Intro to learning theory - ex 2

1. Find the VC dimension of the following hypothesis spaces (prove your
claim):

(a) Parity functions. X = {0,1}™, for any S C [n]| define hg(z) =
(Yies®i) mod 2. H = {hg,VS C [n]}.

(b) The set of axis aligned rectangles in R, i.e. H = {h(.p) = 1[Vi|z; —
ci|l < b;]:b,c € R¥}. We have seen in class the case d = 2.

(c) Let F be a linear space of real valued function with (linear) dimension
d, and g be any real valued function. Define H = {sign(f +g): f €

(d) * The set of circles in R?, i.e. H = {h(,) =1f|Jz —¢|]z <7]:ce€
R2 r < 0}

2. For X = R, define H = {hg(x) = [sin(fz)],0 € R} where we take
[—1] = 0. Prove that VC(H) = occ.
Hint: prove and use the following lemma - if 2 € (0, 1) has binary expan-
sion x = 0.21T2...Ty,... then for any natural number m, [sin(2™7x)] =
1 — x,,, provided that for some k& > m we have z; = 1.

3. Let H; and Ho be binary hypothesis spaces over X. define d; = VC(H),
d = max(dy, dz) and assume d > 3. Prove that VC(H; U Hz) < 2d + 1.

4. From bounded expected risk to agnostic PAC learning: Let A be an algo-
rithm that guarantees the following: If m > 9i(e) then for every distribu-
tion D it holds that Eg[Lp(A(S))] < imﬁ Lp(h) +e.

€

(a) Show that for every § € (0,1), if m > DM(e - ) then with probabil-
ity of at least 1 — § it holds that Lp(A(S)) < minpey Lp(h) + €
(hint: Markov’s inequality).

(b) For every § € (0,1) let k = [logy(1/) + 1] and M(e,8) = M(e/2)k +
{21]“(2/627;1“(@—‘ Suggest a procedure that PAC learns the problem
with sample complexity of M (e/2, ) assuming that the loss function
is bounded by 1.

Hint: Divide the data into k + 1 chunks, where each of the

first k chunks is of size M(e/2) examples.



