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Introduction

We return to the binary classification problem.

So far we investigated when is LD(A(S)) close to LS(A(S)), and more
impotently to minh∈H LD(h) with high probability.

The problem is - how do you build a hypothesis set that has small
empirical loss AND generalizes?

Another issue is computational - being able to find a good hypothesis
statistically is nice, but in practice you need to find it in a
computational efficient manor!

This leads to the idea of boosting. Assume you only have access to a
”weak” learner, that can only do a bit better then chance. Can you
”boost” its accuracy to get a ”strong” leaner?
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Introduction

Notice: In our general framework, even ”weak” learning may be
impossible

Solution: We will restrict our discussion to data that is labeled by some
unknown function c : X → {±1}. i.e. there is an unknown distribution
D on X and for all x ∼ D we have y = c(x).

Unlike the realizable case, we will not asusme c ∈ H. We will assume it
belongs to some large, known set C called the concept space.
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Introduction

Definition 1.1 (”strong” learner)

We say algorithm A is a strong learning algorithm for concept class C if
for any distribution D on X , labeling function c ∈ C, 0 < δ < 1 and ε > 0
there exists M(ε, δ) such that if the algorithm is given m >M(ε, δ)
labeled samples from this distribution the algorithm returns a classifier
A(S) such that with probability greater or equal to 1− δ we have
LD(A(S)) < ε.

Definition 1.2 (γ-”weak” learner)

We say algorithm A is a γ-weak learning algorithm for concept class C if
for any distribution D on X , labeling function c ∈ C and 0 < δ < 1 there
exists M(δ) such that if the algorithm is given m >M(δ) labeled
samples from this distribution the algorithm returns a classifier A(S)
such that with probability greater or equal to 1− δ we have
LD(A(S)) < 1/2− γ.
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Introduction

The problem: given a weak learner, as a black box, can we ”boost” its
accuracy and return a strong learner?

We will look at classifiers of the type H(x) = sign(
∑

i αihi(x)) where hi
are classifiers returned by the weak learner.
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adaBoost algorithm

The first practical boosting algorithm is adaBoost (adaptive boosting).

The idea: At each iteration you reweigh the training sample, giving
larger weight to points where classified wrongly and give this to the
weak learner.

For all sample S = (x1, y1), ..., (xm, ym) and distribution D on
(x1, ..., xm), we define WL(D, S) the hypothesis returned by the weak

learner that tries to minimize
m∑
i=1

D(i)1[yi 6= h(xi)].
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adaBoost algorithm

Algorithm adaBoost

Input: training set S = (x1, y1), ..., (xm, ym), weak learner WL
and number of iteration T .
Initialize: D1 = ( 1

m , ...,
1
m)

for t=1,...,T do
ht = WL(Dt, S) % Invoke weak learner

compute εt =
m∑
i=1

Dt(i)1[yi 6= ht(xi)]

compute αt = 1
2 log( 1

εt
− 1)

Update: Dt+1(i) = Dt(i) exp(−αtyiht(xi))
Zt

% Zt normalizer .
end for
return classifier H(x) = sign(

∑
i αihi(x))
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Empirical loss

We now show the loss decays exponentially.

Theorem 2.1

Let εt be the weak learners error at iteration t and define γt = 1/2− εt.
The empirical loss of H is bounded by

LS(H) = Pri∼D1 (H(xi 6= yi)) ≤
T∏
t=1

√
1− 4γ2t ≤ exp

(
−2

T∑
i=1

γ2i

)
(1)

If we assume a γ-weak learner, we can simplify the bound to
exp(−2γ2T ).

Intuition: H is a (weighted) majority vote. For it to error on xi, many
rounds must be erroneous. This means high (unnormalized) weight,
since the weak learner is better then chance the total weight decays and
there can be only few elements with large weight.
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Empirical loss

Proof: Define F (x) =
T∑
i=1

αihi(x), so H(x) = sign(F (x)).

We can rewrite DT+1 using the algorithm recursive formula

DT+1(i) = DT (i)
exp(−yiαThT (xi))

ZT
(2)

= DT−1(i)
exp(−yiαT−1hT−1(xi))

ZT−1
· exp(−yiαThT (xi))

ZT

= D1(i)

exp

(
−yi

T∑
t=1

αtht(xi)

)
∏T
t=1 Zt

= D1(i)
exp(−yiF (x))∏T

t=1 Zt

The next this is to note that 1[H(x) 6= y] ≤ exp(−yF (x)).
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Empirical loss

We can now write the training error as

Pri∼D1 (H(xi 6= yi)) =

m∑
i=1

D1(i)1[H(xi) 6= yi] ≤
m∑
i=1

D1(i) exp(−yiF (xi))

=

m∑
i=1

DT+1(i)

T∏
t=1

Zt=

T∏
t=1

Zt (3)

Finally we look at Zt:

Zt =
m∑
i=1

Dt(i)e
−αtyiht(xi) =

∑
yi=ht(xi)

Dt(i)e
−αt +

∑
yi 6=ht(xi)

Dt(i)e
αt

= e−αt(1− εt) + eαtεt =

√
4

(
1

2
− γt

)(
1

2
− γt

)
=
√

1− 4γ2t (4)

We can show that that αt minimizes Eq. 4.
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VC-dimension

We now analyse the VC-dimension of boosting.

Assume the weak learner returns a classifier from a base space B with
dimension V C(B).

The boosted classifier ”lives” in the following space

L(B, T ) =

{
x 7→ sign

(
T∑
i=1

αtht(x)

)
: α ∈ RT , ∀t, ht ∈ B

}

Theorem 2.2

Assume V C(B) and T are at least 3, then the following holds:

V C(L(B, T )) ≤ 3T (V C(B) + 1) · (ln (T (V C(B) + 1)) + 1)
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VC-dimension

Proof: Denote d = V C(B). Assume we are given inputs x1, ..., xm. Any
classifier in L is a linear hypothesis in the space (h1(x), ..., hT (x)).

As d = V C(B), from Sauer-Shelach lemma, there are at most (em/d)d

labellings to pick from. This means there are at most (em/d)dT ways to
pick T predictors (h1(x), ..., hT (x)).

Linear predictors in dimension T have VC-dimension T . So for each T
predictors we have at most (em/T )T classifiers, totaling
(em/d)dT (em/T )T ≤ mT (d+1). For a set of size m to be shattered we

must have 2m ≤ mT (d+1) or m ≤ T (d+1)
ln(2) ln(m).
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VC-dimension

We showed m ≤ T (d+1)
ln(2) ln(m)

Using the lemma (which we will prove shortly) for a > 0,

x ≤ a ln(x)→ x ≤ 2a ln(a) we get m ≤ 2 (d+1)T
ln(2) ln

(
(d+1)T
ln(2)

)
from which

we can get our desired bound.

Proof of the lemma: Assume by contradiction x ≤ a ln(x) and
x > 2a ln(a). This implies a ln(x) > 2a ln(a) or x > a2. Define now
x = c · a, and plug in the second inequality to get a < ec/2. Use this in
the first inequality to get c < 2 ln(c) which has no solution.
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We expect adaBoost to overfit when T grows
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Many times this is not the case.

We even see that the test error decreases after the training error is zero!
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Exponential loss

We will describe adaBoost in a diffrent way that will explain this.

Remember F (x) =
∑
αihi(x) and H(x) = sign(F (x)). We defined an

exponential loss that bounds the 0− 1 loss, exp(−yF (x)).

We will see that adaBoost is a greedy algorithm to minize the
exponential loss.

This leads to large margins, and that implies generalization (even with
large VC dimension).
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Exponential loss

Algorithm Greedy exponential loss

Input: training set S = (x1, y1), ..., (xm, ym).
Initialize: F0(x) = 0
for t=1,...,T do

Chose ht ∈ B and αt to minimize
1
m

∑m
i=1 exp(−yi(Ft−1(xi) + αtht(xi))

Update: Ft = Ft−1 + αtht.
end for
return FT

We will show that this algorithm is indeed adaBoost.
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Exponential loss

Proof:

1

m

m∑
i=1

exp(−yiFt−1(xi) + αtht(xi)) =

1

m

m∑
i=1

exp(−yiFt−1(xi)) exp(−yiαthi(x)) ∝
m∑
i=1

Dt(i) exp(−yiαthi(x))

Which is Zt. For the optimal ht with error εt we get
Zt = e−αt(1− εt) + eαtεt which is optimized by the αt chosen by
adaBoost to be equal Zt = 2

√
εt(1− εt).

We just need to show that we have picked the ht adaBoost returns.

This is easy as Zt is decreasing for 0 < εt < 1/2, so it is minimized by
minimizing εt which is exactly what adaBoost does.
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Generalization

Looking at the exponential error, we see that the adaBoost will try to
maximize the margins.

We will prove a genralization bound for large margins. First a quick
reminder on Rademacher complexity

R(F ◦ S) = 1
mEσ∼{±1}m

[
sup
f∈F

m∑
i=1

σif(zi)

]
.

We proved (more or less) that if F is a family of functions into [−1, 1]
then with probability greater or equal to ≥ 1− δ we have for all f ∈ F ,

Ez∼D[f(z)] ≤ Ez∼S [f(z)] + 2R(F ◦ S) +

√
2 ln(2/δ)

m
(5)
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Generalization

Assume the weak classifiers are in a space B with V C dimension d.
AdaBoost returns H(x) = sign(

∑
αihi(x)), with αi > 0.

We can normalize ai = αi/
∑
αi, and define f(x) =

∑
aihi(x). Notice

f(x) ∈ [−1, 1], sign(f(x)) = H(x) and f ∈ conv(B).

Theorem 3.1

PD[yf(x) ≤ 0] ≤ PS [yf(x) ≤ θ] + 2
θ ·
√

2d ln(em/d)
m +

√
2 ln(2/δ)

m

Proof: Define an auxiliary function φ

φ(x) =


1 : x < 1
1− x/θ : 0 ≤ x ≤ θ
0 : x > θ
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Generalization

It is easy to see that 1[yf(x) ≤ 0] ≤ φ(yf(x)) ≤ 1[yf(x) ≤ θ].

This means PD(yf(x) ≤ 0) ≤ ED[φ(yf(x))] and
ES [φ(yf(x))] ≤ PS(yf(x) ≤ θ)

So to prove the theorem it is enough to show

R(φ ◦ F ◦ S) ≤ 2
θ ·
√

2d ln(em/d)
m , but this is trivial using the fact that

F ◦ S = conv(B ◦ S) and φ is 1/θ-Lipschitz.
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