
Intro to learning theory - ex 1

1. Binary classification - finite realizable case:
A distribution D is realizable by H if there exists some h∗ ∈ H such that
LD(h∗) = 0.

Assume Y = {±1}, 0−1 loss, andH is a finite hypothesis class. Prove that

H can PAC learn any realizable distributionD with M(ε, δ) = O
(

log(|H|/δ)
ε

)
.

You can use the inequality 1− x ≤ e−x.

2. Prove a variation of Hoeffdings inequality: If Xi are i.i.d, Xi ∈ [0, 1] and
E[Xi] = µ, then
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n
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Xi − µ ≥ ε

)
≤ exp

(
− ε2n

2(µ+ ε)

)
(1)

What happens when µ ∼ 0?

Hint: Same as the Hoeffding proof we did, but with an alternative bound
for the KL divengence (marked f(ε)) in slide 15).

3. Bayes optimal predictor: We define the Bayes-optimal predictor hb as
hb(x) = arg min

ȳ∈Y
Ey[`(ȳ, y)|x].

a) Show that for classification with Y = {1, ..., k} = [k] and 0 − 1 loss,
hb(x) = arg maxy P (y|x).
b) Show that for regression, Y = R with `2 loss `(y, ȳ) = (y − ȳ)2 that
hb(x) = E[y|x].
c) Show that for regression, Y = R with `1 loss `(y, ȳ) = |y − ȳ| that
hb(x) = medianP (y|x). You can assume that the distribution P (y|x) is
discrete.

4. Show that there exists a hypothesis space H with |H| = 2 and an un-
bounded loss ` such that H is not PAC learnable.
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