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Quick recap:

We have seen that that V C dimension determines PAC learnability for
binary classification:

Theorem (Fundamental Theorem of Statistical Learning)

Let H be a hypothesis class of functions from a domain X to {0, 1} and
let the loss function be the 0− 1 loss. The following are equivalent:

1 H has uniform convergence.
2 The ERM is a PAC learning algorithm for H.
3 H is PAC learnable.
4 H has finite VC dimension.
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We have shown that if V C(H) = d then we can learn with

M(ε, δ) = O
(
d ln(1/ε)+ln(1/δ)

ε2

)
(and claimed the ln(1/ε) can be removed).

We will show that this bound is tight (up to the ln(1/ε)).

Theorem (Complexity lower bound)

Let H be a hypothesis class of functions from a domain X to {0, 1} with
V C(H) > 0 and let the loss function be the 0− 1 loss. Any PAC learning

algorithm has sample complexity M(ε, δ) = Ω
(
d+ln(1/δ)

ε2

)
.
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δ bound

We will split the dependence in δ and d, starting with δ:

Lemma (1)

Under the previous conditions, M(ε, δ) ≥ 0.5 log(1/(4δ))/ε2 for
ε < 1/

√
2.

The idea of the proof is to pick 2 almost identical distributions
(depending on ε) with different optimal solution, so that in order to
differentiate with high probability a large number of samples is needed.

Proof: Choose some c ∈ X that H shatters. For each b ∈ {±1} we will
define a distribution Db that picks c with probability 1, and b with
probability 1+ε

2 . This means that Db((c, y)) = 1+byε
2 . It is also not hard

to see that LDb(h) = 1−bh(c)ε
2 .
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δ bound

Since LDb(h) = 1−bh(c)ε
2 the optimal hypothesis has LDb(h

∗) = 1−ε
2 , so if

h(c) 6= b then LDb(h) = 1+ε
2 = LDb(h

∗) + ε. This means that h is an ε
approximation iff h(c) = b.

We will use the following notations: As x is irrelevant, we will only look
at Y = (y1, ..., ym). Also we will write A(Y ) for A(Y )(c) (as this is what
we care about). Lastly we will define N+ = {Y ∈ {±1}m :

∑
yi ≥ 0}

and N− = {±1}m\N+.

Notice that for Y ∈ N+, we have P+(Y ) ≥ P−(Y ) and the opposite for
Y ∈ N−.
We will now show that optimal algorithm (considering the worst case
out of D+ and D−) is the ERM.
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δ bound

max
b∈{±}

Pb (A(Y ) 6= b) ≥ 1

2
P+(A(Y ) = −1) +

1

2
P−(A(Y ) = 1)

=
1

2

∑
Y ∈N+

P+(Y )1(A(Y ) = −1) +
∑
Y ∈N−

P+(Y )1(A(Y ) = −1)+

1

2

∑
Y ∈N+

P−(Y )1(A(Y ) = 1) +
∑
Y ∈N−

P−(Y )1(A(Y ) = 1) =

1

2

∑
Y ∈N+

P+(Y )1(A(Y ) = −1) + P−(Y )1(A(Y ) = 1)+

1

2

∑
Y ∈N−

P+(Y )1(A(Y ) = −1) + P−(Y )1(A(Y ) = 1) ≥

1

2

∑
Y ∈N+

P−(Y )1(A(Y ) = −1) + P−(Y )1(A(Y ) = 1)+

1

2

∑
Y ∈N+

P+(Y )1(A(Y ) = −1) + P+(Y )1(A(Y ) = 1) =
1

2

(
LD+(ERM) + LD−(ERM)

)
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δ bound

For the ERM, LD+(ERM) = LD−(ERM) (up to ties which we can
exclude by having uneven m). Both are equal that a binomial
B(m, (1− ε)/2) has a value greater then m/2. This can be bounded
using Slud’s inequality:

Theorem (Slud’s inequality)

Let X ∼ B(m, (1− ε)/2) then

P (X ≥ m/2) ≥ 1

2

(
1−

√
1− exp(−mε2/(1− ε2))

)
So the error probability is greater or equal to
1
2

(
1−

√
1− exp(−mε2/(1− ε2))

)
≥ 1

2

(
1−

√
1− exp(−2mε2)

)
using

the ε2 < 1/2 assumption. We can conclude that for m < 0.5 ln(1/(4δ))/ε2

max
b
P

(
LDb(A(Y ))−min

h
LDb(h) ≥ ε

)
≥ 1

2
(1−

√
1− 4δ) ≥ δ

Where the last inequality is simple algebra (noticing the theorem is
trivial for δ > 1/4) . This finishes the proof.
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VC bound

We now need to bound the dependence in d = V C(H)

Lemma (2)

Under the previous conditions, M(ε, δ) ≥ d
83ε2

for ε < 1/8
√

2.

The proof is similar to the previous proof. Define ρ = 8ε. Pick c1, ..., cd
that H shatters. for any b ∈ {±1}d define a distribution Db that first
picks x = ci uniformly out of c1, ..., cd then picks y with probability
(1 + ybiρ)/2.

The next step is to prove that the ERM is optimal algorithm when
considering worst case. The proof is very similar to what we did earlier
(using independence and the same tricks) but a bit more cumbersome so
we will skip it.
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VC bound

For any function f

LDb(f) =
1 + ρ

2
· |{i ∈ [d] : f(ci) 6= bi}|

d
+

1− ρ
2
· |{i ∈ [d] : f(ci) = bi}|

d

So LDb(f)−minh LDb(h) = ρ · |{i∈[d]: f(ci) 6=bi}|
d .

We will bound ES∼DMb
[LDb(ERM(S))−min

h∈H
LDb(h)] next:

ES [LDb(ERM(S))−min
h∈H

LDb(h)] =
ρ

d
ES [|{i ∈ [d] : ERM(ci) 6= bi}|]

We can look at the sampling as first sampling the ci index K ∼ U([d])m

and then sampling the labels yi ∼ bKi (with some abuse of notation).
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VC bound

We define for each K ∈ [d]m, ni(K) the number of times the index i
appears in K. Then

ρ

d
ES [|{i ∈ [d] : ERM(ci) 6= bi}|] =

ρ

d

d∑
i=1

EKEyj∼bKj [1(ERM(S)(ci) 6= bi]

1
≥ ρ

2d

d∑
i=1

EK(1−
√

1− exp(−2ρ2ni(K)))
2
≥ ρ

2d

d∑
i=1

EK(1−
√

2ρ2ni(K)))

3
≥ ρ

2d

d∑
i=1

(
1−

√
2ρ2EK [ni(K)]

)
=

ρ

2d

d∑
i=1

(
1−

√
2ρ2m/d

)
=
ρ

2

(
1−

√
2ρ2m/d

)
Where (1) is Slut’s inequality as before (using ρ2 < 1/2), (2) if from the
inequality 1− e−a ≤ a and (3) is Jensen’s inequality.
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VC bound

In summery we have shown so far that for every algorithm A, there
exists a distribution such that
ES [LDb(A(S))−minh∈H LDb(h)] ≥ ρ

2

(
1−

√
2ρ2m/d

)
≥ ρ

4

for m < d
83ε2

= d
8ρ2 .

To finish we will use a version of the Markov inequality
P (X > a) ≥ E[X]− a, for X ∈ [0, 1], a ∈ (0, 1). Define
∆ = 1

ρ (LDb(A(S))−minh∈H LDb(h)) and notice that ∆ ∈ [0, 1].

P (LDb(A(S))−min
h∈H

LDb(h) > ε) = P (∆ > ε/ρ)

≥ E[∆]− ε

ρ
≥ 1

4
− ε

ρ
=

1

8

finishing the proof of the lemma. With both lemmas, the theorem is
straightforward.
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VC bound
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VC bound
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remarks

We have seen that learning is possible with

M(ε, δ) = O
(
d ln(1/ε)+ln(1/δ)

ε2

)
using the ERM algorithm, and that

M(ε, δ) = Ω
(
d+ln(1/δ)

ε2

)
for any learning algorithm.

We have seen (and it can be extended) that the ERM is optimal when it
comes to minimizing the worst case scenario.

It is important to note, that under further assumptions (such as
smoothness, etc.) other algorithms may perform much better.
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Definition

So far we have studied learnability via uniform convergence in binary
classification. We will now show a more general was to bound uniform
convergence - Rademacher complexity.

First a small notation change - define z = (x, y) and l(h, z) = l(h(x), y).
This allows us to work in a more general setting with the same notation.

Another notation for simplicity: Define F = l ◦ H, so for f ∈ F-

LD(f) = ED[f(z)] and LS(f) = 1
m

m∑
i=1

f(zi).

We are interested in bounding sup
h∈H

(LD(h)− LS(h)). As we have seen

before, a good proxy for LD(h) is LS̃(h) the loss on some second test
sample. As we only have S we can split it into two equal size disjoint
sets, S1 and S2.
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Definition

sup
h∈H

(LS2(h)− LS1(h)) = 2
m sup
f∈F

( ∑
zi∈S2

f(zi)−
∑

zj∈S1

f(zj)

)
=

2
m sup
f∈F

(
m∑
i=1

σif(zi)

)
. where σi ∈ {±1} indicates if zi is in S1 or S2. If we

randomize σi we get the Rademacher complexity.

Definition (General Rademacher Complexity)

For A ⊂ Rm define R(A) = 1
mEσ∼{±1}m

[
sup
a∈A

m∑
i=1

σiai

]

Definition (Empirical Rademacher Complexity)

Define F ◦ S = {(f(z1), ..., f(zm)) : f ∈ F} ⊂ Rm the empirical
Rademacher complexity is defined as

R(F ◦ S) = 1
mEσ∼{±1}m

[
sup
f∈F

m∑
i=1

σif(zi)

]
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Definition

Definition (Rademacher Complexity )

The Rademacher complexity of F is the expected empirical Rademacher
complexity, RD(F ,m) = ES∼Dm [R(F ◦ S)]

The following lemma gives a nice intuition of the Rademacher
complexity when considering binary classification

Lemma

Let H : X → {±1}, SX = {x1, ..., xm} ⊂ X . Define err(H) as the
expected sample error of the ERM algorithm on random labels, then
err(H) = 1/2 (1−R(H ◦ SX)).
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Definition

Proof.

Let σ be any labeling on Sx. Then

LSX ,σ(h) =
1

m

m∑
i=1

1{h(xi) 6= σi}

=
1

m

m∑
i=1

1− σih(xi)

2

=
1

2
− 1

2m

m∑
i=1

σih(xi)

This means that

LSX ,σ(ERM) = min
h∈H

1
2(1− 1

m

m∑
i=1

σih(xi)) = 1
2 −

1
2m max

h∈H

m∑
i=1

σih(xi). Take

expectation with regard to σi ∼ {±1}m and you get the Rademacher
complexity.

Lecture 4



Lower bounds on sample complexity Rademacher Complexity Rademacher Calculus

Definition
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generalization

Lemma

ES∼Dm [sup
f∈F

(LD(f)− LS(f))] ≤ 2RD(F ,m)

Proof: Let S̃ ∼ Dm be another sample, then

LD(f)− LS(f) = ES̃ [LS̃(f)]− LS(f) = ES̃ [LS̃(f)− LS(f)] (1)

therefore:

sup
f∈F

(LD(f)− LS(f)) = sup
f∈F

ES̃ [LS̃(f)− LS(f)] (2)

≤ ES̃ [sup
f∈F

(LS̃(f)− LS(f))] (3)

Lecture 4



Lower bounds on sample complexity Rademacher Complexity Rademacher Calculus

generalization

Taking expectation with regard to S we get

ES∼Dm [sup
f∈F

(LD(f)− LS(f))] ≤ ES,S̃ [sup
f∈F

(LS̃(f)− LS(f))] (4)

=
1

m
ES,S̃

[
sup
f∈F

m∑
i=1

(f(z̃i)− f(zi))

]
(5)

=
1

m
ES,S̃

sup
f∈F

∑
i 6=j

(f(z̃i)− f(zi)) + f(z̃j)− f(zj)

 (6)

=
1

m
ES,S̃

sup
f∈F

∑
i 6=j

(f(z̃i)− f(zi)) + f(zj)− f(z̃j)

 (7)

=
1

m
ES,S̃,σj

sup
f∈F

∑
i 6=j

(f(z̃i)− f(zi)) + σj(f(zj)− f(z̃j))

 (8)
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generalization

This is true since zi and z̃i are drawn from the same distribution. We
can do this for all 1 ≤ j ≤ m and get

ES∼Dm [sup
f∈F

(LD(f)− LS(f))] ≤ 1

m
ES,S̃,σ

[
sup
f∈F

m∑
i=1

σi(f(z̃i)− f(zi))

]
(9)

≤ 1

m
ES,S̃,σ

[
sup
f∈F

(
m∑
i=1

σif(z̃i)

)
+ sup
f∈F

(
m∑
i=1

−σif(zi)

)]
(10)

= 2RD(F ,m) (11)
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generalization

In order to turn our expectation bound to a high-probability bound, we
need a concentration of measure theorem. We will use Mcdiarmid’s
inequality.

Theorem (McDiarmid’s Inequality)

Let V be some set and f : V m → R be a function such that for some
c > 0 and all x1, ..., xm, x

′
i ∈ V we have

|f(x1, ..., xm)− f(x1, ..., xi−1, x
′
i, xi+1, ..., xm)| ≤ c (12)

If X1, ..., Xm are independent r.v. taking values in V , then with
probability greater or equal to 1− δ we have

|f(X1, ..., Xm)− E[f(X1, ..., Xm)]| ≤ c

√
ln

(
2

δ

)
m

2
(13)
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generalization

We can now state and prove the main theorem -

Theorem

If for all z and h ∈ H we have |l(h, z)| ≤ c. Then with probability at
least 1− δ, for all h ∈ H:

1 |LD(h)− LS(h)| ≤ 2RD(F ,m) + c

√
2 ln(2/δ)

m

2 |LD(h)− LS(h)| ≤ 2R(F ◦ S) + 3c

√
2 ln(4/δ)

m

3 LD(ERM)− LD(h∗) ≤ 2R(F ◦ S) + 5c

√
2 ln(8/δ)

m

Notice that the last two inequalities only use the empirical sample, and
can (up to computational complexity issues) be calculated for a given
instance.
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generalization

Proof:
We have sup

h∈H
(LD(h)− LS(h)) satisfies the bounded diffrences condition

eq. 12 with constant 2c/m. Using the expectation bound of lemma 10
and the McDiarmid’s inequality we have with probability ≥ 1− δ

| sup
h∈H

(LD(h)− LS(h))| ≤ ES [sup
h∈H

(LD(h)− LS(h))] + c

√
2 ln(2/δ)

m
(14)

≤ 2RD(F ,m) + c

√
2 ln(2/δ)

m
. (15)

To prove the second inequality we note that RD(F ,m) satisfies the
bounded difference condition with the same constant, so with probability

≥ 1− δ/2, we have RD(F ,m) ≤ R(F ◦ S) + c

√
2 ln(4/δ)

m . This and the
union bound finish the proof of part 2.

The last part uses the 2nd inequality, the Hoeffding inequality to bound
LS(h∗)− LD(h∗) and the union bound. It is left as an exercise.
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We will prove some useful theorem for bounding the Rademacher
complexity.

Lemma

For any A ∈ Rm, scalar c > 0 and v ∈ Rm we have R(cA+ v) = cR(A).

Proof.

R(cA+ v) =
1

m
Eσ

[
sup
a∈A

m∑
i=1

σi(cai + vi)

]
=

1

m
Eσ

[
c sup
a∈A

(
m∑
i=1

σiai

)
+

m∑
i=1

σivi

]
= cR(A) +

1

m

m∑
i=1

viEσ [σi] = cR(A)
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Lemma

For any A ∈ Rm, R(conv(A)) = R(A), when conv(A) is the convex hall
of A.

Proof.

Define ∆n = {λ ∈ Rn : ∀i : λi ≥ 0,
∑n

i=1 λi = 1}. The convex hall is
defined as conv(A) = {

∑n
i=1 λia

(i) : ∀ia(i) ∈ A, λ ∈ ∆n}. The key
observation is that for every vector a we have supλ∈∆n

∑
λixi = maxi xi.

mR(conv(A)) = Eσ

 sup
λ∈∆n

sup
a(1),...,a(n)∈A

m∑
i=1

σi

n∑
j=1

λja
(j)
i


= Eσ

 sup
λ∈∆n

n∑
j=1

λj sup
a(j)

m∑
i=1

σia
(j)
i

 = Eσ

[
sup
a∈A

m∑
i=1

σiai

]
= R(A)
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Lemma (Massart Lemma)

If A = {a1, ..., aM} ∈ Rm is a finite set and ā = 1
N

N∑
i=1

ai, then

R(A) ≤ max
a∈A
||a− ā||

√
2 ln(N)

m
(16)

Immediate corollary - if l is the zero one loss and H has V C dimension d

then R(l ◦ H ◦ S) ≤
√

2d ln(em/d)
m .

Proof: Using lemma 13, we can assume ā = 0 and recall that
R(λA) = λR(A) for λ > 0.
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mR(λA) = Eσ

[
max
b∈λA

〈σ, b〉
]

= Eσ

[
ln

(
max
b∈λA

e〈σ,b〉
)]

≤ Eσ

[
ln

(∑
b∈λA

e〈σ,b〉

)]
1
≤ ln

(
Eσ

[∑
b∈λA

e〈σ,b〉

])
2
= ln

(∑
b∈λA

∏
Eσi

[
eσi·bi

]) 3
≤ ln

(∑
b∈λA

∏
eb

2
i /2

)
Where (1) is the Jensen inequality, (2) is from independence, and (3) is

from a technical inequality ea+e−a

2 ≤ ea2/2 we will prove shortly. We now
have

λmR(A) = mR(λA) ≤ ln

(∑
b∈λA

e||b||
2/2

)

≤ ln(|A|) + max
a∈A

λ2||a||2/2
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mR(λA) = Eσ

[
max
b∈λA

〈σ, b〉
]

= Eσ

[
ln

(
max
b∈λA

e〈σ,b〉
)]

≤ Eσ

[
ln

(∑
b∈λA

e〈σ,b〉

)]
1
≤ ln

(
Eσ

[∑
b∈λA

e〈σ,b〉

])
2
= ln

(∑
b∈λA

∏
Eσi

[
eσi·bi

]) 3
≤ ln

(∑
b∈λA

∏
eb

2
i /2

)
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from a technical inequality ea+e−a

2 ≤ ea2/2 we will prove shortly. We now
have

λmR(A) = mR(λA) ≤ ln

(∑
b∈λA

e||b||
2/2

)
≤ ln(|A|) + max

a∈A
λ2||a||2/2
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We have R(A) ≤ ln(|A|)+λ2 maxa∈A(||a||2/2)
λm . Setting

λ =
√

2 ln(|A|)/maxa∈A ||a||2 concludes the proof.

We still need to prove ea+e−a

2 ≤ ea2/2. Using the Tylor series ea =
∞∑
i=0

an

n!

so ea+e−a

2 =
∞∑
i=0

a2n

(2n)! . On the other hand ea
2/2 =

∞∑
i=0

a2n

2nn! . Observing that

(2n)! ≥ 2nn! finishes the proof.
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Lemma (Contraction Lemma)

For all i ∈ [m], let φi : R→ R be a ρ−Lipschitz function. For all
a ∈ Rm, define φ(a) = (φ1(a1), ..., φm(am)). Then R(φ ◦A) ≤ ρR(A).

Using lemma 13 we can assume ρ = 1. Moreover if we define
Ai = {(a1, ..., ai−1, φ(ai), ai+1, ..., am) : a ∈ A}, it is enough to show
R(A1) ≤ R(A).

mR(A1) = Eσ

[
sup
a∈A1

m∑
i=1

σiai

]
= Eσ

[
sup
a∈A

σ1φ(a1) +

m∑
i=2

σiai

]
(17)

=
1

2
E

σ2,...,σm

[
sup
a∈A

(
φ(a1) +

m∑
i=2

σiai

)
+ sup
a∈A

(
−φ(a1) +

m∑
i=2

σiai

)]
(18)

=
1

2
E

σ2,...,σm

[
sup
a,a′∈A

(
φ(a1)− φ(a′1) +

m∑
i=2

σi(ai + a′i)

)]
(19)
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≤ 1

2
E

σ2,...,σm

[
sup
a,a′∈A

(
|a1 − a′1|+

m∑
i=2

σi(ai + a′i)

)]
(20)

=
1

2
E

σ2,...,σm

[
sup
a,a′∈A

(
a1 − a′1 +

m∑
i=2

σi(ai + a′i)

)]
(21)

Where the last equality is from the fact we can switch a and a′. If we
look at steps 17− 19 using φ = Id we see that the last line is equal to
R(A) finishing the proof .
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