
Intro to learning theory - ex 3

1. Let H be the set of all functions from [0, 1] to [0, 1] with total variation
bounded by V . Prove that fatH(γ) = 1 + b V2γ c

2. Structural Risk Minimization: If H has uniform convergence with com-
plexity M(ε, δ) we define the confidence ε(m, δ) = min

ε>0
{m >M(ε, δ)}, i.e.

the best approximation error we can guarantee given m examples with
probability δ. Prove the following theorem: Let pn be a sequence of posi-
tive numbers such that

∑∞
i=1 pn ≤ 1. Let H = ∪∞i=1Hn where Hn has uni-

form convergence with complexity Mn(ε, δ) and confidence εn(m, δ). For
any distribution D we have with probability at least 1− δ over S ∼ Dm

∀h ∈ H, LD(h) ≤ LS(h) + min
n:h∈H

εn(m, pn · δ)

Can you give a specific bound when pn = 2−n and V C(H) = n?

3. LetH andH′ be hypothesis classes. Either prove or give a counter example
to RD(H ∪H′,m) ≤ RD(H′,m) +RD(H,m)

4. Toy multi-class labelling problem: For every parameter vector θ ∈ Rk
define the prediction function hθ(x) =

∑k
i=1 1[x ≥ θi], i.e. k thresholds.

The loss function is `(y, ȳ) = |y − ȳ|. For a sample S of m i.i.d examples,
compute a (non-trivial) upper bound on the Rademacher complexity of
F ◦ S = {(`(y1, hθ(x1)), ..., `(ym, hθ(xm))) : θ ∈ Rk}

5. The Glivenko-Cantelli theorem (weaker version): Let P be a distribution
on X, the cumulative distribution function (CDF) is F (x) = P (X ≤
x). Given a sample Sm = {x1, ..., xm} the empirical CDF is defined as
FS(x) = 1

m1[xi ≤ x]. Prove that

PSm

(
sup
x∈R
|FSm(x)− F (x)| ≥ ε

)
m→0−−−→ 0

(the GC theorem actually claims almost surely convergence) Hint: rewrite
the problem as a uniform convergence problem for a set of functions H,
then bound using Rademacher complexity and the Massarat lemma.
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