
Lecture 1 – Sorting and Selection

Uriel Feige
Department of Computer Science and Applied Mathematics

The Weizman Institute
Rehovot 76100, Israel

uriel.feige@weizmann.ac.il

Nov 2 and 9, 2017

1 Sorting

When designing an algorithm for a computational problem, we shall be concerned with
correctness and with complexity. The measure that we shall often use for complexity is the
number of basic operations as a function of the input size. This roughly corresponds to the
running time of the algorithm, but not exactly. The actual running time also depends on
the data structures used, on hierarchical structure of memory and locality of reference, on
the instruction set of the particular processor and the relative costs of various operations,
on the optimizing compiler, and so on. Giving a detailed analysis of running time is beyond
the scope of this course. Instead, we shall illustrate the issues involved through the example
of sorting.

The input to a sorting problem is a list of n items X = x1, . . . , xn. There is a total order
relation on the items (e.g., by size, or by lexicographic order). For simplicity and w.l.o.g.
we may assume here that no two items are equal. The order in X of an item xi is equal to
the number of items in X not larger than xi. The goal of the sorting algorithm is to come
up with a permutation π : {1, n} −→ {1, n} such that for every i, the order of xi is π(i).

We shall consider algorithms based on comparisons, and our measure of complexity will
be the number of comparisons.

1.1 Insertion sort

Insertion sort: Consider the items of X one by one. By the end of phase i, we hold a list
Xi that is the sorted version of the prefix x1, . . . , xi. In phase i + 1, use binary search to
insert xi+1 in its correct location in Xi, obtaining the list Xi+1 which is the sorted version
of the prefix x1, . . . , xi+1. After phase n, output Xn.

Complexity: The number of comparison operations needed to insert item xi is roughly
log i (log denotes logarithms to the base 2). Hence the total number of comparisons is
roughly

∑n
i=2 log i ≤ n log n.

In terms of number of comparison operations, insertion sort is almost optimal w.r.t.
comparison based algorithms. As computation branches only as the result of comparisons,

1

every comparison based sorting algorithm needs to perform at least log n! ' n log n com-
parisons so as to be able to produce each of the n! possible outputs. (A similar lower bound
holds also for comparison based randomized algorithms.)

However, in practice, insertion sort is not very efficient. The reason is that it needs to
pay a lot in data movement operations. Assume for example that Xi is held in an array of
length i. Then in order to insert xi+1 and create the array Xi+1, we may need to move Ω(i)
items, giving a total of Ω(n2) data movements. For large values of n, the time needed to
move data around may be a dominant factor in the running time for insertion sort, making
the number of comparisons an inadequete measure of complexity.

Using more complicated data structures, it is possible to reduce the amount of data
movement, perhaps at the expense of additional comparisons. This leads to algorithms
such as heapsort. Hence the basic idea behind insertion sort does lead to algorithms that
are of practical significance, though going from this basic idea to a practical algorithm
involves additional design stages of the type that we will not be concerned with in this
course.

1.2 Quicksort

We now consider another well known sorting algorithm.
Quicksort: Choose a splitting item xi. Compare every item to xi and split the list

X − {xi} into Xl (the items smaller than xi) and Xh (the items larger than xi). Sort each
of the lists Xl and Xh recursively.

The complexity of quicksort depends on the choice of splitting item. Ideally, for every
sublist X ′ generated during a run of the algorithm, the splitting item for X ′ is the median
of X ′, splitting X ′ into two equal size parts. This gives log n levels of recursion. As each
item is compared at most once in each level, the number of comparisons then is roughly
n log n.

However, if the splitting item is always the largest item in X ′, we have n levels of
recursion, requiring Ω(n2) comparisons.

One reason why quicksort works well is that the average case behaves more like the best
case than like the worst case, as we shall see shortly. But the average case does require
more comparisons than insertion sort. So why is quicksort preferable? The reason is that
quicksort pays very little overhead on top of comparisons. It is relatively easy to implement
quicksort in a way that at most one data item is moved per comparison. (For example, use
two pointers advancing from both sides on X ′, and think of the splitting item x as lying
in between. Pointers stop on items that are misplaced with respect to x, these items are
swapped, and then the pointers continue to advance.) Moreover, quicksort exhibits high
locality of reference, paying relatively little overhead for paging/caching.

Expected complexity: We consider here randomized quicksort, in which the splitting
item for X ′ is chosen uniformly at random from the items of X ′. Intuitively, in this case
X ′ is expected to split at a ratio of roughly (1/4, 3/4), giving O(log n) levels of recursion,
and O(n log n) comparisons. It is possible to use “brute force” and give a detailed analysis
based on this intuition. However, we shall seek a simpler analysis.

Let us first prove again an upper bound on the number of comparisons. Consider an
arbitrary pair of items. Quicksort compares them at most once. Hence the total number

2

of comparisons is at most
(n
2

)
. (A similar upper bound holds for most comparison based

sorting algorithms.)
Now let us use similar principles to bound the expected number of comparisons. For

simplicity of notation, let x1, . . . , xn denote the sorted order of X (which is what the algo-
rithm is trying to find). Let yij denote the indicator random variable that is 1 if xi and xj
were directly compared during a run of quicksort, and 0 otherwise. (The random variable
depends on the choices of random splitters.) Hence we are interested in the expectation
E[
∑
i<j yij]. Working with expectations is very convenient, because of the linearity of ex-

pectation, which holds even for random variables that depend on each other. Hence we have
E[
∑
i<j yij] =

∑
i<j E[yij].

Observe that E[yij] =
∑
k kProb[yij = k] is exactly equal to the probability that xi and

xj were directly compared. This probability is exactly 2/(j− i+1). (Consider the first time
when one of xi, . . . , xj happens to be a splitting item. If either xi or xj are the splitting
item, they are directly compared. Otherwise, they end up in different sublists and are never
compared.) Hence

∑
i<j

E[yij] =
∑
i<j

2

j − i+ 1
'

n−1∑
i=1

2 ln(n− i) ' 2n lnn

Hence the expected number of comparisons in randomized quicksort is roughly 2n lnn.

1.3 Randomized algorithms

Randomized quicksort is a randomized algorithm. It is of the “Las Vegas” type, meaning
that it always produces the correct answer, and randomization only effects the running
time. It is possible to run a deterministic version of quicksort in which the splitting item
is chosen by some deterministic rule (e.g., the first item in X ′, or the middle item of X ′).
In this case the running time would depend on the input. For most inputs, the running
time would be O(n log n), but for some rare inputs, the running time may be as high as
Ω(n2). The purpose of choosing the splitting item at random is so as to have quicksort have
expected O(n log n) running time for every input.

When analysing the running time of a randomized algorithm, one may be interested
in the whole distribution (for every t, the probability that the algorithm runs for t steps).
However, in most cases, the expectation is the major measure to consider. There are several
reasons for this.

1. If the algorithm is run many times on many inputs, then by the laws of large numbers,
the average run time will converge to the expectation. (The number of runs needed so
as to observe such a convergence depends on other measures such as the variance. An
implication of the items below is that the variance in the running time of randomized
algorithms does not behave badly, implying rather quick convergence.)

2. Let T be the running time of a randomized algorithm. Because T ≥ 0, we trivially
have that for every c > 1, Prob[T ≥ cE[T]] ≤ 1/c. Hence we also have tail bounds on
the probability of exceptionally long runs.

3

3. To get better control of the tail bounds, one may stop a Las Vegas algorithm once it
runs for 2E[T] steps and restart it on the original input with fresh random coin tosses.
In each period of 2E[T] steps it has probability at least 1/2 of finishing. Hence in this
case, Prob[T ≥ cE[T]] ≤ (1/2)c/2. The probability of exceptionally long runs decays
exponentially.

4. For many Las Vegas algorithms (such as quicksort), restarting on the original input is
not really necessary. We can restart on the concatenation of sublists that ended the
previous phase (as this is a legal input), or better still, just continue the algorithm
without interruption. Hence for randomized quicksort, the probability of exceptionally
long runs decays exponentially.

2 Selection

The largest item can be selected in n− 1 comparisons, e.g., by a tree-like tournament. The
second largest can be selected in n− 1 + log n comparisons, by having a tournament among
those who were directly eliminated by the largest item.

The most challenging item to select is the median. For deterministic algorithms, the
minimum number of comparisons that suffices for finding the median is known to lie strictly
between 2n and 3n (the exact value is open). We present a simple randomized median
selection algorithm with linear complexity, often referred to as quickselect.

Given a list X with n items in which one seeks the item of order k, choose an item xi
uniformly at random to be the splitting item. Compare every other item to xi, creating
two lists Xh (of items of value higher than xi) and X` (of items of value lower that xi). If
|Xh| = k−1 then xi was of order k. If |Xh| ≥ k, continue recursively with Xh instead of X,
updating n to be |Xh|. If |Xh| < k−1, continue recursively with X` instead of X, updating
n to be |X`| and k to be k − 1− |Xh|.

Let us analyse the expected number of comparisons of the above randomized algorithm.
A simple way of obtaining an upper bound that is not tight is at follows. (Note: the upper
bound explained here is tighter and more elegant than the one shown in class.) We prove
by induction that T (n) = 4n is an upper bound on the expected number of comparisons
needed to select the element of rank k among n items. Consider a phase starting with n
items. A splitting item is chosen, n− 1 comparisons are made, and the algorithm continues
to the next phase with one of the lists Xh or X` (or already ends if the splitting item
happened to be of rank k). Hence the number of items continuing to the next phase is
at most max[1, |Xh|, |X`|] ≤ max[|Xh|, |X`|]. Observe that if the splitting item is chosen
uniformly at random, then the expectation satisfies E[max[|Xh|, |X`|]] ≤ 3n

4 . Using the fact
that both expectation is linear and the upper bound 4n is linear we get that:

T (n) ≤ n− 1 + 4
3n

4
≤ 4n

Hence 4n is indeed an upper bound on T (n).
The exact expectation (up to low order terms) can be derived using the following ap-

proach, though it involves more tedious computations. Recall the variables yij from the
analysis of quicksort, with i < j. Consider several cases.

4

1. i < j ≤ n/2. Elements i and j will be directly compared only if a splitting item is
either i or j before there is a splitting item in the range i to n/2 (which would separate
i from the list containing the median). Hence E[yij] = 2

n/2−i . Fixing i and summing

over all j for this case we have
∑
j|i<j≤n/2E[yij] ≤ 2. Summing over all i < n/2 we

get n comparisons for this case.

2. n/2 ≤ i < j. By symmetry with the above case, this case also contributes at most n
comparisons (in expectation).

3. i < n/2 < j. Here E[yij] = 2
j−i+1 . Let us provide a rough estimate of

∑
i<n/2<j

2
j−i+1 .

For fixed i summing over all j gives at most 2 (ln(n− i)− ln(n/2− i) +O(1)). Sum-

ming over all i gives at most (after rearranging) 2
∑n
i=n/2 ln i − 2

∑n/2
i=1 ln i + O(n) =

2
∑n
i=1 ln i− 4

∑n/2
i=1 ln i+O(n). Changing to integrals and using

∫
lnxdx = x lnx− x

we get at most 2n lnn− 2n− 4(n2 ln n
2 − 4n2) +O(n) ' 2n ln 2 +O(n).

Hence overall the expected number of comparisons made by this algorithm is at most
(2 + 2 ln 2 + O(1))n. More careful estimations for the case i < n/2 < j can determine the
exact constant contributed by the O(1) notation, but we refrain from doing this.

2.1 Selecting the median deterministically

We assume for simplicity that all numbers divide with no remainders in the description
of algorithms, and hence omit ceiling and floor notations. (In the end of this section we
explain how to change the algorithm so as to avoid this assumption.)

We present here a deterministic algorithm that outputs the median. Moreover, for every
other item it also determines if it is larger or smaller than the median. (Any comparison
based algorithm has this additional property. See Section 2.3. However, more general classes
of algorithms need not have this property. For example, if one could do arithmetic on items,
then the comparison 2x1 = x2 + x3 shows that x1 is the median among {x1, x2, x3}, but
does not determine which of x2 and x3 is smaller than x1.)

The input to the algorithm is a set X of n items and a parameter k, and the desired
output is the kth largest item.

Partition the set X into n/5 groups R1, R2 . . ., each of size 5. For each group Ri find its
median mi. Consider only the median items m1,m2, . . . of each group (hence there are n/5
items). Recursively, find the median among these median items. Let m be this median item.
Compare m against each of the original items, other than those for which the outcome of
the comparison is already known. Specifically, there is no need to compare m against any of
the other median items (by our assumption that our median finding algorithm determines
for other items whether they are larger than the median). Likewise, if mi < m then m
needs to be compared only against those two items in Ri that are larger than mi, and if
mi > m then m needs to be compared only against those two items in Ri that are smaller
than mi.

The above completes one phase of the algorithm.
Let X` denote the set of items smaller than m, and let Xh denote the set of items larger

than m. If |Xh| = k − 1 then m was of order k. If |Xh| ≥ k, continue recursively with Xh

5

instead of X, updating n to be |Xh|. If |Xh| < k − 1, continue recursively with X` instead
of X, updating n to be |X`| and k to be k − 1− |Xh|.

Clearly, the above algorithm outputs the median. To analyse its running time, we use
a recurrence relation. Let T ∗(n) be the best possible upper bound (taken over all possible
values of k) on the time to select the kth largest item out of n items. Then we have the
following recurrence relation:

T ∗(n) ≤ n

5
T ∗(5) + T ∗(

n

5
) + (

2n

5
− 2) + T ∗(

7n

10
)

The first term is for finding the medians in the n/5 groups. The second term is for
finding m, the median of medians. The third term is the additional comparisons made by
m (two items in each group, except for the group containing m itself)). The fourth term is
for doing selection in either X` or Xh (where-ever needed). Observe that there are dn/10e
medians mi smaller or equal to m, and each of them certifies that two additional items are
smaller than m. Hence |Xh| ≤ 7n

10 , and by symmetry, the same holds for |X`|.
Rather than finding T ∗(n) (which might be a fairly complicated function of n), let us

find some upper bound on it, namely, some T (n) that satisfies T (n) ≥ T ∗(n) for all n.
Observe that

T ∗(n) ≤ n

5
T (5) + T (

n

5
) + (

2n

5
− 2) + T (

7n

10
)

and hence if T (n) satisfies the reverse inequality

T (n) ≥ n

5
T (5) + T (

n

5
) + (

2n

5
− 2) + T (

7n

10
)

then surely T (n) is an upper bound on T ∗(n).
The above inequality does not allow for a solution of the form T (x) = cx for some

constant c. To overcome this problem, the key insight is that for sufficiently large c, we
know that T (5) is in fact much smaller than cn, and hence can be replaced by a smaller
expression. In particular, five items can be sorted by insertion sort using only 8 comparisons,
and the median can be found by only 7 comparisons. Hence we can replace the inequality
by:

T (n) ≥ 7
n

5
+ T (

n

5
) + (

2n

5
− 2) + T (

7n

10
)

Consider a solution of the form T (x) = cx. We get

cn ≥ 7
n

5
+ c

n

5
+ (

2n

5
− 2) + c

7n

10
=

9c

10
n+

9

5
n− 2

Taking c = 18 we see that T (n) = 18n is a valid upper bound.
One might be concerned that rounding issues (the fact that at various stages n is not

divisible by 5) may introduce errors in our analysis of T (n) and that they build up. There is
sufficient slackness in the analysis to address them. Here is one way of doing this. Express
n = 5d + r, where d ≥ 1 is integer, and r ∈ {0, 1, 2, 3, 4}. Run the corresponding phase
only on 5d items, putting r items aside. Then compare the r items with m (to see which of
them continues to the next phase), and the phase ends. The desired inequality becomes:

6

T (n) = T (5d+ r) ≥ 7d+ T (d) + (2d− 2) + T (
7d

2
+ r) + r

For r ∈ {3, 4}, T (n) = 18n no longer is a valid solution to the above inequality. Hence
it seems as if we should seek an upper bound larger than 18n. However, this is misleading.
In fact, we can prove an upper bound smaller than 18n, as it strengthens the inductive
hypothesis. We need to be careful that the upper bound holds for all n < 5 (which serve as
the base case for the recursion). Specifically, we can take T (n) = 18n− 2 and then we get
that

90d+ 18r − 2 ≥ 7d+ (18d− 2) + (2d− 2) + (18(
7d

2
+ r)− 2) + r = 90d+ 18r − 6 + r

and the inequality holds (because r ≤ 4).

2.2 An asymptotically optimal randomized median selection algorithm

Pick at random a set S of εn items in X, where ε < 1
8 will be determined later.

In S, use any linear time selection algorithm to select an item h of order (12 − ε)|S| and
an item ` of order (12 + ε)|S|.

Compare every item xi ∈ X first with h, and if xi < h, then also compare xi with `.
Let Y be the set of items satisfying ` < xi < h. Let X` be the set of items smaller than `,
and let Xh be the set of items larger than h.

Check that (12 − 2ε)n ≤ |Xh| < n
2 and (12 − 2ε)n ≤ |X`| < n

2 . If either one of these four
inequalities fail, then restart the algorithm.

Else, the median in X is the item of order n/2 − |Xh| in Y . Search for this item in Y
using any linear time deterministic selection algorithm.

Let cn be the running time of the deterministic selection algorithm. Then if the algo-
rithm does not restart, its running time is at most: 2cεn+ n+ (12 + 2ε)n+ 4cεn. The first
term comes from selecting two items in S (in fact, once one item is selected, the second item
can be selected within a set smaller than S, but we ignore such improvements), the second
term is for comparisons with h (also here, items of S need not be compared with h), the
third term is for comparison with ` (cannot be possibly done more than (12 + 2ε)n times,
because then Xh is too small and the algorithm restarts), and the fourth term is for selection
within Y . So altogether the running time with no restarts is at most T1 = 3n

2 + (6c+ 2)εn.
Let p denote the probability that the algorithm restarts. Then the probability that the

algorithm is run for the kth time is pk−1, and hence the expected number of times that the
algorithm is run is

∑
i≥0 p

i = 1
1−p . Altogether, the expected running time of the algorithm

is at most T1
1−p .

Let us bound p from above. For this we use the following concentration result for
independent random variables.

Theorem. Let X =
∑
Xi where the Xi are independent Boolean random variables,

Xi ∈ {0, 1}, pi = Pr[Xi = 1], and µ = E[X] =
∑
pi. For 0 < δ ≤ 1 we have the Chernoff

bounds

Pr[X ≥ (1 + δ)µ] < [
eδ

(1 + δ)(1+δ)
]µ < e(−δ

2/2+δ3/6)µ ≤ e(−δ2/3)µ

7

and
Pr[X ≤ (1− δ)µ] < e−δ

2µ/2.

Suppose for simplicity that we choose S with repetition. To have |Xh| ≥ (12 − 2ε)n we
need h to be of order at most (12 − 2ε)n in X. This will happen if S has at most (12 − ε)|S|
items among the first (12 − 2ε)n of X. The probability that this fails can be upper bounded
using the Chernoff bound, by setting µ = (12 −2ε)|S| ≥ εn

4 and δ ≥ 2ε. We get a probability

of failure not more than e−ε
3n/3. Altogether, there are four types of bad events to exclude,

and for each of them its probability can be upper bound in the same manner. One obtains
that p ≤ 4e−ε

3n/3.
Picking ε = n−1/4, the expected number of comparisons made by the median selecting

algorithm becomes 3n
2 + o(n).

2.3 A lower bound for selecting the median

A lower bound of 3n
2 − o(n) is known for the expected number of comparisons needed by

any randomized algorithm for selecting the median. Here we shall show a similar lower
bound for deterministic algorithms (which is simpler to prove, and stronger deterministic
lower bounds are known).

Let the items be {1, . . . , n}, given as input in some arbitrary order, and one needs to
select the median item n/2. For item i < n/2, a useful comparison is one that compares
i with some j in the range i < j ≤ n/2. For item i > n/2, a useful comparison is one
that compares i with some j in the range n/2 ≤ j < i. Consider the set of comparisons
made when an algorithm for selecting the median ends. We claim that every item i 6= n/2
must be involved in a useful comparison. Suppose otherwise for some i < n/2 (the case
i > n/2 is similar). Then the total order {1, . . . , i− 1, i+ 1, . . . n/2, i, n/2 + 1, . . . n} is also
consistent with the set of comparisons, and in this order i is of rank n/2. This means that
the algorithm errs if in its input order the items holding values i up to n/2 are permuted
cyclically (i replaces n/2, and j + 1 replaces j for i < j ≤ n/2).

It follows that every median finding algorithm (including randomized “Las Vegas” ones)
must make n− 1 useful comparisons. To prove a nontrivial lower bound on the number of
comparisons, we show that it must also make some non-useful comparisons. We refer to
these as wasted comparisons.

The lower bound for the deterministic case is based on an adversary argument. Rather
than fixing the values of all items in advance, this is done “on the fly”. At every step, the
algorithm points to two items that it wishes to compare. If both were already involved
in previous comparisons, then their values are already fixed, and the reply is the result
of comparing these values. However, if one or both of these items were not involved in
previous comparisons, then the adversary picks values for them (among values not picked
earlier for other items), and then answers the comparison. The goal of the adversary is to
pick values in such a way that would delay the end of the algorithm as much as possible.
(More generally, rather than picking values, the adversary may just pick the outcome of
the comparison, in a way consistent with all previous comparisons, but without actually
picking values for the items. This may lead to stronger lower bounds, but will not be used
here.)

8

Here is a simple strategy for the adversary. For every comparison that involves a new
item, give the new item a value that will make the comparison wasted. How many such
comparisons can the adversary waste? As long as there is at least one item smaller than
n/2 and at most one item larger than n/2 that are not fixed, the adversary can continue
with his strategy. Each wasted comparison fixes at most one item smaller than n/2 and at
most one item larger than n/2. Hence the adversary can force n/2− 1 wasted comparisons.
Together with the useful comparisons, this gives a lower bound of 3n/2− 2 comparisons.

Open Question. Is there a deterministic median selection algorithm that makes at
most 5n/2 comparisons.

3 Lower bounds for randomized algorithms

3.1 Yao’s principle

A convenient way to lower bound the expected number of comparisons made by randomized
algorithms is to use Yao’s principle. Namely, one exhibits a distribution D over inputs such
that no deterministic algorithm has a small expected number of comparisons. Observe that
every randomized algorithm R is a distribution (call it DR) over deterministic algorithms,
where each possible setting of the coin tosses of R gives a deterministic algorithm. (Remark:
for every n there are only finitely many non-redundant deterministic algorithms. Hence DR

has finite support even if there is no bound on the number of coin tosses that R makes.)
Suppose that every deterministic algorithm makes in expectation at least t comparison,

where expectation is taken over a random input sampled from D. Then this also holds for
every algorithm in the support of DR. By linearity of expectation, the expected number of
comparisons made by R (expectation both over random coin tosses of R and selection of
input from D) is at least t. Hence for some input in D, the expected number of comparisons
made by R is at least t.

3.2 The principle of deferred decisions

The principle of deferred decisions is useful both for analysing randomized algorithms and
for proving lower bounds on randomized algorithms. The basic idea is that when a random
choice needs to be made (e.g., the input is a random permutation; the algorithm permutes
the items at random), the outcome of the choice is revealed gradually on a “need to know”
basis. For example, this principle shows that if randomized quicksort is implemented by
first permuting all items at random (and thereafter continuing deterministically), item 4 in
Section 1.3 still applies (the probability of exceptionally long runs decays exponentially).

3.3 Lower bound for randomized sorting

We have seen that every deterministic (comparison based) sorting algorithm requires at least
log n! comparisons on some input. Let us now prove the same for the expected number of
comparisons for randomized sorting algorithms. By Yao’s principle, it suffices to show
that there is a distribution over inputs such that every deterministic algorithm requires at
least log n! comparisons on this distribution. As a distribution, we shall takes the uniform

9

distribution over all possible outcomes. We shall now prove a more general statement, for
which the randomized sorting lower bound is only a special case.

Suppose that a problem has a set S of N possible inputs that all have distinct solutions.
Suppose further that every query step in which an algorithm accesses the input has at
most two possible outcomes, depending on the input (e.g., a comparison has only two
possible outcomes). If the input instance is chosen uniformly at random from S, then every
randomized algorithm requires an expected number of at least logN queries.

To prove the above claim, let T (N) denote a lower bound on the expected number of
queries, and we shall prove T (N) ≥ logN by induction. For the base case observe that
T (1) = 0 = log 1 (no query is required if there is only one possible input) and T (2) = 1 =
log 2 (at least one query is required if there are two possible inputs with distinct solutions).
Now we proceed to the inductive step. On having N possible inputs (with distinct solutions)
the algorithm makes a query. Regardless of the query, there is some 0 ≤ p ≤ 1 (that depends
on the query) such that on exactly pN inputs the answer is 0 and on (1− p)N queries the
answer is 1. Given that the input instance is selected uniformly at random, and using the
principle of deferred decisions, the probability that the answer is 0 is p. Hence any T (N)
that satisfies the following inequality is a lower bound:

T (N) ≥ 1 + pT (pN) + (1− p)T ((1− p)N ≥ 1 + p log pN + (1− p) log(1− p)N

= 1 + logN + p log p+ (1− p) log(1− p) = 1 + logN −H(p) ≥ logN

as desired. Here H(p) = p log 1
p + (1− p) log 1

1−p is the entropy function which is known to

be maximized at p = 1
2 .

10

