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In the last unit we looked at regularization - adding a ||w||2 penalty.

We add a bias - we prefer classifiers with low norm.

How to incorporate more complicated prior knowledge?

Example: We trained many different face detectors w1, ..., wk and have a
probabilistic model for P (w).

PAC-Bayes combines a Bayesian approach with an agnostic approach to
analyse this situation.

We will start with an quick overview of Bayesian method.
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Maximum Likelihood

Assume your data is drawn from a distribution that comes from some
parametric family.

Example: P (y|x;w) = N (wTx, σ2) = wTx+N (0, σ2). For simplicity we
assume σ is a known fixed parameter.

Given a sample S = {(x1, y1), ..., (xm, ym)} we define the likelihood of w
as

L(w, S) = log (P (y1, ..., ym|x1, ..., xm;w)) =

m∑
i=1

log(P (yi|xi;w))

The maximum livelihood returns w = arg maxL(w, S)
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Maximum Likelihood

In our example P (y|x;w) = N (wTx, σ2) = wTx+N (0, σ2).

This means that P (yi|xi;w) = 1√
2πσ2

exp
(
− (yi−wT xi)

2

σ2

)
. We conclude

that the likelihood is L(w, S) = −
m∑
i=1

1
σ2 (yi − wTxi)2 + C where C is the

normalization factors that do not depend on w.

In this model, maximum likelihood is equivalent to minimizing square
loss.

Problem is - we want to maximize P (w|x, y).
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Maximum a-posteriori

To get P (w|x, y) we need to a prior distribution P (w).
We now have P (y|x,w) and P (w) so from Bayes theorem we get

P (w|x, y) =
P (y|x,w) · P (w)

P (y|x)
∝ P (y|x,w) · P (w)

The maximum a-posteriori (MAP) model is

w = arg max{P (Y |X,w) · P (w)} = arg max{L(w, S) + log(P (w))}
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Maximum a-posteriori

Continuing our example - assume P (w) = N (0, σ2w · I).

We now get

w = arg max

[
−

m∑
i=1

1

σ2
(yi − wTx)2 − 1

σ2w
||w||22

]

= arg min

[
m∑
i=1

(yi − wTx)2 +
σ2

σ2w
||w||22

]

This is equivalent to doing regularized ERM with `2 regularization. If
we use Laplacian distribution instead, we will get `1 regularization.
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Bayesian Inference

MAP picks the best model, given our model and data. But why do we
have to pick one model?

We have seen that the optimal classifier can be calculated given P (y|x)
(assignment 1).
The Bayesian approach does exactly that, so we get

P (y|x, S) =

∫
w
P (y|x,w) · P (w|S)dP (w)

Some cases (Guassian) this as an analytic solution, most of the time
there isn’t any.

Lecture 10



Statistical models PAC Bayes Generalization Bounds

Introduction

PAC-Bayes: We will consider algorithms that return a posterior - a
distribution Q on H.

Definition 2.1 (Loss of posterior)

Let Q be a distribution on H, D a distribution on X × Y and S a finite
sample. Define

LD(Q) = E
h∼Q

[LD(h)] = E
h∼Q

[
E
z∼D

[`(h, z)]

]

LS(Q) = E
h∼Q

[LS(h)] = E
h∼Q

[
1

m

m∑
i=1

`(h, zi)

]
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Introduction

We can turn a posterior into a learning algorithm:

Definition 2.2 (Gibbs hypothesis)

Let Q be a distribution on H. The Gibbs hypothesis is the following
randomized hypothesis - Given x, sample h according to Q and return
h(x).

It is straightforward to show that the expected loss is LD(Q).
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KL Divergence

We want to show that if Q is similar to P we generalize well.
Kullback-Leibler (KL) divergence is how we measure similarity.

Definition 2.3 (KL Divergence)

Let P,Q be continuous or discrete distributions. Define

KL(Q||P ) = E
x∼Q

[
ln

(
Q(x)

P (x)

)]

Notice this is not symmetrical KL(Q||P ) 6= KL(P ||Q).

The intuition behind this definition comes from information theory.
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KL Divergence

Assume we have a finite alphabet and message x is sent with probability
P (x).

Shannon’s coding theorem states that of you code x with log2(1/P (x))
bits you get an optimal coding. The expected bits per letter is then

E
x∼P

[
log2

(
1

P (x)

)]
= H(P ).

Consider now that we use the optimal code for P , but the letters where
sent according to Q. The expected bits per letter is now

E
x∼Q

[
log2

(
1

P (x)

)]
= E

x∼Q

[
log2

(
Q(x)

P (x)

)
+ log2

(
1

Q(x)

)]
= H(Q)+KL(Q||P )

Up to a factor due to different log basis. This shows KL(Q||P ) ≥ 0.

Another perspective - The mutual information I(X,Y ) is equal
I(X,Y ) = KL(P (X,Y )||P (X)P (Y )).
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KL Divergence

Example 1: P some distribution on x1, ..., xm, Q is 1 on xi then
KL(Q||P ) = ln(1/P (xi)).

Example 2: If P (xi) = 0 and Q(xi) > 0 then KL(Q||P ) =∞.

Example 3: If α, β ∈ [0, 1] then KL(α||β) ≡
KL(Bernoulli(α)||Bernoulli(β)) = α ln

(
α
β

)
+ (1− α) ln

(
1−α
1−β

)
Example 4: If Q = N (µ0,Σ0) and P = N (µ1,Σ1) Gaussian distributions
in dimension n, then

KL(Q||P ) =
1

2

(
trace(Σ−11 Σ0) + (µ1 − µ0)Σ−11 (µ1 − µ0)− n−

det Σ0

det Σ1

)
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KL Bound

We will now prove the following bound:

Theorem 3.1 (McAllester)

Let Q,P be distributions on H and D be a distribution on X × Y.
Assume `(h, z) ∈ [0, 1]. Let S ∼ Dm be a sample, then with probability
greater or equal to 1− δ over S we have

KL(LS(Q)||LD(Q)) ≤
KL(Q||P ) + ln

(
m+1
δ

)
m

(1)

Notice: that the l.h.s is the KL divergence between two numbers (as in
example 3), while the r.h.s is between distributions.

Also notice we assume no connection between D and P - it is still an
agnostic analysis.
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KL Bound

We will split the proof into technical lemmas:

Lemma 3.1

If X is a real valued random number satisfying P (X ≤ x) ≤ e−mf(x),
then following holds: E[e(m−1)f(x)] ≤ m.

Proof: Define F (x) = P (X ≤ x) the CDF then from basic properties of
the CDF we have P (F (x) ≤ y) ≤ y, therefore P (e−mf(x) ≤ y) ≤ y. So

y ≥ P (e−mf(x) ≤ y) = P (emf(x) ≥ 1/y) = P
(
e(m−1)f(x) ≥ y−

m−1
m

)
(2)

Define ν = y−
m−1
m and we have P (e(m−1)f(x) ≥ ν) ≤ ν

−m
m−1 .

We use the following fact: for non-negative r.v we have

E[W ] =
∞∫
0

P (W ≥ ν)dν.
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KL Bound

We conclude:

E[e(m−1)f(x)] =

∞∫
0

P (e(m−1)f(x) ≥ ν)dν ≤ 1 +

∫ ∞
1

ν
−m
m−1dν

= 1− (m− 1)
[
ν−1/(m−1)

]∞
1

= m

We will use the stronger version of the Hoeffding bound we proved in
Lecture 1:

Lemma 3.2 (Hoeffding)

If X1, ..., Xm are i.i.d r.v such that Xi ∈ [0, 1], and X̄ = 1
m

m∑
i=1

Xi then

for ε ∈ [0, 1] we have the following

P (X̄ ≤ ε) ≤ e−mKL(ε||E[X1])
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KL Bound

Lemma 3.3

With probability greater then 1− δ over S,

E
h∼P

[
e(m−1)KL(LS(h)||LD(h))

]
≤ m

δ

Proof sketch - using lemma 3.1 + 3.2 (Hoeffding) we get that for any
h ∈ H we have E

S∼Dm

[
e(m−1)KL(LS(h)||LD(h))

]
≤ m. The lemma follows by

taking expectation w.r.t P and Markov’s inequality.

Finally we need this shift of measure theorem:

Lemma 3.4

E
x∼Q

[f(x)] ≤ KL(Q||P ) + ln E
x∼P

[
ef(x)

]
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KL Bound

Proof:

E
x∼Q

[f(x)] = E
x∼Q

[
ln ef(x)

]
= E

x∼Q

[
ln

(
P (x)

Q(x)
ef(x)

)
+ ln

Q(x)

P (x)

]
=KL(Q||P ) + E

x∼Q

[
ln

(
P (x)

Q(x)
ef(x)

)]
≤KL(Q||P ) + ln

(
E
x∼Q

[
P (x)

Q(x)
ef(x)

])
=KL(Q||P ) + ln

(
E
x∼P

[
ef(x)

])

where we use Jensen’s inequality.
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KL Bound

We Can now prove theorem 3.1:

Theorem 3.1 (McAllester)

Let Q,P be distributions on H and D be a distribution on X × Y.
Assume `(h, z) ∈ [0, 1]. Let S ∼ Dm be a sample, then with probability
greater or equal to 1− δ over S we have

KL(LS(Q)||LD(Q)) ≤
KL(Q||P ) + ln

(
m+1
δ

)
m

(1)
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KL Bound

Proof: Define f(h) = KL ((LS(h)||LD(h)). Using the shift of measure (
lemma 3.4) and lemma 3.3 we get:
Eh∼Q[mf(h)] ≤ KL(Q||P ) + ln E

h∼P

[
emf(h)

]
≤ KL(Q||P ) + ln

(
m+1
δ

)
With probability greater or equal to 1− δ.

To finish the proof we will use the fact that KL divergence is convex, so
from the Jensen inequality

KL(LS(Q)||LD(Q)) = KL(EQ[LS(h)]||EQ[LD(h)])

≤ EQ[KL ((LS(h)||LD(h))] = EQ[f(h)].

(sweeping a few subtleties under the rug)

Lecture 10



Statistical models PAC Bayes Generalization Bounds

Generalization Bounds

We bounded KL(LS(Q)||LD(Q)). Next step - bound LD(Q)− LS(Q).
We will show two bounds using the following lemma:

Lemma 3.5

If a, b ∈ [0, 1] and KL(a||b) ≤ x, then b ≤ a+
√

x
2 and b ≤ a+ 2x+

√
2ax

Where the second is much stronger if a, i.e. LS(Q) is very small.
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Generalization Bounds

Proof of first inequality: Fix b and define f(a) = KL(a||b)− 2(b− a)2.
The first and second derivatives are:

f ′(a) = ln

(
a

1− a

)
− ln

(
b

1− b

)
− 4(a− b)

f ′′(a) =
1

a(1− a)
− 4

The function a(1− a) has its maximum at a = 1/2 with value 4 so
f ′′(a) ≥ 0. As f ′(b) = 0 we have f(a) has its minimum at a = b with
f(b) = 0.

Therefore 2(a− b)2 ≤ KL(a||b) ≤ x proving b ≤ a+
√

x
2 .

Second inequality is left as an exercise.

Notice we also have b ≥ a−
√

x
2 .
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Generalization Bounds

We can combine everything to get the following theorem:

Theorem 3.6 (Generalization Bound)

Let Q,P be distributions on H and D be a distribution on X × Y.
Assume `(h, z) ∈ [0, 1]. Let S ∼ Dm be a sample, then with probability
greater or equal to 1− δ over S we have

LD(Q) ≤ LS(Q) +

√
KL(Q||P ) + ln

(
m+1
δ

)
2m

LD(Q) ≤ LS(Q) + 2
KL(Q||P ) + ln

(
m+1
δ

)
m

+

√
2LS(Q)

KL(Q||P ) + ln
(
m+1
δ

)
m
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