
The Fundamental Theorem of Statistical Learning Lower bounds on sample complexity

Introduction to Statistical Learning Theory
Lecture 4

Lecture 4



The Fundamental Theorem of Statistical Learning Lower bounds on sample complexity

Quick recap:

We have seen that if H has finite VC dimension then it has uniform
convergence and therefore PAC learnable using the ERM algorithm.

We also have seen the No-Free-Lunch theorem that shows that any
learning algorithm will fail on some tasks.

Theorem (No-Free-Lunch)

Let A be any learning algorithm for the task of binary classification with
respect to the 0− 1 loss over a domain X . Let m be any number
smaller than |X |/2, representing a training set size. Then, there exists
a distribution D over X × {0, 1} such that:

1) There exists a function f : X → {0, 1} such that LD(f) = 0.
2) With probability at least 1/7 over the choice of S ∼ Dm we have that
LD(A(S)) ≥ 1/8.
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Infinite VC dimension

We will use the No-Free-Lunch theorem to show that any H with VC
dimension is not PAC learnable.

Theorem

Let H be a hypothesis class of functions from a domain X to {0, 1} with
V C(H) =∞ and let the loss function be the 0− 1 loss. The hypothesis
class H is not PAC learnable.

Proof.

Assume by contradiction that H is PAC learnable. Then there exists
some learning algorithm A (not necessarily ERM) such that for all
ε, δ > 0 there exists M(ε, δ) such that if m >M(ε, δ) then for all
distributions D, PS∼Dm(LD(A(S)) > LD(h∗) + ε) < δ where
h∗ = arg minh∈H LD(h)
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Infinite VC dimension

Proof.

Assume by contradiction that such algorithm exists. Pick some
ε < 1/8, δ < 1/7 and m >M(ε, δ). Since V C(H) =∞ there exists
some x1, ..., x2m ∈ X that H shatters.

From the No-Free-Lunch theorem there is a distribution D such that:
There exists some f : X → {0, 1} with LD(f) = 0 and
PS∼Dm(LD(A(S)) > 1/8) > 1/7.
If we remember the proof of the No-Free-Lunch, then we can recall that
we can build such distribution supported only by {x1, ..., x2m}. Since
this set is shattered by H, this means that LD(h∗) = 0.

This finishes the proof as PS∼Dm(LD(A(S)) > LD(h∗) + ε) ≥
PS∼Dm(LD(A(S)) > 1/8) > 1/7 > δ.
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Fundamental Theorem of Statistical Learning

We can combine everything we did so far and get the fundamental
theorem of statistical learning (binary classification):

Theorem (Fundamental Theorem of Statistical Learning)

Let H be a hypothesis class of functions from a domain X to {0, 1} and
let the loss function be the 0− 1 loss. The following are equivalent:

1 H has uniform convergence.

2 The ERM is a PAC learning algorithm for H.

3 H is PAC learnable.

4 H has finite VC dimension.
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Fundamental Theorem of Statistical Learning

Proof.

1⇒ 2 We have seen uniform convergence implies that ERM is PAC
learnable in lecture 2.

2⇒ 3 Obvious.

3⇒ 4 We just proved that PAC learnability implies finite VC dimension.

4⇒ 1 We proved in lecture 3 that finite VC dimension implies uniform
convergence.
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Fundamental Theorem of Statistical Learning

Remarks:
We notice that the VC dimension fully determines learnability for binary
classification.

We can extend to regression problem with a similar idea called fat
shattering dimension.

The VC dimension doesn’t just determine learnability, it also gives a
bound on the sample complexity (which we will show is tight).
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We have shown that if V C(H) = d then we can learn with

M(ε, δ) = O
(
d ln(1/ε)+ln(1/δ)

ε2

)
(and claimed the ln(1/ε) can be removed).

We will show that this bound is tight (up to the ln(1/ε)).

Theorem (Complexity lower bound)

Let H be a hypothesis class of functions from a domain X to {0, 1} with
V C(H) > 0 and let the loss function be the 0− 1 loss. Any PAC

learning algorithm has sample complexity M(ε, δ) = Ω
(
d+ln(1/δ)

ε2

)
.
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δ bound

We will split the dependence in δ and d, starting with δ:

Lemma (1)

Under the previous conditions, M(ε, δ) ≥ 0.5 log(1/(4δ))/ε2 for
ε < 1/

√
2.

The idea of the proof is to pick 2 almost identical distributions
(depending on ε) with different optimal solution, so that in order to
differentiate with high probability a large number of samples is needed.

Proof: Choose some c ∈ X that H shatters. For each b ∈ {±1} we will
define a distribution Db that picks c with probability 1, and b with
probability 1+ε

2 . This means that Db((c, y)) = 1+byε
2 . It is also not

hard to see that LDb(h) = 1−bh(c)ε
2 .
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δ bound

Since LDb(h) = 1−bh(c)ε
2 the optimal hypothesis has LDb(h

∗) = 1−ε
2 , so if

h(c) 6= b then LDb(h) = 1+ε
2 = LDb(h

∗) + ε. This means that h is an ε
approximation iff h(c) = b.

We will use the following notations: As x is irrelevant, we will only look
at Y = (y1, ..., ym). Also we will write A(Y ) for A(Y )(c) (as this is
what we care about). Lastly we will define
N+ = {Y ∈ {±1}m :

∑
yi ≥ 0} and N− = {±1}m\N+.

Notice that for Y ∈ N+, we have P+(Y ) ≥ P−(Y ) and the opposite for
Y ∈ N−.
We will now show that optimal algorithm (considering the worst case
out of D+ and D−) is the ERM.

Lecture 4



The Fundamental Theorem of Statistical Learning Lower bounds on sample complexity

δ bound

max
b∈{±}

Pb (A(Y ) 6= b) ≥ 1

2
P+(A(Y ) = −1) +

1

2
P−(A(Y ) = 1)

=
1

2

∑
Y ∈N+

P+(Y )1(A(Y ) = −1) +
∑
Y ∈N−

P+(Y )1(A(Y ) = −1)+

1

2

∑
Y ∈N+

P−(Y )1(A(Y ) = 1) +
∑
Y ∈N−

P−(Y )1(A(Y ) = 1) =

1

2

∑
Y ∈N+

P+(Y )1(A(Y ) = −1) + P−(Y )1(A(Y ) = 1)+

1

2

∑
Y ∈N−

P+(Y )1(A(Y ) = −1) + P−(Y )1(A(Y ) = 1) ≥

1

2

∑
Y ∈N+

P−(Y )1(A(Y ) = −1) + P−(Y )1(A(Y ) = 1)+

1

2

∑
Y ∈N+

P+(Y )1(A(Y ) = −1) + P+(Y )1(A(Y ) = 1) =
1

2

(
LD+(ERM) + LD−(ERM)

)
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δ bound

For the ERM, LD+(ERM) = LD−(ERM) (up to ties which we can
exclude by having uneven m). Both are equal that a binomial
B(m, (1− ε)/2) has a value greater then m/2. This can be bounded
using Slud’s inequality:

Theorem (Slud’s inequality)

Let X ∼ B(m, (1− ε)/2) then

P (X ≥ m/2) ≥ 1

2

(
1−

√
1− exp(−mε2/(1− ε2))

)

So the error probability is greater or equal to
1
2

(
1−

√
1− exp(−mε2/(1− ε2))

)
≥ 1

2

(
1−

√
1− exp(−2mε2)

)
using

the ε2 < 1/2 assumption. We can conclude that for
m < 0.5 ln(1/(4δ))/ε2

max
b
P

(
LDb(A(Y ))−min

h
LDb(h) ≥ ε

)
≥ 1

2
(1−

√
1− 4δ) ≥ δ

Where the last inequality is simple algebra. This finishes the proof.
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VC bound

We now need to bound the dependence in d = V C(H)

Lemma (2)

Under the previous conditions, M(ε, δ) ≥ d
83ε2

for ε < 1/8
√

2.

The proof is similar to the previous proof. Define ρ = 8ε. Pick c1, ..., cd
that H shatters. for any b ∈ {±1}d define a distribution Db that first
picks x = ci uniformly out of c1, ..., cd then picks y with probability
(1 + ybiρ)/2.

The next step is to prove that the ERM is optimal algorithm when
considering worst case. The proof is very similar to what we did earlier
(using independence and the same tricks) but a bit more cumbersome so
we will skip it.
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VC bound

For any function f

LDb(f) =
1 + ρ

2
· |{i ∈ [d] : f(ci) 6= bi}|

d
+

1− ρ
2
· |{i ∈ [d] : f(ci) = bi}|

d

So LDb(f)−minh LDb(h) = ρ · |{i∈[d]: f(ci) 6=bi}|d .

We will bound ES∼DMb
[LDb(ERM(S))−min

h∈H
LDb(h)] next:

ES [LDb(ERM(S))−min
h∈H

LDb(h)] =
ρ

d
ES [|{i ∈ [d] : ERM(ci) 6= bi}|]

We can look at the sampling as first sampling the ci index K ∼ U([d])m

and then sampling the labels yi ∼ bKi (with some abuse of notation).
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VC bound

We define for each K ∈ [d]m, ni(K) the number of times the index i
appears in K. Then

ρ

d
ES [|{i ∈ [d] : ERM(ci) 6= bi}|] =

ρ

d

d∑
i=1

EKEyj∼bKj [1(ERM(S)(ci) 6= bi]

1
≥ ρ

2d

d∑
i=1

EK(1−
√

1− exp(−2ρ2ni(K)))
2
≥ ρ

2d

d∑
i=1

EK(1−
√

2ρ2ni(K)))

3
≥ ρ

2d

d∑
i=1

(
1−

√
2ρ2EK [ni(K)]

)
=

ρ

2d

d∑
i=1

(
1−

√
2ρ2m/d

)
=
ρ

2

(
1−

√
2ρ2m/d

)
Where (1) is Slut’s inequality as before (using ρ2 < 1/2), (2) if from the

inequality 1− e−a ≥ a and (3) is Jensen’s inequality.
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VC bound

In summery we have shown so far that for every algorithm A, there
exists a distribution such that
ES [LDb(A(S))−minh∈H LDb(h)] ≥ ρ

2

(
1−

√
2ρ2m/d

)
≥ ρ

4

for m < d
83ε2

= d
8ρ2 .

To finish we will use a version of the Markov inequality
P (X > a) ≥ E[X]− a, for X ∈ [0, 1], a ∈ (0, 1). Define
∆ = 1

ρ (LDb(A(S))−minh∈H LDb(h)) and notice that ∆ ∈ [0, 1].

P (LDb(A(S))−min
h∈H

LDb(h) > ε) = P (∆ > ε/ρ) ≥ E[∆]− ε

ρ
≥ 1

4
− ε

ρ
=

1

8

finishing the proof of the lemma. With both lemmas, the theorem is
straightforward.
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remarks

We have seen that learning is possible with

M(ε, δ) = O
(
d ln(1/ε)+ln(1/δ)

ε2

)
using the ERM algorithm, and that

M(ε, δ) = Ω
(
d+ln(1/δ)

ε2

)
for any learning algorithm.

We have seen (and it can be extended) that the ERM is optimal when it
comes to minimizing the worst case scenario.

It is important to note, that under further assumptions (such as
smoothness, etc.) other algorithms may perform much better.
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