
Intro to learning theory - ex 4

1. Prove lemma 2.2 and 2.3 in lecture 7.

2. Define `0−1(y, y′) = 1
2 (sign(y′ · y) + 1) and `h(y, y′) = max{0, 1 − y · y′}.

Prove that if `(y, y′) is convex, 1-Lipshitz in y′ and ∀y, y′ : `0−1(y, y′) ≤
`(y, y′) then ∀y, y′ : `h(y, y′) ≤ `(y, y′). THis shows that the hinge loss is
the smallest surrogate loss with these properties.

3. Define H1 = {hw(x) = 〈x,w〉 : ||w||1 ≤ 1} where ||x||1 =
∑d

i=1 |xi|. Let
S = {x1, ..., xm} be vectors in Rd. Prove that

R(H1◦S) = R ({(〈x1, w〉 , ..., 〈xm, w〉) : ||w||1 ≤ 1}) ≤ max
i
||x||∞

√
2 log(2d)

m

where ||x||∞ = maxi |xi|.
Hint: You can use the result from the Holder inequality, 〈x, y〉 ≤ ||x||1 ·
||y||∞ to reduce the problem to a finite set.

4. Learnability without uniform convergence: Let Bd be the unit ball in Rd.
Define H = Bd, Z = Bd × {0, 1}d and The loss finction ` is define as

`(w, (x, α)) =
d∑

i=1

αi(xi−wi)
2. Intuitively, we need to learn the ”center of

mass” of the distribution only we get another vector α of binary weights
which tells us which indices we can ignore for this example.

(a) Show that this can be learned using regularized risk minimization,
with sample complexity independent of d.

(b) Consider a distribution D over Z as follows: x is fixed to be some
x0, and each element of α is sampled to be either 1 or 0 with equal
probability. Show that the rate of uniform convergence of this prob-
lem grows with d.
Hint: Let m be a training set size. Show that if d >> 2m, then there
is a high probability to sample a set of examples such that there
exists some j ∈ [d] for whichαj = 0 for all samples in the training
set.
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