Introduction to Statistical Learning Theory Lecture 11

We have shown the following PAC-Bayes generalization bound:

Theorem 1.1 (Generalization Bound)

Let Q, P be distributions on \mathcal{H} and \mathcal{D} be a distribution on $\mathcal{X} \times \mathcal{Y}$. Assume $\ell(h, z) \in [0, 1]$. Let $S \sim \mathcal{D}^m$ be a sample, then with probability greater or equal to $1 - \delta$ over S we have

$$L_{\mathcal{D}}(Q) \le L_{S}(Q) + \sqrt{\frac{KL(Q||P) + \ln\left(\frac{m+1}{\delta}\right)}{2m}}$$

We will show a few applications.

We will look at a natural posterior - soft-ERM: $Q(h) = \frac{1}{Z_Q} e^{-\beta L_S(h)}$. Z_Q is the normalization constant (assuming it can be normalized).

For $\beta \to 0$, Q is uniform. For $\beta \to \infty$, Q is concentrated on the ERM.

Its natural counterpart is the prior $P(h) = \frac{1}{Z_P} e^{-\beta L_D(h)}$.

We do not know P, but we only use it for theoretical analysis.

Lemma 1.2

$$KL(Q||P) \le \beta \left(L_{\mathcal{D}}(Q) - L_{\mathcal{S}}(Q)\right) - \beta \left(L_{\mathcal{D}}(P) - L_{\mathcal{S}}(P)\right)$$

$$KL(Q||P) = \mathbb{E}_{Q} \left[\ln \left(\frac{Q(h)}{P(h)} \right) \right] = \mathbb{E}_{Q} \left[\ln \left(\frac{e^{-\beta L_{S}(h)}}{e^{-\beta L_{D}(h)}} \right) \right] - \ln \left(\frac{Z_{Q}}{Z_{P}} \right)$$
$$= \beta \left(L_{D}(Q) - L_{S}(Q) \right) - \ln \left(\frac{Z_{Q}}{Z_{P}} \right)$$

We now need to bound $\ln\left(\frac{Z_Q}{Z_P}\right)$:

$$\ln\left(\frac{Z_Q}{Z_P}\right) = \ln\left(\int_{\mathcal{H}} \frac{e^{-\beta L_S(h)}}{Z_P} dh\right) = \ln\left(\int_{\mathcal{H}} p(h)e^{\beta L_{\mathcal{D}}(h)}e^{-\beta L_S(h)} dh\right)$$
$$= \ln\left(\mathbb{E}_P\left[e^{\beta(L_{\mathcal{D}}(h) - L_S(h))}\right]\right) \ge \mathbb{E}_P\left[\beta(L_{\mathcal{D}}(h) - L_S(h))\right]$$

Theorem 1.3 (soft-ERM bound)

Let Q be the soft-ERM posterior, with probability greater of equal to $1 - \delta$,

$$KL(L_S(Q)||L_{\mathcal{D}}(Q)) \le \frac{\sqrt{2}\beta}{m^{3/2}} \sqrt{\ln\left(\frac{2m+2}{\delta}\right) + \frac{\beta^2}{2m^2} + \frac{\ln\left(\frac{2m+2}{\delta}\right)}{m}}$$
(1)

It seems like soft-ERM is a universal learner! What doesn't it contradict the fundamental theorem?

We might need β to be large for $L_S(Q)$ to be close to the $L_S(h_{ERM})$.

Proof sketch -

Using the lemma we know that

$$KL(Q||P) \le \beta \left(L_{\mathcal{D}}(Q) - L_S(Q)\right) - \beta \left(L_{\mathcal{D}}(P) - L_S(P)\right).$$

From the PAC-Bayes generalization theorem we have with probability greater or equal to $1 - \delta/2$

$$L_{\mathcal{D}}(Q) - L_{\mathcal{S}}(Q) \le \sqrt{\frac{KL(Q||P) + \ln\left(\frac{2m+2}{\delta}\right)}{2m}}$$

$$|L_{\mathcal{D}}(P) - L_S(P)| \le \sqrt{\frac{\ln\left(\frac{2m+2}{\delta}\right)}{2m}}$$

The union bound and some arithmetic finishes the proof.

We will now show another application - large margin classifiers,

Consider a classifier that returns a real number, whose classification is sign(h(x)).

Let $\ell(h(x), y) = \ell^0(h(x), y) = \mathbb{1}\{y \cdot h(x) \leq 0\}$ denote the 0 - 1 loss. Define $\ell^{\gamma}(h(x), y) = \mathbb{1}\{y \cdot h(x) \leq \gamma\}$ the γ -margin loss.

Theorem 1.4 (linear classifier margin)

Let $\mathcal{X} = [-1, 1]^d$, $\mathcal{H} = \{sign(\langle w, x \rangle) : w \in [-1, 1]^d\}$ the hypothesis space of linear classifiers, and let $A : \mathcal{X}^m \to \mathcal{H}$ be any learning algorithm on this space. For any distribution \mathcal{D} , and with probability greater of equal to $1 - \delta$ on $S \sim \mathcal{D}^m$

$$L_{\mathcal{D}}^{0}(A(S)) \leq L_{S}^{\gamma}(A(S)) + \sqrt{\frac{d \ln\left(\frac{2d}{\gamma}\right) + \ln\left(\frac{m+1}{\delta}\right)}{2m}}$$

Notice A is a deterministic algorithm, not PAC-Bayesian.

Proof - Define $\bar{w} = A(S)$, $P = U([-1,1]^d)$ and $Q = U\left((\bar{w} + [-\frac{\gamma}{2d}, \frac{\gamma}{2d}]^d]) \cap P\right)$. The following lemma connects A to Q:

Lemma 1.5

$$L_{\mathcal{D}}^{0}(\bar{w}) \leq L_{\mathcal{D}}^{\frac{\gamma}{2}}(Q) \leq L_{\mathcal{D}}^{\gamma}(\bar{w}) \ \ and \ L_{S}^{0}(\bar{w}) \leq L_{S}^{\frac{\gamma}{2}}(Q) \leq L_{S}^{\gamma}(\bar{w})$$

Proof of lemma: For $w \in support(Q)$ and $x \in \mathcal{X}$ we have

$$|\langle w, x \rangle - \langle \bar{w}, x \rangle| = \left| \sum_{i=1}^{d} x_i (w_i - \bar{w}_i) \right| \le \sum_{i=1}^{d} |x_i (w_i - \bar{w}_i)| \le \sum_{i=1}^{d} |(w_i - \bar{w}_i)|$$

$$\le \sum_{i=1}^{d} \frac{\gamma}{2d} = \frac{\gamma}{2}$$

This proves $L^0_{\mathcal{D}}(\bar{w}) \leq L^{\frac{\gamma}{2}}_{\mathcal{D}}(w) \leq L^{\gamma}_{\mathcal{D}}(\bar{w})$ (same with S) and we finish by taking expectation.

We now need to bound KL(Q||P):

Lemma 1.6

$$KL(Q||P) \le d \ln \left(\frac{2d}{\gamma}\right)$$

Proof of lemma:

$$KL(Q||P) = \int_{\mathcal{H}} q(h) \ln\left(\frac{q(h)}{p(h)}\right) dh = \ln\left(\frac{vol(P)}{vol(Q)}\right) \le \ln\left(\frac{2^{d}}{(\gamma/d)^{d}}\right) \quad \Box$$

We can now finish the proof of the theorem:

$$L_{\mathcal{D}}^{0}(\bar{w}) \leq L_{\mathcal{D}}^{\frac{\gamma}{2}}(Q) \leq L_{S}^{\frac{\gamma}{2}}(Q) + \sqrt{\frac{KL(Q||P) + \ln\left(\frac{m+1}{\delta}\right)}{2m}}$$
$$\leq L_{S}^{\gamma}(\bar{w}) + \sqrt{\frac{d\ln\left(\frac{2d}{\gamma}\right) + \ln\left(\frac{m+1}{\delta}\right)}{2m}} \quad \Box$$

We will now show a new way to prove generalization - compression bounds.

The idea - If you can define your hypothesis using only a fraction of the data, you will not overfit.

Note - This does not mean the algorithm looks only at a fraction of the data!

Example: Threshold function.

Example: Support vector machines. Only need support vectors to define the classifier.

Definition 2.1 (Compression Scheme)

A size k compression scheme is a pair of two functions:

Compression function:
$$c: (\mathcal{X} \times \mathcal{Y})^m \to (\mathcal{X} \times \mathcal{Y})^{\leq k}$$

Reconstruction, function: $r: (\mathcal{X} \times \mathcal{Y})^{\leq k} \to \mathcal{H}$

Definition 2.2 (Compression algorithm)

A learning algorithm A is a size k compression algorithm if exists a compression scheme c, r such that A(S) = r(c(S)).

Notation: The function c picks at most k samples out of S. Denote by I and J the indexes of the chosen samples and its compliment. Denote by S_I and S_J the chosen samples and its compliment.

Theorem 2.3

Let A be a size k compression algorithm with k < m/2, and assume that $\ell(h,z) \in [0,L]$. The following holds with probability greater or equal to $1-\delta$:

$$L_{\mathcal{D}}(A(S)) \le L_{S_J}(A(S)) + L\sqrt{\frac{\ln\left(\frac{1}{\delta}\right) + k\ln\left(\frac{em}{k}\right)}{m}}$$

Proof: For all $I \subset \{1, ..., m\}$ denote $h_I = r(S_I)$. As h_I is independent of S_J , (before choosing by c) by Hoeffding

$$L_{\mathcal{D}}(h_I) \le L_{S_J}(h_I) + L\sqrt{\frac{\ln\left(\frac{1}{\delta'}\right)}{2(m-k)}} \le L_{S_J}(h_I) + L\sqrt{\frac{\ln\left(\frac{1}{\delta'}\right)}{m}}$$

with probability greater or equal to $1 - \delta'$.

The number of candidate index sets I is $\sum_{i=0}^{k} {m \choose i} \leq {\left(\frac{em}{k}\right)}^k$ using the Sauer-Shelah lemma.

If we chose $\delta' = \delta \left(\frac{em}{k}\right)^{-k}$ and use the union bound we get that with probability greater or equal to $1 - \delta' \left(\frac{em}{k}\right)^k = 1 - \delta$ for all possible index set I we have

$$L_{\mathcal{D}}(h_I) \le L_{S_J}(h_I) + L\sqrt{\frac{\ln\left(\frac{1}{\delta'}\right)}{m}} = L_{S_J}(h_I) + L\sqrt{\frac{\ln\left(\frac{1}{\delta}\right) + k\ln\left(\frac{em}{k}\right)}{m}}$$

This proves the theorem as A(S) is $h_{c(S)}$.

Note we can replace $L_{S_J}(A(S))$ with $\frac{m}{m-k}L_S(A(S))$.

Generalization bounds

A note about SVM - The number of support vectors is not known in advance.

We cannot use Theorem 2.3 as is, but it can be fixed using a SRM idea.

For binary classification, does this imply PAC learnability and therefore finite VC dimension?

Almost. We can always vacuously inflate \mathcal{H} .

Solution - Assume that for all $h \in \mathcal{H}$ there exists S such that r(c(S)) = h. Under this assumption we can conclude $VC(\mathcal{H}) \leq k$.

Open question - If $VC(\mathcal{H}) = d < \infty$, does \mathcal{H} has a compression scheme?