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Abstract

We consider the following class of problems: Given a graph G, find a maximum vertex
induced subgraph of G satisfying a nontrivial hereditary property π. We show that this
problem cannot be approximated for any such property π, within a factor of n1−ε for any
ε > 0, unless NP = ZPP . This improves the result in [LY93] where it was shown that for
any nontrivial hereditary property, the maximum subgraph problem cannot be approximated
within a factor of 2(log n)c

for some c > 0, unless NP ⊆ QP .

1 Introduction

A graph property π is a collection of graphs. A property π is called nontrivial if there are
infinitely many graphs for which π holds and infinitely many graphs for which π does not hold.
A nontrivial graph property is said to be hereditary if whenever a graph G satisfies property π

then also every vertex induced subgraph of G satisfies π. The maximum subgraph with property
π problem is defined in the following manner: Given a graph G find the maximum vertex induced
subgraph of G which satisfies property π. The maximum subgraph problem is NP -hard for any
nontrivial hereditary property [LY80].

It is shown in [LY93] that for any nontrivial hereditary property π which is false for some
complete multipartite graph, the maximum subgraph with property π problem cannot be ap-
proximated within a factor of nε for some ε > 0 unless P = NP . In particular this theorem
applies to the following graph properties: complete graph, independent set, planar, outerplanar,
bipartite, complete bipartite, acyclic, max degree, interval, chordal.

1



Furthermore it was proven in [LY93] that for every nontrivial hereditary property π, the
maximum subgraph with property π problem cannot be approximated within a factor of 2(log n)c

for some c > 0, unless NP ⊆ QP . Here QP is the class of languages which can be recognized
in quasipolynomial time, i.e. time 2(log n)d

for some constant d. The conclusion of this theorem
applies to the graph properties stated above and the following graph properties: comparability,
permutation, perfect, circular-arc, circle, line graph.

In [Has99] it was shown that max-clique cannot be approximated within a factor of n1−ε for
any ε > 0, unless NP = ZPP . We prove the following result:

Theorem 1.1. For every nontrivial hereditary property π and for every ε > 0, the maximum
subgraph with property π problem cannot be approximated within a factor of n1−ε, unless NP =
ZPP .

For nontrivial hereditary properties which are false for some clique or independent set, this
result follows in a straightforward manner by combining Hastad’s result with the proof described
in [LY93]. Thus the main contribution of this paper is in showing that this hardness result holds
even for nontrivial hereditary properties which hold for all cliques and all independent sets.

A hereditary property π for which feasibility can be decided in time at most exponential in
the size of the input is called a feasible hereditary property. In [Hal00] it was shown that for
each feasible hereditary property π, the maximum subgraph with property π problem can be
approximated within a factor of n/ log n. The maximum hereditary subgraph problem can be
approximated within a factor of O(n(log log n/ log n)2), for feasible properties that fail for some
clique or independent set (Theorem 2.6 of [Hal00]).

In certain situations we may wish to find a subgraph which does not only satisfy a property
π but is also connected. A property π is called nontrivial on connected graphs if it holds only for
connected graphs, and there are infinitely many connected graphs for which π holds and infinitely
many connected graphs for which π does not hold. A nontrivial graph property on connected
graphs is said to be hereditary if whenever a connected graph G satisfies property π then also
every vertex induced connected subgraph of G satisfies π. The maximum connected subgraph
with property π problem is defined in the following manner: Given a graph G find the maximum
vertex induced connected subgraph of G which satisfies property π. The maximum connected
subgraph problem is NP -hard for any nontrivial hereditary problem [Yan79]. Examples of
properties that are hereditary and nontrivial on connected graphs include: clique, star, complete
bipartite, path, tree, planar, outerplanar, bipartite, chordal, interval, max degree and others.

It is shown in [LY93] that for every property that is nontrivial and hereditary on connected
graphs, the maximum connected subgraph problem cannot be approximated with ratio 2(log n)c
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for some c > 0, unless NP ⊆ QP . Furthermore it is stated in [LY93] that if π is a nontrivial
hereditary property on connected graphs which is satisfied by all paths and does not hold for
some complete bipartite graph, then the maximum connected subgraph with property π problem
cannot be approximated within a factor of n1−ε for every ε > 0, unless P = NP . We prove the
following results:

Theorem 1.2. For every property that is nontrivial and hereditary on connected graphs and for
every ε > 0, the maximum connected subgraph problem cannot be approximated with ratio n1−ε,
unless NP = ZPP .

Theorem 1.3. Let π be a nontrivial hereditary property on connected graphs which is satisfied by
all paths and does not hold for some star. Then the maximum connected subgraph with property
π problem cannot be approximated within a factor of o(n/ log n), unless 3-SAT can be solved in
time 2o(n).

The reduction used in the proof of theorem 1.3 is similar to the one used in theorem 1 of
[Yan79] to show the NP -hardness of the maximum connected subgraph problem. It is interesting
to notice that it follows from theorem 1.3 that for certain hereditary properties it is harder to
approximate the maximum connected subgraph problem then the maximum subgraph problem.
For example by theorem 1.3 the maximum connected subgraph of degree smaller then k for
every k ≥ 3, cannot be approximate within a factor of o(n/ log n) (under the assumption that
there is no subexponential time algorithm for 3-SAT). On the other hand by Theorem 2.6 of
[Hal00] the maximum subgraph of degree smaller then k for every k ≥ 3, can be approximated
within a factor of O(n(log log n/ log n)2) and thus it is easier to approximate then its connected
counterpart.

One can also consider hereditary properties in directed graphs as well as in undirected graphs.
Examples of such properties are: acyclic, transitive, symmetric, antisymmetric , tournament,
max degree, line digraph. It was proved in [LY93] that for every nontrivial hereditary property
on directed graphs, the maximum subgraph problem cannot be approximated with ratio 2(log n)c

for some c > 0, unless NP ⊆ QP . we prove the following:

Theorem 1.4. For every nontrivial hereditary property on directed graphs and for every ε > 0,
the maximum subgraph problem cannot be approximated with ratio n1−ε, unless NP = ZPP .
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2 Hardness of Hereditary Properties

Let α(G) denote the size of the maximum independent set in G. Let αKc(G) denote the size
of the maximum Kc-free vertex induced subgraph of G, where Kc is a clique on c vertices. For
example α(G) = αK2(G). Finally denote by αH(G) the size of the maximum H-free induced
subgraph of G, i.e. the size of the maximum induced subgraph which does not contain H as a
vertex induced subgraph. From now on π shall denote a nontrivial hereditary graph property.
For every property π we can define the complementary property πc as follows: a graph G satisfies
πc if and only its complement Gc satisfies π. Notice that πc is nontrivial and hereditary if and
only if π is. It follows from Ramsey’s theory that every nontrivial hereditary property π is
satisfied either by all cliques or by all independent sets [LY93], as for any positive k, l a large
enough graph G contains either an independent set of size l or a clique of size k. Thus for every
nontrivial hereditary property π, either π or πc is satisfied by all independent sets. We may
assume w.l.o.g that π is satisfied by all independent sets. Let H be a forbidden graph with
respect to property π. Notice that since π is satisfied by all independent sets H must contain
at least one edge. In this section we shall prove the following theorem.

Theorem 2.1. The following holds for every non-empty graph H. If for some 0 < ε < 1
2 there

is a randomized polynomial time algorithm which, when given an input graph G with n nodes
does the following:

• if α(G) > n1−ε then the algorithm outputs ’case 1’.

• if αH(G) < nε then the algorithm outputs ’case 2’ with constant probability.

then NP = ZPP .

As any nontrivial hereditary graph property π which is satisfied by all independent sets has
some forbidden non-empty graph H, i.e. H does not satisfy π, we get the following corollary.

Corollary 2.2. For any nontrivial hereditary property π, the maximum subgraph with property
π problem cannot be approximated within a factor of n1−ε for any ε > 0, unless NP = ZPP

The reminder of this section is dedicated to proving theorem 2.1. Our starting point is
Hastad’s theorem [Has99].

Theorem 2.3. If for some constant 0 < ε < 1
2 there is a randomized algorithm which, when

given an input graph G with n nodes does the following:
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• If α(G) > n1−ε then the algorithms outputs ’case 1’

• If α(G) < nε then the algorithm outputs ’case 2’ with constant probability.

then NP = ZPP .

We shall require the following well known version of the Ramsey theorem.

Lemma 2.4. Let k ≥ 2 be an integer. Then for every large enough n, any graph on n vertices
contains a clique set of size k or an independent set of size at least n1/k.

Proof: We have the following theorem on Ramsey numbers ([ES35]): any graph on
(
k+t−2
k−1

)

vertices contains a clique of size k or an independent of size t. Setting t = dn1/(k−1)e − k we get
(

k + t− 2
k − 1

)
≤ (k + t− 2)k−1

≤ n

Thus any graph on n vertices contains a clique of size k or an independent set of size dn1/(k−1)e−
k ≥ n1/k for large enough n.

Theorem 2.5. The following holds for any integer c ≥ 2. If for some 0 < ε < 1
2 there is a

randomized polynomial time algorithm which, when given an input graph G with n nodes does
the following:

• if α(G) > n1−ε then the algorithm outputs ’case 1’.

• if αKc(G) < nε then the algorithm outputs ’case 2’ with constant probability.

then NP = ZPP .

Proof: Fix some c ≥ 2 and suppose that for some 0 < ε < 1
2 there is a randomized polynomial

time algorithm A(G) which, when given an input graph G on n vertices has the following
behavior

• if α(G) > n1−ε then A(G) = 1 (the algorithm outputs ’case 1’).

• if αKc(G) < nε then A(G) = 2 (the algorithm outputs ’case 2’) with constant probability.

If α(G) < nε/c then by lemma 2.4 every subgraph of G of size nε contains a clique of size c

and thus αKc(G) < nε. We conclude that
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• If α(G) > n1−ε/c then A(G) = 1.

• If α(G) < nε/c then A(G) = 2 with constant probability.

Thus by theorem 2.3 we are done.

We note that theorem 2.5 can also be derived in a relatively straightforward manner from
Hastad’s theorem and the proof of theorem 1 of [LY93], but our proof of theorem 2.5 is much
simpler.

At this point our analysis diverges from the one in [LY93]. While the analysis in [LY93] for
the case of general nontrivial hereditary properties is based upon partitioning large cliques into
edge disjoint cliques of fixed size, our analysis involves partitioning a graph into edge disjoined
subgraphs whose size is strongly dependent on the size of the original graph.

Lemma 2.6. The following holds for any n ≥ k ≥ 2. If S is a set of n elements, then S contains
at least n2

k4 subsets of size k, such that the intersection of any two such subsets contains at most
one element.

Proof: The claim holds trivially when k ≥ √
n, thus we may assume from now on that k <

√
n.

Given a subset S1 ⊆ S of size k we have that there are at most
(
k
2

) · ( n
k−2

)− 1 subsets of size
k such that their intersection with S1 contains at least two elements. As there are

(
n
k

)
subsets

of size k of S and each one of them which is chosen invalidates at most
(
k
2

) · ( n
k−2

)− 1 others we
can find a collection of subsets of size at least

(
n
k

)
(
k
2

) · ( n
k−2

) ≥ 2(n− k)2

k4

≥ 2(n−√n)2

k4
as k <

√
n

≥ n2

k4
for n ≥ 12

such that the intersection of any two of them contains at most one element. Furthermore it is
easy to verify that the claim holds for 2 ≤ n ≤ 11 and thus we are done.

Proof of Theorem 2.1:
Let c be the number of vertices in graph H, i.e. c = |H|. Suppose that for some 0 < ε < 1

2

there is a randomized polynomial time algorithm A(G) which, when given an input graph G on
n vertices has the following behavior

• if α(G) > n1−ε then A(G) = 1.

6



• if αH(G) < nε then A(G) = 2 with constant probability.

We will use algorithm A(G) to build a randomized polynomial time algorithm B(F ), which
given as an input a graph F on n vertices has the following behavior

• If α(F ) > n1−ε/8 then B(F ) = 1.

• If αKc(F ) < nε/8 then B(F ) = 2 with constant probability.

Notice that by theorem 2.5 if such an algorithm B exist then NP = ZPP . Algorithm B(F )
consists of two steps.

1. construct a new graph G by retaining each edge of F with probability 1
2 .

2. return A(G).

If α(F ) > n1−ε/8 then α(G) > n1−ε as any independent set in F is also an independent set in
G. Suppose now that αKc(F ) < nε/8. By lemma 2.6 any vertex induced subgraph of F of size
nε contains at least n2ε

nε/2 = n3ε/2 vertex sets of size nε/8 such that any two of them intersect in
at most one vertex. As each vertex set of size nε/8 contains a clique of size c, we conclude that
each subgraph of size nε in F contains at least n3ε/2 edge disjoint cliques of size c. In graph
G each such clique becomes an H-subgraph with probability γ = 2−c2 at the least. Thus the
probability that a certain subgraph of size nε of G does not contain a H-subgraph is at most

(1− γ)n3ε/2

As the number of vertex induced subgraphs of size nε in G is at most
(

n

nε

)
≤ nnε

≤ 2nε·log n

≤ 2n5ε/4
for large enough n

We have that the probability that graph G contains an H-free vertex induced subgraph of size
nε is at most

(1− γ)n3ε/2 · 2n5ε/4 ≤ 1
2

for large enough n

Thus if αKc(F ) < nε/8 then αH(G) < nε with constant probability. This together with the fact
that if α(F ) > n1−ε/8 then α(G) > n1−ε concludes our proof. ¥
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3 Related problems and generalizations

In certain situations we may wish to find a subgraph which does not only satisfy a property π but
is also connected. Examples of properties that are hereditary and nontrivial on connected graphs
include: clique, star, complete bipartite, path, tree, planar, outerplanar, bipartite, chordal,
interval, degree bounded and others. The following theorem was proved in [LY93].

Theorem 3.1. For every property that is nontrivial and hereditary on connected graphs, the
maximum subgraph problem cannot be approximated with ratio 2(log n)c

for some c > 0, unless
NP ⊆ QP .

We will prove that for every property that is nontrivial and hereditary on connected graphs
and for every ε > 0, the maximum connected subgraph problem cannot be approximated with
ratio n1−ε, unless NP = ZPP .

Proof of Theorem 1.2:
Let π be a nontrivial hereditary property on connected graphs. The following is shown in [LY93]

Theorem 3.2. If π is a nontrivial hereditary property on connected graphs, then π is satisfied
by all cliques or by all stars or by all induced paths.

The proof of this claim is given in Appendix A for completeness. Let G be the instance of
the graph in which we seek the maximum connected subgraph satisfying π. If π is satisfied by all
cliques then the complementary property πc is satisfied by all independent sets and πc has some
forbidden non-empty graph H, and thus the theorem follows directly from theorem 2.1. If π is
satisfied by all stars then once again by adding a vertex which is connected to all the vertices of
the graph G the theorem follows directly from theorem 2.1 by noticing that each independent
set in the original graph corresponds to a star in the new graph.

If not all stars or all cliques satisfy π then it must be satisfied by all induced paths. It
was shown in [LY93] that if π is a nontrivial hereditary property on connected graphs which is
satisfied by all induced paths and does not hold for some star, then the maximum connected
subgraph with property π problem cannot be approximated within a factor of n1−ε for every
ε > 0, unless P = NP , and thus we are done. ¥

In fact we can strengthen the theorem above for certain properties. We will prove that if π

be a nontrivial hereditary property on connected graphs which is satisfied by all paths and does
not hold for some star, then the maximum connected subgraph with property π problem cannot
be approximated within a factor of o(n/ log n), unless 3-SAT can be solved in time 2o(n).
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Proof of Theorem 1.3:
Let ϕ be an instance of 3-SAT with n variables. A 3-SAT formula in which the number of clauses
is linear in the number of the variables will be called a linear 3-SAT formula. The sparsification
lemma of [IPZ01] states that for any ε > 0 we may convert ϕ into a collection of 2εn linear
3-SAT formulas, where the original formula is satisfied if and only if at least one of the linear
formulas is satisfied. Henceforth we shall assume that the number of clauses in ϕ is linear in
the number of variables of ϕ. The instance ϕ consists of r clauses C0, C1, ..Cr−1. We construct
a graph G from ϕ in the following manner. Graph G consists of vertices vi,j , where 0 ≤ i ≤ t

for some t to be determined later and 1 ≤ j ≤ 3. Vertex vi,j corresponds to literal j of clause
i (mod r). Denote by Ti the triple vi,1, vi,2, vi,3. For all i, j, k, l if vi,j and vk,l are such that the
literals corresponding to them contradict each other then we put an edge between vi,j and vk,l,
and call such an edge a ’bad’ edge. Next for all i, j we put edges between vi,j and vk,l for all k, l

such that k ≡ i (mod r) and l 6= j. Once again we call such edges ’bad’ edges. Finally for all
i < t and all j we connect vertex vi,j to vertices vi+1,l for all l. If such an edge did not already
exist we call it a ’good’ edge.

Claim 3.3. If ϕ is satisfiable then G contains an induced path of length t.

Proof: As there is a satisfying assignment A for ϕ, we can pick in each triple Ti a vertex which
corresponds to a literal in clause i (mod r) which is satisfied by assignment A. Furthermore
we always pick the same literal for triples i, k such that i ≡ k (mod r). These vertices span an
induced path of length t in G.

Claim 3.4. If ϕ is unsatisfiable then each connected induced subgraph of G of size cr contains
a star of size c/36

Proof: Let H be a connected induced subgraph of G, with at least cr vertices. As ϕ contains
r clauses, at least c of the vertices in H correspond to the same clause in ϕ, thus at least
c/3 of them corresponds to the same literal in that clause. Suppose w.l.o.g that these vertices
are vi1,1, vi2,1, . . . , vic/3,1. Choose out of them c/6 vertices vi1,1, vi2,1, . . . , vic/6,1 such that for all
1 ≤ k < m ≤ c/6, |ik − im| ≥ 2r. For all k, let Dk be the shortest path in H consisting only of
good edges from vik,1 to a vertex which is adjacent to a bad edge in H. Denote the vertices of
Dk by {va1,b1 , va2,b2 , . . . , val,bl

} where va1,b1 = vik,1. Notice that since Dk is a shortest path one
of the two statements below must hold:

1. For all 1 ≤ i ≤ l, ai ≤ ik, denote such a path as a left path

2. For all 1 ≤ i ≤ l, ai ≥ ik, denote such a path as a right path
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Suppose w.l.o.g that for all 1 ≤ k ≤ c/12 each path Dk is a right path. Furthermore suppose
w.l.o.g that D1 is the shortest of these paths. Each such path is indeed an induced path as it is
a shortest path and thus its length is bounded by r as if it were longer this path would induce
a satisfying solution to ϕ. We conclude that each of these paths ends in a different vertex as
for all 1 ≤ k < m ≤ c/12 |ik − im| ≥ 2r. Suppose that for all k, path Dk ends in the vertex
vqk,wk

. By our assumption that D1 is the shortest path we have that qk ≥ q1 for all k ≥ 1, and
thus every path Dk contains a vertex which corresponds to the same clause as vertex vq1,w1 . To
conclude, we have c/12 vertices that correspond to the same clause and one of these vertices,
namely vertex vq1,w1 has a bad edge connecting it to some vertex u. If at least third of these
vertices correspond to the same literal as vq1,w1 then we have a star of size c/36 as each one has
a bad edge to u. Otherwise we have that at least c/36 vertices correspond to a literal different
than vq1,w1 , but then we have once again a star of size c/36 since vq1,w1 touches these vertices.

Theorem 1.3 follows from claims 3.3 and 3.4 by taking t = 2δn where δ is arbitrarily small.
¥

It follows from theorem 1.3 that for certain hereditary properties it is harder to approximate
the maximum connected subgraph problem then the maximum subgraph problem. For example
by theorem 1.3 the maximum connected subgraph of degree smaller then k for every k ≥ 3,
cannot be approximated within a factor of o(n/ log n) (under the assumption that there is no
subexponential time algorithm for 3-SAT). On the other hand by Theorem 2.6 of [Hal00] the
maximum subgraph of degree smaller then k for every k ≥ 3, can be approximated within a factor
of O(n(log log n/ log n)2) and thus it is easier to approximate than its connected counterpart.

One can consider hereditary properties in directed graphs as well as in undirected graphs.
Examples of such properties are: acyclic, transitive, symmetric, antisymmetric , tournament,
degree-constrained, line digraph. The following theorem was proved in [LY93].

Theorem 3.5. For every nontrivial hereditary property on directed graphs, the maximum sub-
graph problem cannot be approximated with ratio 2(log n)c

for some c > 0, unless NP ⊆ QP .

Using the techniques developed in [LY93] and section 2 of this paper, one can prove in a
straightforward manner the following.

Theorem 3.6. For every nontrivial hereditary property on directed graphs, the maximum sub-
graph problem cannot be approximated with ratio n1−ε for any ε > 0, unless NP = ZPP .
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A Proof of theorem 3.2

We will need the following claim.

Theorem A.1. For any natural number t, there exist a natural number n = R(t) such that
in any connected graph on n or more vertices, there exists a clique of t vertices or a star of t

vertices or an induced path of t vertices.

Proof: Let G be a connected graph. By Ramsey’s theorem ([ES35]) there exist a natural number
n0 such that any graph with at least n0 vertices contains a clique of size t or an independent
set of size t. If a graph G contains a vertex of degree n0, then it has either a clique of size t or
a star of size t. If G has maximum degree ≤ n0, then taking n > (n0)t+1, graph G will have an
induced path of length t.

We conclude that if π is a nontrivial hereditary property on connected graphs then π is
satisfied by all cliques or by all stars or by all induced paths, for otherwise by theorem A.1 it
will be satisfied only by finitely many graphs.
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