Intro to learning theory - ex 2

- 1. Find the VC dimension of the following hypothesis spaces (prove your claim):
 - (a) Parity functions. $\mathcal{X} = \{0,1\}^m$, for any $S \subset [n]$ define $h_S(x) = (\sum_{i \in S} x_i) \mod 2$. $\mathcal{H} = \{h_S, \forall S \subset [n]\}$.
 - (b) The set of axis aligned rectangles in \mathbb{R}^d , i.e. $\mathcal{H} = \{h_{(c,b)} = \mathbb{1}[\forall i | x_i c_i| \leq b_i] : b, c \in \mathbb{R}^d\}$. We have seen in class the case d = 2.
 - (c) Let F be a linear space of real valued function with (linear) dimension d, and g be any real valued function. Define $\mathcal{H} = \{sign(f+g) : f \in F\}$.
 - (d) * The set of circles in \mathbb{R}^2 , i.e. $\mathcal{H}=\{h_{(c,r)}=\mathbb{1}[||x-c||_2\leq r]:c\in\mathbb{R}^2,r<0\}$
- 2. For $X = \mathbb{R}$, define $\mathcal{H} = \{h_{\theta}(x) = \lceil \sin(\theta x) \rceil, \theta \in \mathbb{R}\}$ where we take $\lceil -1 \rceil = 0$. Prove that $VC(\mathcal{H}) = \infty$. Hint: prove and use the following lemma - if $x \in (0,1)$ has binary expansion x = 0 x_1x_2 , x_m , then for any natural number m, $\lceil \sin(2^m\pi x) \rceil =$
 - sion $x = 0.x_1x_2...x_m$... then for any natural number m, $\lceil \sin(2^m\pi x) \rceil = 1 x_m$ provided that for some k > m we have $x_k = 1$.
- 3. Let \mathcal{H}_1 and \mathcal{H}_2 be binary hypothesis spaces over \mathcal{X} . define $d_i = VC(\mathcal{H})$, $d = \max(d_1, d_2)$ and assume $d \geq 3$. Prove that $VC(\mathcal{H}_1 \cup \mathcal{H}_2) \leq 2d + 1$.
- 4. From bounded expected risk to agnostic PAC learning: Let A be an algorithm that guarantees the following: If $m > \mathfrak{M}(\epsilon)$ then for every distribution \mathcal{D} it holds that $\mathbb{E}_S[L_D(A(S))] < \min_{h \in \mathcal{H}} L_D(h) + \epsilon$.
 - (a) Show that for every $\delta \in (0,1)$, if $m > \mathfrak{M}(\epsilon \cdot \delta)$ then with probability of at least 1δ it holds that $L_{\mathcal{D}}(A(S)) < \min_{h \in \mathcal{H}} L_{\mathcal{D}}(h) + \epsilon$ (hint: Markov's inequality).
 - (b) For every $\delta \in (0,1)$ let $k = \lceil \log_2(1/\delta) + 1 \rceil$ and $\bar{\mathfrak{M}}(\epsilon,\delta) = \mathfrak{M}(\epsilon/2)k + \left\lceil 2\frac{\ln(2/\delta) + \ln(k)}{\epsilon^2} \right\rceil$ Suggest a procedure that PAC learns the problem with sample complexity of $\bar{\mathfrak{M}}(\epsilon/2,\delta)$ assuming that the loss function is bounded by 1.

Hint: Divide the data into k+1 chunks, where each of the first k chunks is of size $\mathfrak{M}(\epsilon/2)$ examples.