Introduction to Statistical Learning Theory
Lecture 11




es: Applications

We have shown the following PAC-Bayes generalization bound:

Theorem 1.1 (Generalization Bound)

Let Q, P be distributions on H and D be a distribution on X X ).
Assume L(h,z) € [0,1]. Let S ~ D™ be a sample, then with probability
greater or equal to 1 — § over S we have

KL(Q||P) + In (52)

2m

Lp(Q) < Ls(Q) + \/

We will show a few applications.



soft-ERM

We will look at a natural posterior - soft-ERM: Q(h) = %e‘ﬁLS(h).

Zq is the normalization constant (assuming it can be normalized).
For 8 — 0, @ is uniform. For 8 — oo, @) is concentrated on the ERM.
Its natural counterpart is the prior P(h) = e AL,

Zp

We do not know P, but we only use it for theoretical analysis.



PAC-Bayes: Applications

(o] le]e]

soft-ERM

KLQIIP) < B(Lp(Q) — Ls(Q)) — B(Lp(P) — Ls(P))

s e o (88)] - ()] = (2)

=5(Lp(Q) ~ Ls(Q)) —In (>

P

We now need to bound In (%):

—BLs(h)
In <ZQ> =In / c dh | =1In </ p(h)eﬁLD(h)e_ﬁLS(h)dh>

= (Bp [/EPM L)) > Bp [B(Lp(h) — Ls(h))]




Theorem 1.3 (soft-ERM bound)

Let Q be the soft-ERM posterior, with probability greater of equal to
1-9,

B ()
2m? m

V25 2m + 2

KLLs@IILo(@) < Y25 i (22552) + )

It seems like soft-ERM is a universal learner! What doesn’t it contradict
the fundamental theorem?

We might need g to be large for Lg(Q) to be close to the Ls(hgr).



es: Applications

soft-ERM

Proof sketch -

Using the lemma we know that

KLQ|IP) < 8 (Lp(Q) — Ls(Q)) — B(Lp(P) — Ls(P)).

From the PAC-Bayes generalization theorem we have with probability
greater or equal to 1 — /2

KL(Q||P) + In (2142)

Lp(Q) — Ls(Q) < \/

2m
In (2m+2)
Lp(P) — Lg(P)| < 0
Lp(P) - Ls(P)] < /-2
The union bound and some arithmetic finishes the proof. O

We will now show another application - large margin classifiers.



Margin Bounds

Consider a classifier that returns a real number, whose classification is
sign(h(x)).

),y) = 1{y - h(z) < 0} denote the 0 — 1 loss.

Let ¢(h(z),y) = £°(h(x
y) = 1{y - h(z) <~} the y-margin loss.

Define ¢7(h(z),

Theorem 1.4 (linear classifier margin)

Let X = [-1,1]¢, H = {sign({w, z)) : w € [~1,1]%} the hypothesis space
of linear classifiers, and let A : X™ — H be any learning algorithm on
this space. For any distribution D, and with probability greater of equal
tol—§ on S ~D™

dIn (g,y—d) + In (mTH)
2m

L (A(S)) < L(A(S)) +

Notice A is a deterministic algorithm, not PAC-Bayesian.
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Margin Bounds

Proof - Define w = A(S), P = U([-1,1]%) and
Q=U ((w+ [—55, 25]%) N P). The following lemma connects A to Q:

=N |
<
_|_

Lemma 1
LY (w) < LE(Q) < L} (w) and LY(w) < LE(Q) < LE(w)

Proof of lemma: For w € support(Q) and z € X we have

d d d
= sz(wz —w;)| < Z |zi(w; —w;)| < Z |(wi — w
i=1 i=1

i=1

d
T _0
<2 3i"3

=1

| (w, z) —

[\

X
This proves L% (w) < L3 (w) < L} (w) (same with S) and we finish by
taking expectation. O
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Margin Bounds

We now need to bound K L(Q||P):

KL(Q||P) < dln (%d)

Proof of lemma:

KL(Q||P) = /H q(h)In <§EZ§> dh = In (2252;) <ln ((i;)d>

We can now finish the proof of the theorem:

KL(Q||P) +In (7L)

LY (@) < L3(Q) < L2(Q) + \/




Bounds

Generalization bounds

We will now show a new way to prove generalization - compression
bounds.

The idea - If you can define your hypothesis using only a fraction of the
data, you will not overfit.

Note - This does not mean the algorithm looks only at a fraction of the
datal

Example: Threshold function.

Example: Support vector machines. Only need support vectors to define
the classifier.



Bounds

ralization bounds

Definition 2.1 (Compression Scheme)
A size k compression scheme is a pair of two functions:

Compression function : c¢: (X x Y)™ = (X x Y)=F

Reconstruction, function : 1 : (X X y)ﬁ’“ —H

Definition 2.2 (Compression algorithm)

A learning algorithm A is a size k compression algorithm if exists a
compression scheme ¢, r such that A(S) = r(c(9)).

Notation: The function ¢ picks at most k samples out of S. Denote by I
and J the indexes of the chosen samples and its compliment. Denote by
St and S the chosen samples and its compliment.
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alization bounds

Theorem 2.3

Let A be a size k compression algorithm with k < m/2, and assume that
l(h,z) €[0,L]. The following holds with probability greater or equal to
1-96:

In (%) + kln (%)

m

Lp(A(S)) < Ls, (A(S)) +L\/

Proof: For all I C {1,...,m} denote h; = r(Sr). As h; is independent of
Sy, (before choosing by ¢) by Hoeffding

(L 0(Ll
Lp(hr) < Ls,(h1) + L MSLSJ(M%LL : r(rf)

with probability greater or equal to 1 — ¢.



Compression Bounds

Generalization bounds

k
The number of candidate index sets I is Y (7}') < (em)k using the
=0
Sauer-Shelah lemma.

If we chose &' = ¢ (%)_l’C and use the union bound we get that with

probability greater or equal to 1 — ¢’ (%)k =1 — ¢ for all possible index
set I we have

m

In (5 In (1) +kln (42
Lp(hr) < Lg,(h;)+ L 7(715) = Lg, (hr) —|—L\/ (5) (%)
This proves the theorem as A(S) is hc( 5)- 0

Note we can replace Lg,(A(S)) with —-Lg(A(S)).



on Bounds

Generalization bounds

A note about SVM - The number of support vectors is not known in
advance.

We cannot use Theorem 2.3 as is, but it can be fixed using a SRM idea.




Bounds

Compression and VC dimension

For binary classification, does this imply PAC learnability and therefore
finite VC dimension?

Almost. We can always vacuously inflate H.

Solution - Assume that for all h € ‘H there exists S such that
r(c(S)) = h. Under this assumption we can conclude VC(H) < k.

Open question - If VC(H) = d < oo, does H has a compression scheme?
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