Intro to learning theory - ex 3

. Let H be the set of all functions from [0,1] to [0, 1] with total variation
bounded by V. Prove that faty(y) =1+ L%j

. Structural Risk Minimization: If H has uniform convergence with com-
plexity 9M(e, §) we define the confidence e(m,d) = m>i{)1{m > M(e,0)}, ie.

the best approximation error we can guarantee given m examples with
probability §. Prove the following theorem: Let p, be a sequence of posi-
tive numbers such that Y2, p, < 1. Let H = U2, H,, where H,, has uni-
form convergence with complexity 9, (¢, d) and confidence ¢, (m,§). For
any distribution D we have with probability at least 1 — § over S ~ D™

Can you give a specific bound when p,, = 27" and VC(H) = n?

. Let H and H’ be hypothesis classes. Either prove or give a counter example
to Ro(HUH',m) < Rp(H',m) + Rp(H,m)

. Toy multi-class labelling problem: For every parameter vector # € RF
define the prediction function hy(z) = Zle L[z > 6;], i.e. k thresholds.
The loss function is ¢(y,y) = |y — y|. For a sample S of m i.i.d examples,
compute a (non-trivial) upper bound on the Rademacher complexity of

FolS={(ly,ho(x1)), s L(ym:ho(zm))) : 6 € RF}

. The Glivenko-Cantelli theorem (weaker version): Let P be a distribution
on X, the cumulative distribution function (CDF) is F(z) = P(X <
z). Given a sample S™ = {x1,...,z,,} the empirical CDF is defined as
Fs(z) = L1[z; < 2]. Prove that

m

Psn (sup |Fom(z) - F(2)] > ) LRI
zeR

(the GC theorem actually claims almost surely convergence) Hint: rewrite
the problem as a uniform convergence problem for a set of functions #,
then bound using Rademacher complexity and the Massarat lemma.



