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Stability Regularization

Definition

We will study a new criteria for learnability - stability.

Intuitively, a stable algorithm is one that a small change to the input
results in a small change to the output.

There are a few ways to formalize this idea, we will go with the
following:

Consider a training set S = {z1, ..., zm} and an additional example z′.
Define S(i) = S ∪ z′/zi an alternative training set where z′ replaces zi.

If an algorithm is stable, we would expect `(A(S(i)), zi) to be close to
`(A(S), zi).
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Stability Regularization

Definition

Definition 1.1 (Replace-One-Stable - ROS)

Let ε : N→ R be a monotonically decreasing function. We say that a
learning algorithm A is Replace-One-Stable with rate ε(m) if for every
distribution D we have

`(A(S(i)), zi)− ` (A(S), zi) ≤ ε(m)

Definition 1.2 (On-Average-Replace-One-Stable - OAROS)

We say that a learning algorithm A is On-Average-Replace-One-Stable
with rate ε(m) if for every distribution D we have

E
S,z′

E
i∼U(m)

[
`(A(S(i)), zi)− ` (A(S), zi)

]
≤ ε(m)

Where U(m) is the uniform distribution on 1, ...,m.
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Stability Regularization

Definition

We will see some examples that will give some intuition as to why this
leads to genralization.

X = [0, 2π] with uniform distribution, Y = R and let ` be the square loss
`(y1, y2) = (y1 − y2)2. We define the probability on y (give x) as
y = sin(x) +N (0, 0.05), and we are given m = 10 data points.

Our hypothesis spaces are polynomials with degree d, and we use the
ERM algorithm.
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Stability Regularization

Stability and overfiting

We will show that stable algorithms do not overfit, then show how
regularization can produce stability. As ROS implies OAROS it is
enough to prove for OAROS

Theorem 1.3

Let A be a learning algorithm with OAROS stability rate ε(m), then

E
S∼Dm

[LD(A(S))− LS(A(S))] ≤ ε(m) (1)

Proof - We will show that
E

S∼Dm
[LD(A(S))− LS(A(S))] = E

S,z′
E

i∼U(m)

[
`(A(S(i)), zi)− ` (A(S), zi)

]
,

then we are done by definition.
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Stability Regularization

Stability and overfiting

Since S and z′ are drawn i.i.d from D we have

E
S

[LD(A(S))] = E
S,z′

[`(A(S), z′)] = E
S,z′

[`(A(S(i)), zi)]

= E
S,z′

E
i∼U(m)

[`(A(S(i)), zi)]

On the other hand,

E
S

[LS(A(S))] = E
S

E
i∼U(m)

[`(A(S), zi)] = E
S,z′

E
i∼U(m)

[`(A(S), zi)]

And this finishes the proof.
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Stability Regularization

Stability and overfiting

Stability itself is not a sufficient condition of learnability. Take for
example the constant learning algorithm which returns the same
hypothesis h for all S.

Definition 1.4 (Approximately-ERM)

Let ε : N→ R be a monotonically decreasing function. We say that a
learning algorithm A is an approximately-ERM (or AERM) with rate
ε(m) if for all datasets S of size m we have

LS(A(S)) ≤ LS(hERM ) + ε(m)
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Stability Regularization

Stability and overfiting

Theorem 1.5 (Learnability of stable AERM)

If algorithm A is OAROS stable with rate εstable(m) and AERM with
rate εERM (m) then

E
S

[LD(A(S))− LD(h∗)] ≤ εERM + εstable (2)

where h∗ = arg min
h∈H

LD(h).

Proof:

E
S

[LD(A(S))− LD(h∗)] = E
S

[LD(A(S))− LS(A(S))] +

E
S

[LS(A(S))− LS(h∗)] + E
S

[LS(h∗)− LD(h∗)] ≤ εstable + εERM + 0

Lecture 8



Stability Regularization

Stability and overfiting

The last theorem did not exactly prove PAC learnability - we gave a
bound on the expectation while we need a high probability bound. This
can be fixed easily Markov’s inequality, or through better techniques.

We have shown that AERM + stability ⇒ learnable. If is possible to
prove the converse - that if a problem is learnable, it is learnable by a
stable AERM algorithm.
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Stability Regularization

We will now show a how a standard ML practice, `2-regularization,
stabilizes learning.

We will first need to quick introduction to strong convexity.
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Stability Regularization

strong convexity

Definition 2.1 (Strong convexity)

A function f is λ-strongly convex for λ > 0 if for all x, y in its domain
and α ∈ [0, 1]

f (αx+ (1− αy)) ≤ αf(x) + (1− α)f(y)− λα(1− α)

2
||x− y||22

This gives some intuition - a smooth function is convex iff ∇2f � 0. A
smooth function is λ strongly convex iff ∇2f � λI.

Many of the properties of strongly arise from the simple fact that f(x) is
λ strongly convex iff g(x) = f(x)− λ

2 ||x||
2 is convex.
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Stability Regularization

strong convexity

Lemma 2.2

1 The function f(x) = λ
2 ||x||

2 is λ strongly convex.

2 If f is λ1 strongly convex and g is λ2 strongly convex then f + g is
λ1 + λ2 strongly convex.

3 If f is convex and g is λ strongly convex then f + g is λ strongly
convex.

4 If f is λ strongly convex and x∗ is the minimizer of f then for any
x, f(x)− f(x∗) ≥ λ

2 ||x− x0||
2.

Proof - 1+2 follow from definition. 3 follows from 2 using the fact that
convex is 0-strongly convex. We prove 4 for twice differential function:
From Tylor theorem

f(x) = f(x∗)+〈∇f(x∗), x− x∗〉+ 1

2
(x−x∗)T∇2f(z)(x−x∗) ≥ λ

2
||x−x∗||2
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Stability Regularization

Stability

We will now prove that l2 regularization is stable for Lipschitz loss.

Theorem 2.3

Define the l2 regularized ERM algorithm as
A(S) = arg minw

(
LS(w) + λ||w||2

)
. If ` be a ρ-Lipschitz convex loss

function, A(S) is Replace-One-Stable with rate ε(m) = 2ρ2

λm

Proof: Define fS(v) = LS(v) + λ||v||2. From Lemma 2.2 if is 2λ strongly
convex and fS(v)− fS(A(S)) ≥ λ||v −A(S)||2. On the other side:

fS(v)− fS(u) = LS(v)− LS(u) + λ(||v|| − ||u||) = LS(i)(v)− LS(i)(u)+

λ(||v|| − ||u||) +
`(v, zi)− `(u, zi)

m
+
`(u, z′)− `(v, z′)

m
.
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Stability Regularization

Stability

fS(v)− fS(u) = LS(v)− LS(u) + λ(||v|| − ||u||) = LS(i)(v)− LS(i)(u)+

λ(||v|| − ||u||) +
`(v, zi)− `(u, zi)

m
+
`(u, z′)− `(v, z′)

m

If we set v = A(S(i)), u = A(S) and remember that v minimizes

L
(i)
S (w) + λ||w||2 we can conclude that

λ||A(S(i))−A(S)||2 ≤ fS(A(S(i)))− fS(A(S)) ≤ `(A(S(i)), zi)− `(A(S), zi)

m
+

`(A(S), z′)− `(A(S(i)), z′)

m
≤ 2ρ

m
||A(S(i))−A(S)||.

So ||A(S(i))−A(S)|| ≤ 2ρ
λm and `(A(S(i)), zi)− `(A(S), zi) ≤ 2ρ2

λm
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Stability Regularization

Learnability

As we have seen AERM + stability ⇒ learnability. We have shown
that l2 regularized ERM is stable, we now need AERM.

Theorem 2.4

Let A(S) = arg minw(LS(w) + λ||w||2), then A(S) is AERM with rate
ε(m) = λ||wERM ||2

As LS(A(S)) ≤ LS(A(S) + λ||A(S)||2 ≤ LS(wERM ) + λ||wERM ||2

Corollary 2.5

Let ` be a convex ρ-Lipschitz loss function and assume

∀w ∈ H : ||w|| ≤ B then for λ =
√

2ρ2

B2m
the regularized ERM satisfies

E
S

[LD(A(S))] ≤ min
w∈H

LD(w) + ρB

√
8

m
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Stability Regularization

Learnability

Proof - We have E
S

[LD(A(S))] ≤ min
w∈H

LD(w) + εstable(m) + εERM (m).

We proved that εERM ≤ λB2 and ε(m) = 2ρ2

λm . Setting λ = Bρ
√

8
m

finishes the proof.

The problem with this proof is that we added the boundness
assumption. Even without it we can prove

Theorem 2.6

Let ` be a convex ρ-Lipschitz loss function. The regularized ERM
satisfies

E
S

[LD(A(S))] ≤ LD(w∗) + λ||w∗||2 +
2ρ2

λm

where w∗ = arg min
w∈H

LD(w).
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Stability Regularization

Learnability

Theorem 2.6 proves that regularized ERM can learn if the right λ is
chosen. We however cannot chose the right one without knowing ||w∗||.
Nevertheless there are many practical methods of finding the right
parameter such as validation set, cross validation etc.

An important example of such a problem is the SVM we discussed
previously.
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