bound we want to prove, but less
convenient and therefore less used.
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Hoeffding inequalities

Proof (finished).

We have P (Sn ≥ (p+ ε)n) ≤ exp (−nf(ε)) for

f(ε) = (p+ ε) ln
(
p+ε
p

)
+ (q − ε) ln

(
q−ε
q

)
.

Derivating twice we get f ′(ε) = ln(p+εp )− ln( q−εq ) and

f ′′(ε) = 1
(p+ε)(q−ε) .

Now f(0) = f ′(0) and f ′′(ε) ≥ 4 for all 0 < ε < q as
x(1− x) ≤ 1

4 for all 0 < x < 1.

By the Tylor theorem we have for all 0 ≤ ε ≤ q
f(ε) = f(0) + f ′(0)t+ f ′′(ξ) ε

2

2! ≥ 2ε2. Plugging it in the first
equation and we are done (for ε > q the bound is trivial).
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