Intro to learning theory - ex 1

1. Binary classification - finite realizable case:
A distribution D is realizable by H if there exists some h* € H such that
Lp(h*) =0.

Assume Y = {£1}, 0—1 loss, and H is a finite hypothesis class. Prove that
‘H can PAC learn any realizable distribution D with M(e, d) = O (M) .

You can use the inequality 1 —z < e™*.

2. Prove a variation of Hoeffdings inequality: If X, are i.i.d, X; € [0,1] and
E[X;] = u, then

P(Lyoxiuze)<e ( o ) (1)
— i—p>e|l <exp|l————
ne P\ 20+

What happens when p ~ 07

Hint: Same as the Hoeffding proof we did, but with an alternative bound
for the KL divengence (marked f(¢)) in slide 15).

3. Bayes optimal predictor: We define the Bayes-optimal predictor h, as
hy(x) = arg min B, [((g, y)|a].
a) Show that for classification with Y = {1,....,k} = [k] and 0 — 1 loss,
hy(x) = arg max, P(y|z).
b) Show that for regression, J = R with £y loss £(y,7) = (y — ¥)? that
hy(z) = Elylz].
c) Show that for regression, Y = R with ¢; loss {(y,5) = |y — | that
hy(x) = medianP(y|x). You can assume that the distribution P(y|z) is
discrete.

4. Show that there exists a hypothesis space H with |H| = 2 and an un-
bounded loss ¢ such that H is not PAC learnable.



