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1 Background

With every graph (or digraph) one can associate several different matrices. Here we shall
concentrate mainly on the adjacency matrix of (undirected) graphs, and also discuss briefly
the Laplacian. We shall show that spectral properties (the eigenvalues and eigenvectors) of
these matrices provide useful information about the structure of the graph. It turns out that
for regular graphs, the information one can deduce from one matrix representation (e.g., the
adjacency matrix) is similar to the information one can deduce from other representations
(such as the Laplacian). We remark that for nonregular graphs, this is not the case, and the
choice of matrix representation may make a significant difference. We shall not elaborate
on this issue further, as our main concern here will be either with regular or nearly regular
graphs.

The adjacency matrix of a connected undirected graph is nonnegative, symmetric and
irreducible (namely, it cannot be decomposed into two diagonal blocks and two off-diagonal
blocks, one of which is all-0). As such, standard results in linear algebra, including the
Perron-Frobenius theorem, imply that:

1. All its eigenvalues are real. Let us denote them by λ1 ≥ λ2 . . . ≥ λn. (Equality
between eigenvalues corresponds to eigenvalue multiplicity.)

2. Eigenvectors that correspond to different eigenvalues are orthogonal to each other.

3. The eigenvector that corresponds to λ1 is all positive.

4. λ1 > λ2 and λ1 ≥ |λn|.

An eigenvector with eigenvalue λ can be interpreted as associating values (the coordinate
entries of the eigenvalue) with the vertices of the graph, such that each vertex has a value
that is the sum of its neighbors, scaled by 1/λ.

Observe that the trace of the adjacency matrix is 0 and hence
∑
λi = 0, implying in

particular that λn < 0.
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There is useful characterization of eigenvalues by Raleigh quotients. Let v1, . . . , vn be
an orthonormal basis of eigenvectors. For a nonzero vector x, let ai =< x, vi > and hence
x =

∑
aivi. Observe that:

xtAx

xtx
=

∑
λi(ai)

2∑
(ai)2

This implies that λn ≤ xtAx
xtx ≤ λ1. Moreover, if x is orthogonal to v1 then xtAx

xtx ≤ λ2.
For a d-regular graph, λ1 = d, and the corresponding eigenvector is the all 1 vector. If

the graph is disconnected, then its adjacency matrix decomposes into adjacency matrices
of its connected components. In this case (and again, we assume here d-regularity), the
multiplicity of the eigenvalue d is equal to the number of connected components. This
indicates that a small gap between λ1 and λ2 corresponds to the graph having small cuts.
There is also a converse, saying that a large gap between λ1 and λ2 implies that the graph
has no small cuts in some exact sense. Namely, it is an expander.

To understand intuitively this expansion property (in fact, a related property as we
shall also consider λn here), consider a random walk starting at an arbitrary distribution x.
After one step, the distribution is Ax (if G is regular) normalized to 1. By representing x
in the basis of eigenvectors, and assuming that λ1 is much larger (say, twice as large) than
max[λ2,−λn] it is clear that in O(log n) steps, the walk mixes. Hence there cannot be any
“bottlenecks” (sets of vertices with only few outgoing edges), as then the walk would not
mix.

If the graph is not regular, the largest eigenvalue is at least as large as the average degree
(by taking Raleigh quotient for all 1 vector) and likewise, at least as large as the average
degree of any of its subgraphs.

If the graph is bipartite, nonzero eigenvalues come in pairs (flipping the entries of vertices
of one side in the eigenvectors). Hence λn = −λ1. If |λn| is much smaller than λ1, this
implies that the graph does not have very large cuts (that cut almost all the edges). The
converse is not true, in the sense that |λn| might be close to λ1, and still the graph has no
large cuts. This may happen for example if a d-regular graph G contains a small subgraph
that is nearly a complete bipartite graph on 2d vertices. This small subgraph affects λn (as
can be seen by taking Rayleigh quotients) but is insignificant in terms of the existence of
large cuts in G. Extensions of the eigenvalue based technique to semidefinite programming
(a topic beyond the scope of this course) give an approximation algorithm for max-cut with
a very good approximation ratio (roughly 0.87856).

The following theorem is due to Hoffman, and illustrates the connection between eigen-
values and graph properties.

Theorem 1 Let G be a d-regular n-vertex graph and let λn be the most negative eigenvalue
of its adjacency matrix A. Then the size of its largest independent set is at most

α(G) ≤ − nλn
d− λn

=
n|λn|
d+ |λn|

Proof: Let S be an independent set in G. Consider the vector x with value n− |S| on
S and value −|S| on the remaining vertices. Then we use the Rayleigh quotient to bound
λn from above.
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λn ≤
xtAx

xtx
=
|S|2(nd− 2|S|d)− 2d|S|(n− |S|)|S|
|S|(n− |S|)2 + (n− |S|)|S|2

=
−n|S|2d

n|S|(n− |S|)
=
−|S|d
n− |S|

The proof follows by rearranging. 2

The eigenvalues of A2 are (λi)
2. The trace of A2 implies that

∑
(λi)

2 =
∑
di. For

d-regular graphs, this implies that the average absolute value of eigenvalues is at most√
d. For random regular graphs, or random graphs that are nearly regular, it is in fact

the case that with high probability over the choice of graph, all but the largest eigenvalue
have absolute value O(

√
d). This can be proved by the trace method (considering higher

even powers of A). An alternative proof can be based on considering the form xtAx for
all possible unit vectors x orthogonal to v1. (There are infinitely many such vectors so a
certain discretization needs to be used.)

Much of what we said about the spectrum of regular graphs applies to graphs that are
nearly regular. In establishing that a random graph in nearly regular, it is useful to have
some bounds of the probability that a degree of a vertex deviates from its expectation.
These bounds are quantitative versions of the law of large numbers and of the central limit
theorem (that says that sums of independent random variables converge to the normal
distribution), and we present one representative such bound.

Theorem 2 Let p1, . . . , pn ∈ [0, 1] and set p = p1+...+pn
n . Assume that X1, . . . Xn are

mutually independent random variables with Pr[Xi = 1−pi] = pi and Pr[Xi = −pi] = 1−pi.
Let X = X1 + . . .+Xn. (Observe that E[Xi] = 0, and E[X] = 0.) Then

Pr[X > a] < e−a
2/2pn+a3/2(pn)2

and

Pr[X < −a] < e−a
2/2pn

The theorem above is typically used when p ≤ 1/2. Note that the bounds for X < −a
seem stronger than those for X > a. They can be used for X > a after replacing p by 1−p.
Namely, Pr[X > a] < e−a

2/2(1−p)n. Note also that the bounds can be tightened in certain
cases. See [1] for more details.

If the graph is irregular, the Laplacian L = D−A (where D is a diagonal matrix with the
degrees of vertices along its diagonal) may be more informative then the adjacency matrix
A. Note that for regular graphs, the spectra of these two matrices are easily related. For
general graphs, the Laplacian gives the quadratic form xTLx =

∑
(i,j)∈E(xi − xj)2. Hence

L is positive semidefinite, with the all 1 vector as an eigenvector of eigenvalue 0. (More
generally, the multiplicity of 0 as an eigenvalue equals the number of connected components.)
The next eigenvalue is known as the Fiedler value and the associated eigenvector as the
Fiedler vector. It gives a useful heuristic for spectral graph partitioning. The Fiedler vector
and the next eigenvector form a convenient coordinate system for graph drawing (see [3]).
An alternative (equivalent) definition of the Laplacian of a graph is as follows. Direct edges
of the graph arbitrarily. Consider the incidence matrix M of the directed graph with vertices
as rows, edges as columns, and +1 and −1 entries for incoming and outgoing edges. Then
one can verify term by term that L = MMT .
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Sometimes it is useful to consider the normalized Laplacian, whose diagonal is 1, and
for edge (i, j), the entry (i, j) has value 1√

didj
.

2 Refuting random 4SAT

We illustrate here an application (due to Goerdt and Krivelevich [2]) of spectral techniques
to a seemingly unrelated problem.

A 4CNF formula contains clauses, where each clause contains four literals, and each
literal is either a Boolean variable or its negation. An assignment satisfies the formula if
in each clause at least one literal is set to true. Checking whether a given 4CNF formula
is satisfiable is NP-complete. Namely, it is in NP (if the answer is yes there is a satisfying
assignment certifying this), and it is NP-hard. Checking whether a given 4CNF formula is
not satisfiable is coNP-complete. Hence there are no witnesses for non-satisfiability unless
coNP=NP. This applies for worst case instances. Here we study the average case (for some
natural distribution).

Consider the distribution Fn,m of random 4CNF formulas with n variables andm clauses.
The formula is random in the sense that every literal in the formula is chosen independently
at random. (We may further require that clauses are distinct and that variables in a clause
are distinct, but this has negligible effect on the results that we present.) Observe that
given any assignment to the variables, a random clause is satisfied by this assignment with
probability exactly 15/16 (every literal has probability 1/2 of getting polarity opposite to
the assignment). Hence the probability that it satisfies the random formula is (15/16)m,
and the expected number of satisfying assignments is exactly 2n(15/16)m. Hence when m is
sufficiently large (say, m = 16n) it is very likely that the formula is not satisfiable. We shall
be interested in developing refutation heuristics that run in polynomial time and combine
the following two properties:

1. Perfect Soundness. If the heuristic outputs not satisfiable then indeed the 4CNF
formula is not satisfiable.

2. Average completeness. For most non-satisfiable formulas from a given distribution of
formulas (this distribution will be specified shortly), the heuristic answers not satisfi-
able.

The distribution that we shall consider is Fn,m with m very large compared to n. For m
above the threshold for satisfiability, the heuristic refutation problem becomes easier as m
grows (because refuting a subformula implies refuting the whole formula). Hence we shall
consider first very large values of m, and then address smaller values of m.

When m = Ω(n4) refutation becomes very easy. With high probability, there is a set of
four variables that provide the support to a super constant number of clauses. With high
probability, all possible polarity combinations (there are 16 of them) appear, and hence any
assignment to these four variables leaves at least one clause unsatisfied. It is easy to detect
this subformula of 16 clauses in polynomial time.

When m = n3, we have the following refutation algorithm. Pick two variables (say x1
and x2). Try all possible assignments to these two variables (four combinations altogether).
For each such assignment, simplify the resulting 4CNF formula by removing satisfied clauses,
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and removing unsatisfied literals. The resulting formula is expected to have roughly 3n
2CNF clauses. (Each 4CNF clause has 6 pairs of variables, there are

(n
2

)
distinct pairs, and

there are 4 assignments.) The probability that they are satisfiable is at most 2n(3/4)3n <<
1/8 (for sufficiently large n). (In fact, it is known that a random 2CNF formula with
(1 + ε)n clauses is already unlikely to be satisfiable, but we are not interested in optimizing
the parameters for the approach described here, so we will not use this fact.) It follows that
with high probability, for each of the four assignments simultaneously, the corresponding
2CNF formula is not satisfiable. As satisfiability for 2CNF can be tested in polynomial
time, we get a refutation heuristic for 4SAT (when m = n3).

Now let us consider the case m = cn2 for large enough c. To simplify the presentation
(though with tighter analysis this simplification is not needed), let us give ourselves more
slackness and view c not as a constant, but rather as nε (where ε > 0 and n is sufficiently
large).

Given the 4CNF formula φ, partition it into three subformulas. φ+ contains only those
clauses in which all literals are positive, φ− contains only those clauses in which all literals
are negative, and φ′ contains the remaining clauses. We completely ignore φ′, and construct
two graphs, G+ based on φ+, and G− based on φ−. We describe the construction of G+,
and the construction of G− is similar.

The vertex set V contains
(n
2

)
vertices, where each vertex is labeled by a distinct pair

of distinct variables. For every clause in φ+ (that we assume contains 4 distinct variables),
put an edge in G+ between the vertex labeled by the first two variables in the clause and
the vertex labeled by the last two variables in the clause.

Lemma 3 If φ is satisfiable, then at least one of the two graphs G+ and G− has an inde-
pendent set of size at least

(n/2
2

)
' |V |/4.

Proof: Consider an arbitrary satisfying assignment for φ, let S+ be the set of variables
assigned to true, and let S− be the set of variables assigned to false. Consider the set of(|S−|

2

)
vertices in G+ labeled by pairs of vertices from S−. They must form an independent

set because φ cannot have a clause containing only variables from S− in which all literals are

positive. Likewise, G− has an independent set of size at least
(|S+|

2

)
. As min[|S+|, |S−|] ≥

n/2, the proof follows. 2

Observe that for Fn,m with m = cn2, both G+ and G− are random graphs with roughly
m/16 ' c|V |/8 edges, and hence average degree c/4. For large enough c, they are nearly
regular (the standard deviation of degrees is O(

√
c) which becomes negligible as c grows).

Hence it will be the case that for their adjacency matrices, the eigenvalues satisfy λ1 ' c/4
and |λ|V || = O(

√
c). Using Theorem 1 (adapted to nearly regular graphs), this can be used

in order to certify that neither G+ nor G− have independent sets larger than O(|V |/
√
c).

For sufficiently large c, this establishes that φ cannot have a satisfying assignment.
It is a major open question to design refutation heuristics for Fn,m when m = n2−ε.
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