
Lecture 11 – Fast matrix multiplication

Uriel Feige
Department of Computer Science and Applied Mathematics

The Weizman Institute
Rehovot 76100, Israel

uriel.feige@weizmann.ac.il

June 16, 2014

1 Fast matrix multiplication

The main topic of this lecture is fast matrix multiplication. This topic is covered very well
in textbooks, so the notes will be more sketchy than usual, and are meant mainly to record
the topics covered.

1.1 Multiplying complex numbers

Given two complex numbers, a + ıb and c + ıd, we wish to compute their product (ac −
bd)+ ı(ad+ bc). Hence we need to compute two values, M1 = (ac− bd) and M2 = (ad+ bc).
We assume that multiplication of real numbers is much more expensive then their addition
or subtraction, and hence we wish to minimize the number of multiplications. The naive
computation of M1 and M2 uses four multiplications. This can be reduced to three as
follows. Compute P1 = ac, P2 = bd, and P3 = (a + b)(c + d). Now M1 = P1 − P2 and
M2 = P3 −P1 −P2. We have used three multiplications, two additions (for computing P3),
and three subtractions.

1.2 A more general scenario

More generally, we may study a scenario in which we are given two types of input variables,
x1, x2, . . . xc and y1, y2, . . . yr. (In the complex product case we have x1 = a, x2 = b, y1 = c,
y2 = d.) We are given a list M1,M2, . . . of desired expressions that we need to compute,
where each expression is a linear combination of cross products between x and y terms.
(In the complex product case M1 = x1y1 − x2y2 and M2 = x1y2 + x2y1.) We wish to find
a smallest l and basic products P1, . . . Pl such that each Mi can be expressed as a linear
combination of the Pj ’s. A basic product is a linear combination of x variables multiplied
by a linear combination of y variables.

There is a nice matrix representation for this question, where the Mi are represented as
c by r matrices, with entry kl in the matrix equal to the coefficient of xkyl in Mi. The Pj ’s
can be chosen as arbitrary c by r rank one matrices. (I am too lazy to draw this here now,
but illustrations appear in the CLR book.) This helps in visualizing the meaning of the
various products, and can guide us in obtaining a good choice of basic products P1, . . . Pl.

1



1.3 Matrix multiplication

Let X = {xij} and Y = {yij} be two order n matrices. Their product M = {mij} is defined
via mij =

∑
k aikbkj . Note that matrix multiplication is not a commutative operation. For

computing matrix multiplication XY = M , Strassen used the following approach. Assume
for simplicity that n is a power of 2. Break each n by n matrix into 4 n/2 by n/2 blocks.
Then for 1 ≤ i, j ≤ 2 indexing a block, Mij = Xi1Y1j +Xi2Y2j . Hence to compute M we
need to compute four expressions M1,M2,M3,M4. Each expression is a linear combination
of two products. Hence altogether eight products of n/2 by n/2 matrices are involved.
Strassen showed that there is a choice of seven basic products from which all expressions
can be derived as linear combinations.

This improves over the naive O(n3) time for matrix multiplication as follows. Let T (n)
be the time to multiply two order n matrices. Than we can obtain the recursion

T (n) = 7T (n/2) +O(n2)

where the O(n2) term acounts for the addition operations. As there are logn levels of
recursion, the number of multiplications is 7logn = nlog 7 ≃ n2.81. The number of additions
is the same, up to constant factors.

There are many possible choices of seven basic products for this problem. In class we
used the visual approach to derive one such choice. Think of each quantity below as the
matrix representing it. Observe that in this representation,

∑
Mij is a matrix of rank two.

Hence it is the sum of the two rank one matrices below:
P1 = (X11 +X21)(Y11 + Y12)
P2 = (X12 +X22)(Y21 + Y22)
It now suffices to compute only M11, M12 and M21, because M22 can then be obtained

as
M22 = P1 + P2 −M11 −M12 −M21

Hence we need to compute only three expressions, and we still have five basic products
left to introduce. But we can also reuse P1 for this purpose. Hence we will have six basic
products generating three expressions that include six products altogether, which seems like
a reasonable task.

There are several ways of using two basic products to generate M21, and similarly for
M12. In anticipation of the basic product P7 that we shall later use in order to generate
M11, we use the basic products

P3 = X21(Y11 + Y21)
P4 = (−X21 +X22)Y21

to generate
M21 = P3 + P4

and the basic products
P5 = X12(Y12 + Y22)
P6 = (X11 −X12)Y12

to generate
M12 = P5 + P6

To generate the missing M11, it suffices to introduce just one more basic product:

2



P7 = (X12 +X21)(Y12 − Y21)
giving

M11 = P1 − P3 − P6 − P7

Finally, substituting for M11,M21,M12 in the expression above for M22 we obtain

M22 = P2 − P4 − P5 + P7

Altogether we use 10 additions/subractions to generate the Pj ’s, and then 8 addi-
tions/subtractions to generate the Mij ’s.

The asymptotic running time of fast matrix multiplication has been improved by in-
troducing more sophisticated techniques. For many years, the best bound was roughly
O(n2.376), by Coppersmith and Winograd. This bound has been improved to roughly
O(n2.373) recently. The best exponent for matrix multiplication is traditionally referred
to as ω. (Hence currently ω ≃ 2.373.)

1.4 Boolean matrix multiplication

Strassen’s algorithm uses not only additions and multiplications so as to multiply matrices,
but also subtractions (the inverse of addition). For Boolean matrix multiplication, the
matrices have only 0/1 entries, scalar products are replaced by logical and, and scalar
additions are replaced by logical or. (Hence mij =

∨
k xik ∧ ykj .) Now there is no notion of

subtractions, and Strassen’s algorithm does not apply.
However, we can simulate Boolean matrix multiplication by integer matrix multiplica-

tion, if in the final answer we interpret every nonzero entry as 1. Hence Strassen’s algorithm
applies also in this case. To avoid building up large numbers in intermediate steps of the
algorithm, we can perform all operations modulo k, where k > n is an arbitrary integer.
This does not affect the final result of the integer matrix multiplications, because all entries
of the final result are smaller than k.

Another method for Boolean matrix multiplications uses only bit operations, but uses
also randomization. It replaces logical and and or by multiplication and addition mod-
ulo 2. A random matrix Y ′ is created by changing every 1 entry in Y independently with
probability 1/2 to 0. Then the modulo 2 product M ′ = XY ′ is computed. Observe that
m′

ij = 1 implies mij = 1, and furthermore, that mij = 1 implies that with probability 1/2
over the choice of Y ′, m′

ij = 1. Hence by repeating the experiment O(log n) times with
independently chosen Y ′, the correct M is obtained with high probability as the logical or
of all the M ′ matrices that were obtained.

1.5 Applications to graph reachability problems

Let A be an adjacency matrix of a directed graph G(V,E). That is, aij = 1 if (i, j) ∈ E,
and 0 otherwise. Then entry ij of Ak counts the number of walks from i to j (where a walk
is a path that can repeat edges and vertices).

To see if a directed graph contains triangles (directed cycles of length 3), we can use
fast matrix multiplication to compute A3, and check if the diagonal has a nonzero entry.
(Alternatively, compare entries ij in A2 to entries ji in A.) Note that this is faster than
exhaustively checking all triples of vertices.

3



If we are just interested in connectivity information, then we use Boolean matrix multi-
plication. If we want connectivity of distance up to k, we can add self loops to all vertices
of G (adding 1 along the diagonal of A), and then Ak automatically includes all 1 entries
from all Ai, i ≤ k. To compute transitive closure (which pairs of vertices are connected by
directed paths), compute An. This uses log n matrix multiplications, by repeated squar-
ing. This is not so impressive, because the naive algorithm for computing transitive closure
(based on breadth first search) takes only O(m+ n) time on a graph with m edges. How-
ever, for related problems the fast matrix multiplication approach improves over the naive
bound. In particular, Seidel shows how all pairs shortest distances can be computed in time
Õ(nω) time on unweighted graphs (the Õ notation hides logarithmic terms). In comparison,
the naive algorithm would perform breadth first search from each possible starting vertex.
This takes O(mn) time. The fast matrix multiplication approach is asymptotically more
efficient when the graphs are dense (m ≫ nω−1).

References:

• A. Aho, J. Hopcroft, J. Ullman. “The Design and Analysis of Computer Algorithms”.
Addison-Wesley, 1974.

• T. Cormen, C. Leiserson, R. Rivest. “Introduction to Algorithms”. The MIT Press
and McGraw-Hill Book Company, 1990.

• Raimund Seidel: On the All-Pairs-Shortest-Path Problem in Unweighted Undirected
Graphs. J. Comput. Syst. Sci. 51(3): 400–403 (1995).

4


