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PAC learning The growth function Proof

Definition

Reminder: We are given m samples {(xi, yi)}mi=1 ∼ Dm and a hypothesis
space H and we wish to return h ∈ H minimizing LD(h) = E[`(h(x), y)].

Problem 1: It is unrealistic to hope to find the exact minimizer after seeing
only a sample of the data ( or even if we had perfect knowledge). We can
only reasonably hope for an approximate solution:
LD(h) ≤ min

h∈H
LD(h) + ε.

Problem 2: We depend on a random sample. There is always a chance we
get a bad sample that doesn’t represent D. Our algorithm can only be
probably correct: there is always some probability δ that we are
completely wrong.

We wish to find a probably approximately correct (PAC) hypothesis.
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Definition

Definition (PAC learnable)

A hypothesis class H is PAC learnable, if there exists a learning algorithm
A, satisfying that for any ε > 0 and δ ∈ (0, 1) there exist
M(ε, δ) = poly( 1

ε
, 1
δ
) such that for i.i.d samples Sm = {(xi, yi)}mi=1 drawn

from any distribution D and m ≥M(ε, δ) the algorithm returns a
hypothesis A(Sm) ∈ H satisfying

PSm∼Dm(LD(A(S)) > min
h∈H

LD(h) + ε) < δ

Next will show that if LS(h) ≈ LD(h) for all h then the ERM is a PAC
learning algorithm.
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Definition

We can look at an error of a learning algorithm A : Sm → H as

LD(A(S)) = LD(h∗) + (LD(A(S)− LD(h∗))) (1)

The first term is the approximation error. If we enlarge H it will decrease
(or not increase).

The second term is the estimation error. In general, the richer H is the
harder it is to find the optimum and this should increase. This is what we
will focus on.
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Uniform convergence

Definition (Uniform convergence)

A hypothesis class H has the uniform convergence property, if for any ε > 0
and δ ∈ (0, 1) there exist M(ε, δ) = poly( 1

ε
, 1
δ
) such that for any

distribution D and m ≥M(ε, δ) i.i.d samples Sm = {(xi, yi)}mi=1 ∼ Dm with
probability at least 1− δ, |LmS (h)− LD(h)| < ε for all h ∈ H.

It is trivial to bound |LmS (h)− LD(h)| for a single h using the Hoeffding
inequality (for a bounded loss function). The difficulty is to bound all the
h ∈ H uniformly.
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Uniform convergence

Theorem (PAC by uniform convergence)

If H has the uniform convergence with M(ε, δ) then H is PAC learnable
with the ERM algorithm and M( ε

2
, δ) samples.

Proof.

By uniform convergence: With probability at least 1− δ for all h ∈ H,
|LS(h)− LD(h)| ≤ ε

2
.

Define hERM = arg min
h∈H

LS(h) and h∗ = arg min
h∈H

LD(h).

LD(hERM ) ≤ LS(hERM ) + ε
2
≤ LS(h∗) + ε

2
≤ LD(h∗) + ε
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Finite hypothesis space

A first simple example of PAC learnable spaces - finite hypothesis spaces.

Theorem (uniform convergence for finite H)

Let H be a finite hypothesis space and ` : Y × Y → [0, 1] be a bounded loss
function, then H has the uniform convergence property with

M(ε, δ) =
ln

(
2|H|
δ

)
2ε2

and is therefore PAC learnable by the ERM algorithm.

Proof.

For any h ∈ H, `(h(x1), y1), ..., `(h(xm), ym) are i.i.d random variables with
expected value LD(h).

According to the Hoeffding inequality,

P (|LS(h)− LD(h)| > ε) ≤ 2e−2ε2m ≤ 2e−2ε2M(ε,δ) =
δ

|H| (2)
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Finite hypothesis space

Proof (Cont.)

We can now use the union bound: For all events A1, ..., An

P (∪ni=1Ai) ≤
n∑
i=1

P (Ai) (3)

For all h ∈ H define Ah as the event that |LS(h)− LD(h)| > ε. By
equation 2 we know that P (Ah) ≤ δ

|H| . With equation 3 we can conclude

P (∃h ∈ H : |LS(h)− LD(h)| > ε) = P (∪h∈HAh) ≤
∑
h∈H

P (Ah)

≤
∑
h∈H

δ

|H| = δ
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We have seen that finite hypothesis class can be learned, but what about
infinite ones like linear predictors?

We can discretize (after all we are working on a finite precision machines),
but this is not a great solution. The main problem is with the use of the
union bound as similar hypothesis will fail on similar samples.

The solution is the check how many effective hypothesis there are on a
sample of size m.

We will restrict ourselves (for the time being) to binary classification with
0− 1 loss.
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Definition

Definition

Let H be a set of function from X to {±1} and let C ⊂ X be a subset of
the input space. We denote by H|C all the function that can be derived by
restricting functions in H to C.

H|C = {h|C : C → {±1} : h ∈ H}

Definition (Growth function)

The growth function of H, ΠH(m) is the size of the largest restriction of H
to a set of size m.

ΠH(m) = max{|H|C | : C ⊂ X , |C| = m}
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Definition

Notice that ΠH(m) ≤ 2m.

Example 1: H = 2X for infinite X , ΠH(m) = 2m.

Example 2: For finite H, ΠH(m) ≤ |H|.

Example 3: For H = {ha(x) = sign(x− a), a ∈ R}, ΠH(m) = m+ 1.

Example 4: For H = {h±a (x) = sign(±x− a), a ∈ R}, ΠH(m) = 2m.

As we can see, even for an infinite hypothesis set it is possible that
ΠH(m)� 2m.
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Uniform convergence upper bound

We can now state the main theorem that shows the importance of the
growth function.

Theorem (Uniform convergence bound)

Let H be a hypothesis set of {±1} valued functions and ` be the 0− 1 loss,
then for any distribution D on X × {±1}, any ε > 0 and positive integer m,
we have

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
− ε

2m

8

)

Immediate corollary - if ΠH(m) grows sub-exponentially then H is PAC
learnable.
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Uniform convergence upper bound

This is not a simple proof, so we will go over the main steps first.

We wish to reduce the problem to a finite problem , so we will start by
showing the we can replace LD by LS̃ - the error on another m independent
”test” samples.

The next step to show you can fix the samples, and look at the probability
of permuting between the train and test sets.

Last part will be to use the union bound and Hoeffding on this reduced
case.
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Symmetrization

We define Z = X × {±1}.

Lemma (1)

Let Q = {S ∈ Zm : ∃h ∈ H s.t. |LS(h)− LD(h)| ≥ ε} and
R = {(S1, S2) ∈ Z2m : ∃h ∈ H s.t. |LS1(h)− LS2(h)| ≥ ε

2
}. For m ≥ 4

ε2
,

PS∼Dm(Q) ≤ 2PS1×S2∼D2m(R).

Proof.

Let S1 ∈ Q and pick h ∈ H such that |LS1(h)− LD(h)| ≥ ε.
By the Hoeffding inequality we know that PS2(|LS2(h)− LD(h)| ≤ ε

2
) ≥ 1

2
.

This means that

P
(
∃h ∈ H : |LD(h)− LS1(h)| ≥ ε ∧ |LD(h)− LS2(h)| ≤ ε

2

)
≥ P (Q)

2
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Symmetrization

Proof (Cont.)

P
(
∃h ∈ H : |LD(h)− LS1(h)| ≥ ε ∧ |LD(h)− LS2(h)| ≤ ε

2

)
≥ P (Q)

2

We now notice that if |LD(h)−LS1(h)| ≥ ε and |LD(h)−LS2(h)| ≤ ε
2
, then

by the triangle inequality |LS2(h)− LS1(h)| ≥ ε
2
.

This means that the probability above is lesser or equal to P (R) concluding
our proof.
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Permutations

The next step is to bound the probability of R with permutations between
”training” and ”testing”.

Define Γm as the set of permutations on {1, ..., 2m} that swap between i
and i+m, i.e. for σ ∈ Γm and 1 ≤ i ≤ m, σ(i) = i or σ(i) = i+m.

Lemma (2)

Let R be any subset of Z2m and D any distribution on Z. Then

PS∼D2m(R) = ES [Pσ(σS ∈ R)] ≤ max
S∈Z2m

Pσ(σS ∈ R)

When σ is chosen uniformly from Γm.

Lecture 2



PAC learning The growth function Proof

Permutations

Proof.

As S is a set of 2m i.i.d samples, then the probability of any event is
invariant to permutation, i.e. ∀σ ∈ Γm, PS∼D2m(R) = PS∼D2m(σS ∈ R).

Based on this we can deduce:

PS∼D2m(R) = ES [1R(S)] =
1

|Γm|
∑
σ∈Γm

ES [1R(σS)]

From the linearity of expectation we get

PS∼D2m(R) = ES

[
1

|Γm|
∑
σ∈Γm

1R(σS)

]
= ES [Pσ(σS ∈ R)]

This proves the first equality, the fact that
ES [Pσ(σS ∈ R)] ≤ max

S∈Z2m
Pσ(σS ∈ R) is trivial.
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Finite case

We have shown that we just need to bound the probability of permuting a
fixed sample.

Lemma (3)

For the set R = {(S1, S2) ∈ Z2m : ∃h ∈ H s.t. |LS1(h)− LS2(h)| ≥ ε
2
} as in

lemma 1, and permutation σ chosen uniformly from Γm,

max
S∈Z2m

Pσ(σS ∈ R) ≤ 2ΠH(2m)e−
ε2m
8

Proof.

Let S = ((x1, y1), ..., (x2m, y2m)) be the maximizing S, and let
C = {x1, ..., x2m}. By definition H|C = {h1, ..., ht} for t ≤ ΠH(2m).
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Finite case

Proof (Cont.)

We have σS ∈ R if and only if for some h ∈ H,∣∣∣∣∣ 1

m

m∑
i=1

`(h(xσ(i)), yσ(i))−
1

m

2m∑
i=m+1

`(h(xσ(i)), yσ(i))

∣∣∣∣∣ ≥ ε

2

As h|C ≡ hj |C for some 1 ≤ j ≤ t, it is enough to look at h1, ..., ht. We
define

uji =

{
1 if hj(xi) 6= yi

0 otherwise

So σS ∈ R if and only if for some 1 ≤ j ≤ t∣∣∣∣∣ 1

m

m∑
i=1

ujσ(i) −
1

m

2m∑
i=m+1

ujσ(i)

∣∣∣∣∣ ≥ ε

2
(4)
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Finite case

Proof (Cont.)

Notice that ujσ(i) − u
j
σ(m+i) = ±|uji − u

j
m+i| with both possibilities equally

likely, so

Pσ

(∣∣∣∣∣ 1m
m∑
i=1

(uj
σ(i)
− uj

σ(i+m)
)

∣∣∣∣∣ ≥ ε

2

)
= P

(∣∣∣∣∣ 1m
m∑
i=1

|uji − u
j
m+i|βi

∣∣∣∣∣ ≥ ε

2

)
where βi ∈ {±1} uniformly and independently. By the hoeffding

inequality this is smaller then 2 exp
(
− ε

2m
8

)
and using the union bound on

all h ∈ H|C we can bound it by 2ΠH(2m)e−
ε2m
8
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Finite case

Summery -

Theorem (Uniform convergence bound)

Let H be a hypothesis set of {±1} valued functions and ` be the 0− 1 loss,
then for any distribution D on X × {±1}, any ε > 0 and positive integer m,
we have

PS∼Dm (∃h ∈ H : |LS(h)− LD(h)| ≥ ε) ≤ 4ΠH(2m) exp

(
− ε

2m

8

)

The proof is just the combination of lemmas 1-3.

note: in lemma 1 re required that m ≥ 4
ε2

, this is not a problem because
the bound in this theorem is trivial for m < 4

ε2
.
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