
Intro to learning theory - ex 2

1. Find the VC dimension of the following hypothesis spaces (prove your
claim):

(a) Parity functions. X = {0, 1}m, for any S ⊂ [n] define hS(x) =(∑
i∈S xi

)
mod 2. H = {hS ,∀S ⊂ [n]}.

(b) The set of axis aligned rectangles in Rd, i.e. H = {h(c,b) = 1[∀i|xi −
ci| ≤ bi] : b, c ∈ Rd}. We have seen in class the case d = 2.

(c) Let F be a linear space of real valued function with (linear) dimension
d, and g be any real valued function. Define H = {sign(f + g) : f ∈
F}.

(d) * The set of circles in R2, i.e. H = {h(c,r) = 1[||x − c||2 ≤ r] : c ∈
R2, r < 0}

2. For X = R, define H = {hθ(x) = dsin(θx)e, θ ∈ R} where we take
d−1e = 0. Prove that V C(H) =∞.
Hint: prove and use the following lemma - if x ∈ (0, 1) has binary expan-
sion x = 0.x1x2...xm... then for any natural number m, dsin(2mπx)e =
1− xm provided that for some k > m we have xk = 1.

3. Let H1 and H2 be binary hypothesis spaces over X . define di = V C(H),
d = max(d1, d2) and assume d ≥ 3. Prove that V C(H1 ∪H2) ≤ 2d+ 1.

4. From bounded expected risk to agnostic PAC learning: Let A be an algo-
rithm that guarantees the following: If m >M(ε) then for every distribu-
tion D it holds that ES [LD(A(S))] < min

h∈H
LD(h) + ε.

(a) Show that for every δ ∈ (0, 1), if m > M(ε · δ) then with probabil-
ity of at least 1− δ it holds that LD(A(S)) < minh∈H LD(h) + ε
(hint: Markov’s inequality).

(b) For every δ ∈ (0, 1) let k = dlog2(1/δ) + 1e and M̄(ε, δ) = M(ε/2)k+⌈
2 ln(2/δ)+ln(k)

ε2

⌉
Suggest a procedure that PAC learns the problem

with sample complexity of M̄(ε/2, δ) assuming that the loss function
is bounded by 1.
Hint: Divide the data into k + 1 chunks, where each of the

first k chunks is of size M(ε/2) examples.
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