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PAC-Bayes: Applications Compression Bounds

We have shown the following PAC-Bayes generalization bound:

Theorem 1.1 (Generalization Bound)

Let Q,P be distributions on H and D be a distribution on X × Y.
Assume `(h, z) ∈ [0, 1]. Let S ∼ Dm be a sample, then with probability
greater or equal to 1− δ over S we have

LD(Q) ≤ LS(Q) +

√
KL(Q||P ) + ln

(
m+1
δ

)
2m

We will show a few applications.
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soft-ERM

We will look at a natural posterior - soft-ERM: Q(h) = 1
ZQ
e−βLS(h).

ZQ is the normalization constant (assuming it can be normalized).

For β → 0, Q is uniform. For β →∞, Q is concentrated on the ERM .

Its natural counterpart is the prior P (h) = 1
ZP
e−βLD(h).

We do not know P , but we only use it for theoretical analysis.
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soft-ERM

Lemma 1.2

KL(Q||P ) ≤ β (LD(Q)− LS(Q))− β (LD(P )− LS(P ))

KL(Q||P ) = EQ

[
ln

(
Q(h)

P (h)

)]
= EQ

[
ln

(
e−βLS(h)

e−βLD(h)

)]
− ln

(
ZQ
ZP

)
= β (LD(Q)− LS(Q))− ln

(
ZQ
ZP

)
We now need to bound ln

(
ZQ
ZP

)
:

ln

(
ZQ
ZP

)
= ln

(∫
H

e−βLS(h)

ZP
dh

)
= ln

(∫
H
p(h)eβLD(h)e−βLS(h)dh

)
= ln

(
EP

[
eβ(LD(h)−LS(h))

])
≥ EP [β(LD(h)− LS(h))]
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soft-ERM

Theorem 1.3 (soft-ERM bound)

Let Q be the soft-ERM posterior, with probability greater of equal to
1− δ,

KL(LS(Q)||LD(Q)) ≤
√

2β

m3/2

√
ln

(
2m+ 2

δ

)
+

β2

2m2
+

ln
(
2m+2
δ

)
m

(1)

It seems like soft-ERM is a universal learner! What doesn’t it contradict
the fundamental theorem?

We might need β to be large for LS(Q) to be close to the LS(hERM ).
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soft-ERM

Proof sketch -

Using the lemma we know that
KL(Q||P ) ≤ β (LD(Q)− LS(Q))− β (LD(P )− LS(P )).

From the PAC-Bayes generalization theorem we have with probability
greater or equal to 1− δ/2

LD(Q)− LS(Q) ≤

√
KL(Q||P ) + ln

(
2m+2
δ

)
2m

|LD(P )− LS(P )| ≤

√
ln
(
2m+2
δ

)
2m

The union bound and some arithmetic finishes the proof.

We will now show another application - large margin classifiers.
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Margin Bounds

Consider a classifier that returns a real number, whose classification is
sign(h(x)).

Let `(h(x), y) = `0(h(x), y) = 1{y · h(x) ≤ 0} denote the 0− 1 loss.
Define `γ(h(x), y) = 1{y · h(x) ≤ γ} the γ-margin loss.

Theorem 1.4 (linear classifier margin)

Let X = [−1, 1]d, H = {sign(〈w, x〉) : w ∈ [−1, 1]d} the hypothesis space
of linear classifiers, and let A : Xm → H be any learning algorithm on
this space. For any distribution D, and with probability greater of equal
to 1− δ on S ∼ Dm

L0
D(A(S)) ≤ LγS(A(S)) +

√√√√d ln
(
2d
γ

)
+ ln

(
m+1
δ

)
2m

Notice A is a deterministic algorithm, not PAC-Bayesian.
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Margin Bounds

Proof - Define w̄ = A(S), P = U([−1, 1]d) and
Q = U

(
(w̄ + [− γ

2d ,
γ
2d ]d]) ∩ P

)
. The following lemma connects A to Q:

Lemma 1.5

L0
D(w̄) ≤ L

γ
2
D(Q) ≤ LγD(w̄) and L0

S(w̄) ≤ L
γ
2
S (Q) ≤ LγS(w̄)

Proof of lemma: For w ∈ support(Q) and x ∈ X we have

| 〈w, x〉 − 〈w̄, x〉 | =

∣∣∣∣∣
d∑
i=1

xi(wi − w̄i)

∣∣∣∣∣ ≤
d∑
i=1

|xi(wi − w̄i)| ≤
d∑
i=1

|(wi − w̄i)|

≤
d∑
i=1

γ

2d
=
γ

2

This proves L0
D(w̄) ≤ L

γ
2
D(w) ≤ LγD(w̄) (same with S) and we finish by

taking expectation.
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Margin Bounds

We now need to bound KL(Q||P ):

Lemma 1.6

KL(Q||P ) ≤ d ln
(
2d
γ

)
Proof of lemma:

KL(Q||P ) =

∫
H
q(h) ln

(
q(h)

p(h)

)
dh = ln

(
vol(P )

vol(Q)

)
≤ ln

(
2d

(γ/d)d

)
We can now finish the proof of the theorem:

L0
D(w̄) ≤ L

γ
2
D(Q) ≤ L

γ
2
S (Q) +

√
KL(Q||P ) + ln

(
m+1
δ

)
2m

≤ LγS(w̄) +

√√√√d ln
(
2d
γ

)
+ ln

(
m+1
δ

)
2m
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Generalization bounds

We will now show a new way to prove generalization - compression
bounds.

The idea - If you can define your hypothesis using only a fraction of the
data, you will not overfit.

Note - This does not mean the algorithm looks only at a fraction of the
data!

Example: Threshold function.

Example: Support vector machines. Only need support vectors to define
the classifier.
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Generalization bounds

Definition 2.1 (Compression Scheme)

A size k compression scheme is a pair of two functions:

Compression function : c : (X × Y)m → (X × Y)≤k

Reconstruction, function : r : (X × Y)≤k → H

Definition 2.2 (Compression algorithm)

A learning algorithm A is a size k compression algorithm if exists a
compression scheme c, r such that A(S) = r(c(S)).

Notation: The function c picks at most k samples out of S. Denote by I
and J the indexes of the chosen samples and its compliment. Denote by
SI and SJ the chosen samples and its compliment.
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Generalization bounds

Theorem 2.3

Let A be a size k compression algorithm with k < m/2, and assume that
`(h, z) ∈ [0, L]. The following holds with probability greater or equal to
1− δ:

LD(A(S)) ≤ LSJ (A(S)) + L

√
ln
(
1
δ

)
+ k ln

(
em
k

)
m

Proof: For all I ⊂ {1, ...,m} denote hI = r(SI). As hI is independent of
SJ , (before choosing by c) by Hoeffding

LD(hI) ≤ LSJ (hI) + L

√
ln
(
1
δ′

)
2(m− k)

≤ LSJ (hI) + L

√
ln
(
1
δ′

)
m

with probability greater or equal to 1− δ′.
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PAC-Bayes: Applications Compression Bounds

Generalization bounds

The number of candidate index sets I is
k∑
i=0

(
m
i

)
≤
(
em
k

)k
using the

Sauer-Shelah lemma.

If we chose δ′ = δ
(
em
k

)−k
and use the union bound we get that with

probability greater or equal to 1− δ′
(
em
k

)k
= 1− δ for all possible index

set I we have

LD(hI) ≤ LSJ (hI) + L

√
ln
(
1
δ′

)
m

= LSJ (hI) + L

√
ln
(
1
δ

)
+ k ln

(
em
k

)
m

This proves the theorem as A(S) is hc(S).

Note we can replace LSJ (A(S)) with m
m−kLS(A(S)).
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Generalization bounds

A note about SVM - The number of support vectors is not known in
advance.

We cannot use Theorem 2.3 as is, but it can be fixed using a SRM idea.
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Compression and VC dimension

For binary classification, does this imply PAC learnability and therefore
finite VC dimension?

Almost. We can always vacuously inflate H.

Solution - Assume that for all h ∈ H there exists S such that
r(c(S)) = h. Under this assumption we can conclude V C(H) ≤ k.

Open question - If V C(H) = d <∞, does H has a compression scheme?
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