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Abstract

We develop the algorithmic theory of vertex separators, and its relation to the embeddings
of certain metric spaces. Unlike in the edge case, we show that embeddings into L; (and even
Euclidean embeddings) are insufficient, but that the additional structure provided by many
embedding theorems does suffice for our purposes.

We obtain an O(y/logn) approximation for min-ratio vertex cuts in general graphs, based on
a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap which is
shown to be ©(y/logn). We also prove an optimal O(log k)-approximate max-flow/min-vertex-
cut theorems for arbitrary vertex-capacitated multi-commodity flow instances on k terminals.
For uniform instances on any excluded-minor family of graphs, we improve this to O(1), and
this yields a constant-factor approximation for min-ratio vertex cuts in such graphs. Previously,
this was known only for planar graphs, and for general excluded-minor families the best-known
ratio was O(logn).

These results have a number of applications. We exhibit an O(y/logn) pseudo-approximation
for finding balanced vertex separators in general graphs. In fact, we achieve an approximation
ratio of O(y/logopt) where opt is the size of an optimal separator, improving over the previous
best bound of O(logopt). Likewise, we obtain improved approximation ratios for treewidth:
In any graph of treewidth k, we show how to find a tree decomposition of width at most
O(k+/log k), whereas previous algorithms yielded O(klog k). For graphs excluding a fixed graph
as a minor (which includes, e.g. bounded genus graphs), we give a constant-factor approximation
for the treewidth; this can be used to obtain the first polynomial-time approximation schemes
for problems like minimum feedback vertex set and minimum connected dominating set in such
graphs.
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1 Introduction

Given a graph G = (V, E), one is often interested in finding a small “separator” whose removal
from the graph leaves two sets of vertices of roughly equal size (say, of size at most 2|V|/3), with
no edges connecting these two sets. The separator itself may be a set of edges, in which case it
is called a balanced edge separator, or a set of vertices, in which case it is called a balanced vertex
separator. In the present work, we focus on vertex separators.

Balanced separators of small size are important in several contexts. They are often the bottle-
necks in communication networks (when the graph represents such a network), and can be used in
order to provide lower bounds on communication tasks (see e.g. [36, 34, 9]). Perhaps more impor-
tantly, finding balanced separators of small size is a major primitive for many graph algorithms,
and in particular, for those that are based on the divide and conquer paradigm [38, 9, 35].

Certain families of graphs always have small vertex separators. For example, trees always have
a vertex separator containing a single vertex. The well known planar separator theorem of Lipton
and Tarjan [38] shows that every n-vertex planar graph has a balanced vertex separator of size
O(y/n), and moreover, that such a separator can be found in polynomial time. This was later
extended to show that more general families of graphs (any family of graphs that excludes some
minor) have small separators [24, 2]. However, there are families of graphs (for example, expander
graphs) in which the smallest separator is of size Q(n).

Finding the smallest separator is an NP-hard problem (see, e.g. [15]). In the current paper, we
study approximation algorithms that find vertex separators whose size is not much larger than the
optimal separator of the input graph. These algorithms can be useful in detecting small separators
in graphs that happen to have small separators, as well as in demonstrating that an input graph
does not have any small vertex separator (and hence, for example, does not have serious bottlenecks
for routing).

Much of the previous work on approximating vertex separators piggy-backed on work for ap-
proximating edge separators. For graphs of bounded degree, the sizes of the minimum edge and
vertex separators are the same up to a constant multiplicative factor, leading to a corresponding
similarity in terms of approximation ratios. However, for general graphs (with no bound on the
degree), the situation is different. For example, every edge separator for the star graph has Q(n)
edges, whereas the minimum vertex separator has just one vertex. One can show that approxi-
mating vertex separators is at least has hard as approximating edge separators (see [15]). As to
the reverse direction, it is only known that approximating vertex separators is at least as easy as
approximating edge separators in directed graphs (a notion that will not be discussed in this paper).

The previous best approximation ratio for vertex separators is based in the work of Leighton
and Rao [35]. They presented an algorithm based on linear programming that approximates the
minimum edge separator within a ratio of O(logn). They observed that their algorithm can be
extended to work on directed graphs, and hence gives an approximation ratio of O(logn) also for
vertex separators, using the algorithm for (directed) edge separators as a black box. More recently,
Arora, Rao and Vazirani [7] presented an improved algorithm based on semidefinite programming
that approximates the minimum edge separator within a ratio of O(y/logn). Their remarkable
techniques, which are a principal component in our algorithm for vertex separators, are discussed
more in the following section.

In the present work, we formulate new linear and semidefinite program relaxations for the
vertex separator problem, and then develop rounding algorithms for these programs. The rounding
algorithms are based on techniques that were developed in the context of edge separators, but
we exploit new properties of these techniques and adapt and enhance them to the case of vertex
separators. Using this approach, we improve the best approximation ratio for vertex separators to
O(v/logn). In fact, we obtain an O(y/logopt) approximation, where opt is the size of an optimal
separator. (An O(logopt) approximation can be derived from the techniques of [35].) In addition,



we derive and extend some previously known results in a unified way, such as a constant factor
approximation for vertex separators in planar graphs (a result originally proved in [5]), which we
extend to any family of graphs excluding a fixed minor.

Before delving into more details, let us mention two aspects in which edge and vertex separators
differ. One is the notion of a minimum ratio cut, which is an important notion used in our analysis.
For edge cuts, all “natural” definitions of such a notion are essentially equivalent. For vertex
separators, this is not the case. One consequence of this is that our algorithms provide a good
approximation for wverter expansion in bounded degree graphs, but not in general graphs. This
issue will be discussed in Section 2. Another aspect where there is a distinction between edge and
vertex separators is that of the role of embeddings into L; (a term that will be discussed later).
For edge separators, if the linear or semidefinite program relaxations happen to provide such an
embedding (i.e. if the solution is an L; metric), then they in fact yield an optimal edge separator.
For vertex separators, embeddings into L1 seem to be insufficient, and we give a number of examples
that demonstrate this deficiency. Our rounding techniques for the vertex separator case are based
on embeddings with small average distortion into a line, a concept that was first systematically
studied by Rabinovich [40].

As mentioned above, finding small vertex separators is a basic primitive that is used in many
graph algorithms. Consequently, our improved approximation algorithm for minimum vertex sep-
arators can be plugged into many of these algorithms, improving either the quality of the solution
that they produce, or their running time. Rather than attempting to provide in this paper a
survey of all potential applications, we shall present one major application, that of improving the
approximation ratio for treewidth, and discuss some of its consequences.

1.1 Some related work

An important concept that we shall use is the ratio of a vertex separator (A, B, S). Given a weight
function 7 : V' — Ry on vertices, and a set S C V which separates G into two disconnected pieces
A and B, we can define the sparsity of the separator by

m(5)
min{n(A),7(B)} + m(S)

Indeed, most of our effort will focus on finding separators (A, B, S) for which the sparsity is close
to minimal among all vertex separators in G.

In the case of edge separators, there are intimate connections between approximation algorithms
for minimums ratio cuts and the theory of metric embeddings. In particular, Linial, London, and
Rabinovich [37] and Aumann and Rabani [8] show that one can use L; embeddings to round the
solution to a linear relaxation of the problem. For the case of vertex cuts, we will show that Lq
embeddings (and even Euclidean embeddings) are insufficient, but that the additional structure
provided by many embedding theorems does suffice. This structure corresponds to the fact that
many embeddings are of Fréchet-type, i.e. their basic component takes a metric space X and a
subset A C X and maps every point x € X to its distance to A. This includes, for instance, the
classical theorem of Bourgain [14].

The seminal work of Leighton and Rao [35] showed that, in both the edge and vertex case, one
can achieve an O(logn) approximation algorithm for minimum-ratio cuts, based on a linear relax-
ation of the problem. Their solution also yields the first approximate max-flow/min-cut theorems
in a model with uniform demands. The papers [37, 8] extend their techniques for the edge case to
non-uniform demands. Their main tool is Bourgain’s theorem [14], which states that every n-point
metric space embeds into L; with O(logn) distortion.

Recently, Arora, Rao, and Vazirani [7] exhibit an O(+/log n) approximation for finding minimum-
ratio edge cuts, based on a known semi-definite relaxation of the problem, and a fundamentally new




technique for exploiting the global structure of the solution. This approach, combined with the em-
bedding technique of Krauthgamer, Lee, Mendel, and Naor [31], has been extended further to obtain
approximation algorithms for minimum-ratio edge cuts with non-uniform demands. In particular,
using [7], [31], and the quantitative improvements of Lee [33], Chawla, Gupta, and Récke [16] ex-
hibit an O(logn)3/* approximation. More recently, Arora, Lee, and Naor [6] have improved this
bound almost to that of the uniform case, yielding an approximation ratio of O(y/lognloglogn).

On the other hand, progress on the vertex case has been significantly slower. In the sections
that follow, we attempt to close this gap by providing new techniques for finding approximately
optimal vertex separators.

Since the initial (conference) publication of this manuscript, we have learned of two other papers
which contain some independently discovered, overlapping results. All three papers first appeared
in STOC 2005. In particular, the work of Agarwal, et. al. [1] gives an O(y/logn)-approximation
for a directed version of the Sparsest Cut problem which implies a similar result for vertex cuts
by a well-known reduction (see e.g. [35]). Their algorithm is also based on rounding an SDP
(though they use a different relaxation). Secondly, the paper of Chekuri, Khanna, and Shepherd
[17] shows the the max-multicommodity-flow /min-vertex-cut gap for product demands in planar
graphs is bounded by a universal constant. As discussed later, we prove this theorem not only for
planar graphs, but for any excluded-minor family of graphs.

1.2 Results and techniques

In Section 2, we introduce a new semi-definite relaxation for the problem of finding minimum-ratio
vertex cuts in a general graph. In preparation for applying the techniques of [7], the relaxation
includes so-called “triangle inequality” constraints on the variables. The program contains strictly
more than one variable per vertex of the graph, but the SDP is constructed carefully to lead to
a single metric of negative type! on the vertices which contains all the information necessary to
perform the rounding.

In Section 3, we exhibit a general technique for rounding the solution to optimization problems
involving “fractional” vertex cuts. These are based on the ability to find line embeddings with
small average distortion, as defined by Rabinovich [40] (though we extend his definition to allow
for arbitrary weights in the average). In [40], it is proved that one can obtain line embeddings
with constant average distortion for metrics supported on planar graphs. This is observed only as
an interesting structural fact, without additional algorithmic consequences over the known average
distortion embeddings into all of L; [41, 30]. For the vertex case, we will see that this additional
structure is crucial.

Using the seminal results of [7], which can be viewed as a line embedding (see Appendix A.2),
we then show that the solution of the semi-definite relaxation can be rounded to a vertex separator
whose ratio is within O(y/logn) of the optimal separator. For the SDP used in [7] for approximating
minimum-ratio edge cuts, only a constant lower bound is known for the integrality gap. Recent
work of Khot and Vishnoi [29] shows that in the non-uniform demand case, the integrality gap must
tend to infinity with the size of the instance. In contrast, we show that our analysis is tight by
exhibiting an (y/logn) integrality gap for the SDP in Section 5. Interestingly, this gap is achieved
by an L; metric. This shows that L metrics are not as intimately connected to vertex cuts as they
are to edge cuts, and that the use of the structural theorems discussed in the previous paragraph
is crucial to obtaining an improved bound.

We exhibit an O(log k)-approximate max-flow/min-vertex-cut theorems for general instances
with k& commodities. The best previous bound of O(log® k) is due to [21] (they actually show this
bound for directed instances with symmetric demands, but this implies the vertex case). The result

LA metric space (X, d) is said to be of negative type if d(z,y) = ||f(z) — f(y)||* for some map f : X — Lo.



is proved in Section 4. A well-known reduction shows that this theorem implies the edge version of
[37, 8] as a special case. Again, our rounding makes use of the general tools developed in Section 3
based on average-distortion line embeddings. In Sections 4.2 and 4.4, we show that any approach
based on low-distortion L; embeddings and Euclidean embeddings, respectively, must fail since the
integrality gap can be very large even for spaces admitting such embeddings. Using the improved
line embeddings for metrics on graphs which exclude a fixed minor [40] (based on [30] and [41]),
we also achieve a constant-factor approximation for finding minimum ratio vertex cuts in these
families. This answers an open problem asked in [19].

By improving the approximation ratios for balanced vertex separators in general graphs and
graphs excluding a fixed minor, we improve the approximation factors for a number of problems
relating to graph-theoretic decompositions such as treewidth, branchwidth, and pathwidth. For
instance, we show that in any graph of treewidth k, we can find a tree decomposition of width at
most O(ky/log k). If the input graph excludes some fixed minor, we give an algorithm that finds a
decomposition of width O(k). See Section 6.3 and Corollaries 6.4 and 6.5 for a discussion of these
problems, along with salient definitions, and a list of the problems to which our techniques apply.

Improving the approximation factor for treewidth in general graphs and graphs excluding a
fixed minor to O(y/logn) and O(1), respectively, answers an open problem of [19], and leads to an
improvement in the running time of approximation schemes and sub-exponential fixed parameter
algorithms for several NP-hard problems on graphs excluding a fixed minor. For instance, we obtain
the first polynomial-time approximation schemes (PTAS) for problems like minimum feedback vertex
set and connected dominating set in such graphs (see Theorem 6.6 for more details). Finally, our
techniques yield an O(g)-approximation algorithm for the vertex separator problem in graphs of
genus at most g. It is known that such graphs have balanced separators of size O(,/gn) [24],
and that these separators can be found efficiently [27] (earlier, [3] gave a more general algorithm

which, in particular, finds separators of size O(1/g3/2n)). Our approximation algorithms thus finds

separators of size O(1/g3n), but when the graph at hand has a smaller separator, our algorithms
perform much better than the worst-case bounds of [24, 3, 27].

2 A vector program for minimum-ratio vertex cuts

Let G = (V, E) be a graph with non-negative vertex weights 7 : V' — [1,00). For a subset U C V,
we write m(U) = >, cy m(u). A vertex separator partitions the graph into three parts, S (the set
of vertices in the separator), A and B (the two parts that are separated). We use the convention
that w(A) > w(B). We are interested in finding separators that minimize the ratio of the “cost”
of the separator to its “benefit.” Here, the cost of a separator is simply 7(S). As to the benefit of
a separator, it turns out that there is more than one natural way in which one can define it. The
distinction between the various definitions is relatively unimportant whenever 7(S) < w(B), but it
becomes significant when 7(S) > 7(B). We elaborate on this below.

In analogy to the case of edge separators, one may wish to take the benefit to be 7(B). Then
we would like to find a separator that minimizes the ratio 7(S)/m(B). However, there is evidence
that no polynomial time algorithm can achieve an approximation ratio of O(|V|?) for this problem
(for some 0 > 0). See Appendix A.1 for details.

For the use of separators in divide and conquer algorithms, the benefit is in the reduction in
size of the parts that remain. This reduction is 7(B)+ 7 (.S) rather than just 7(B), and the quality
of a separator is defined to be

m(5)
m(B)+ 7(S)

This definition is used in the introduction to our paper, and in some other earlier work (e.g. [5]).



As a matter of convenience, we use a slightly different definition. We shall define the sparsity
of a separator to be

(S)
(AUS) - w(BUS)

Under our convention that w(A) > m(B), we have that 7#(V)/2 < 7(AUS) < n(V), and the
two definitions differ by a factor of ©(7(V)).

We define a,(G) to be the minimum over all vertex separators (4, B, S) of ar(A, B,S). The
problem of computing a,(G) is NP-hard (see [15]). Our goal is to give algorithms for finding
separators (4, B, S) for which a(A, B, S) < O(y/l1ogk) az(G), where k = |supp(r)| is the number
of vertices with non-zero weight in G.

Before we move onto the main algorithm, let us define

ar(A,B,S) = -

&r(A, B, S) = 7(S)/[x(A) - 1(BUS)].

Note that ar(A4, B, S) and ar(A, B, S) are equivalent up to a factor of 2 whenever 7(A4) > 7(95).
Hence in this case it will suffice to find a separator (A, B, S) with a,(A, B,S) < O(Vlogk) a-(G).
Allowing ourselves to compare a(A, B,S) to &,(G) rather than a,(G) eases the formulation
of the semi-definite relaxations that follow. When = (S) > 7(A), & no longer provides a good
approximation to a. However, in this case the trivial separator ((),0, V') has sparsity at most a
constant factor larger than «(G), making the approximation of a(G) trivial.

2.1 The quadratic program

We present a quadratic program for the problem of finding min-ratio vertex cuts. All constraints
in this program involve only terms that are quadratic (products of two variables). Our goal is for
the value of the quadratic program to be equal to &r(G). Let G = (V, E) be a vertex-weighted
graph, and let (A*, B*,S*) be an optimal separator according to & (-), i.e. such that a,(G) =
aq(A*, B*, S%).

With every vertex i € V, we associate three indicator 0/1 variables, x;, y; and s;. It is our
intention that for every vertex exactly one indicator variable will have the value 1, and that the
other two will have value 0. Specifically, z; =1ifi € A*, y; =1ifi € B*, and s; =1ifi € §*. To
enforce this, we formulate the following two sets of constraints.

FExclusion constraints. These force at least two of the indicator variables to be 0.
iy =0, x;-8,=0, y; -5, =0, for every i € V.
Choice constraints. These force the non-zero indicator variable to have value 1.

2 +y?+s2=1, forallie V.

The combination of exclusion and choice constraints imply the following integrality constraints,
which we formulate here for completeness, even though they are not explicitly included as part of
the quadratic program: x? € {0,1}, y? € {0,1}, s? € {0,1}, for all i € V.

Edge constraints. This set of 2|F| constraints express the fact that there are no edges connecting
A and B.

zi-y; =0and z;-y; =0, for all (1,5) € E.

Now we wish to express the fact that we are minimizing &, (A, B,S) over all vertex separators
(A, B,S). To simplify our presentation, it will be convenient to assume that we know the value



K = m(A*)-m(B*US*). We can make such an assumption because the value of K can be guessed
(since eventually we will only need to know K within a factor of 2, say, there are only O(log (V"))
different values to try). Alternatively, the assumption can be dropped at the expense of a more
complicated relaxation.

Spreading constraint. The following constraint expresses our guess for the value of K.

LS w(iym(i) (@i — o) = K.

1,5€V
Notice that (z; — z;)? = 1 if and only if {z;,z;} = {0, 1}.

The objective function. Finally, we write down the objective we are trying to minimize:

L N
minimize 7 Z m(1)s;.

2%

The above quadratic program computes exactly the value of &,(G), and hence is NP-hard to
solve.

2.2 The vector relaxation

We relax the quadratic program of Section 2.1 to a “vector” program that can be solved up to
arbitrary precision in polynomial time. The relaxation involves two aspects.

Interpretation of variables. All variables are allowed to be arbitrary vectors in R?, rather than
in R. The dimension d is not constrained, and might be as large as the number of variables (i.e.,
3n).

Interpretation of products. The original quadratic program involved products over pairs of
variables. Every such product is interpreted as an inner product between the respective vector
variables. The exclusion constraints merely force vectors to be orthogonal (rather than forcing one
of them to be 0), and the integrality constraints are no longer implied by the exclusion and choice
constraints. The choice constraints imply (among other things) that no vector has norm greater
than 1, and the edge constraints imply that whenever (i,j) € E, the corresponding vectors z; and
y; are orthogonal.

2.3 Adding valid constraints

The above vector program by itself does not give valuable information about vertex separators,
because for every graph it has a feasible solution with value 0. Namely, take s; = (0,0), x; = ( %, %),
yi = (3,—3) foralli e V.

We now strengthen the vector program by adding more valid constraints. This should be done
in a way that will not violate feasibility (in cases where the original quadratic program was feasible),
and moreover, that preserves polynomial time solvability (up to arbitrary precision) of the resulting
vector program. It is known that this last condition is satisfied if we only add constraints that are
linear over inner products of pairs of vectors, and this is indeed what we shall do. The reader is
encouraged to check that every constraint that we add is indeed satisfied by feasible 0/1 solutions
to the original quadratic program.

The 1-vector. We add additional variable v to the vector program. It is our intention that variables
whose value is 1 in the quadratic program will have value equal to that of v in the vector program.
Hence v is a unit vector, and we add the constraint v? = 1.



Sphere constraints. For every vector variable z we add the constraint 22 = vz. Geometrically, this
forces all vectors to lie on the surface of a sphere of radius % centered at g because the constraint
is equivalent to (z — %)% = 1.

Triangle constraints. For every three variables z1, 29, 23 we add the constraint

(21 — 22)2 + (22 — 23)2 > (21 — 23)2-
v 1

This implies that every three variables (which are points on the sphere S(3,3)) form a triangle
whose angles are all at most 7/2. We remark that we shall eventually use only those triangle
constraints in which all three variables are x variables.

Removing the s; vectors. In the upcoming sections we shall describe and analyze a rounding
procedure for our vector program. It turns out that our rounding procedure does not use the
vectors s;, only the values s? = 1 — 22 — y2. Hence we can modify the choice constraints to

i +yp <1

and remove all explicit mention of the s; vectors, without affecting our analysis for the rounding
procedure. The full vector program follows.

minimize % Y icy (@)1 — %2 - 3/12)

subject to x;,v;, v € R?", 1€V
a? +y? <1, eV
xi-yizo, 1€V
v =1
.2 .2 ;
V-Ty =25, VY =1Y;, eV

3 2ijev (D7) (@i — 25)* = K
(z; — )% < (m; — xp)? + (wp, — x5)%, h,i,j € V.

In the following section, we will show how to round this to a solution which is within an O(/log k)
factor of optimal. In Section 5, we show that this analysis is tight, even for a family of stronger
(i.e. more constrained) vector programs.

3 Algorithmic framework for rounding

In this section, we develop a general algorithmic framework for rounding solutions to optimization
problems on vertex cuts. We begin with a classical theorem.

Theorem 3.1 (Menger’s theorem). A graph G = (V, E) contains at least k vertez-disjoint paths
between two non-adjacent vertices u,v € V if and only if every vertex cut that separates u from v
has size at least k.

It is well-known that a smallest vertex cut separating w from v can be found in polynomial
time (in the size of G) by deriving Menger’s Theorem from the Max-Flow-Min-Cut Theorem (see
e.g. [44]).

Suppose that, in addition to a graph G = (V, E'), we have a set of non-negative vertex capacities
{cy}vev € N. (For simplicity, we are assuming here that capacities are integer, but the following
discussion can also be extended to the case of arbitrary nonnegative capacities.) For a subset
S CV, we define cap(S) = > g ¢o. We have the following immediate corollary.

7



Corollary 3.2. Let G = (V, E) be a graph with vertex capacities. Then for any two non-adjacent
vertices u,v € V, the following two statements are equivalent.

1. Every vertex cut S CV that separates u from v has cap(S) > k.
2. There exist u-v paths p1,p2,...,pr €V such that for every w € V,
#{1<i<k:wep}<cy.

Furthermore, a vertex cut S of minimal capacity can be found in polynomial time.

Proof. The proof is by a simple reduction. From G = (V| E) and the capacities {c, },cv, we create
a new uncapacitated instance G’ = (V’, E’) and then apply Menger’s theorem to G'.

To arrive at G’, we replace every vertex v € V with a collection of representatives vy, v, ..., v,
(if ¢, = 0, then this corresponds to deleting v from the graph). Now for every edge (u,v) € E,
we add edges {(u;,v;) : 1 <i < ¢y, 1 <j < ¢} It is not hard to see that every minimal vertex
cut either takes all representatives of a vertex or none, giving a one-to-one correspondence between
minimal vertex cuts in G and G'. O

Furthermore, given such a capacitated instance G = (V, E), {¢y }yey along with u,v € V| it is
possible to find, in polynomial time, a vertex cut S C V of minimal capacity which separates u
from v.

Suppose additionally that we have a demand function w : V x V' — R, which is symmetric, i.e.
w(u,v) = w(v,u). In this case, we define the sparsity of (A, B,S) with respect to w by

cap(5)
ZueAuS EveBuS w(u,v)

We define the sparsity of G by a®*P*(G) = min{a®P*(A, B,S)} where the minimum is taken
over all vertex separators. Note that a,(A4, B,S) = a®*P*(A, B, S) when ¢, = 7(v) and w(u,v) =
m(u)w(v) for all u,v € V.

%P (A, B, S) =

3.1 Line embeddings and vertex separators

Let G = (V, E) be a graph with vertex capacities {¢;, }vey, and a demand function w : VxV — R..
Furthermore, suppose that we have a map f : V — R. We give the following algorithm which
computes a vertex cut (A, B,S) in G.

Algorithm FINDCUT(G, f)
1. Sort the vertices v € V' according to the value of f(v): {y1,y2,---,Yn}
2. For each 1 <1 < n,
3. Create the augmented graph G; = (V U {s,t}, E;) with
E; =FEU{(s,y5), (yk,t) : 1 <j <i,i <k <n}.
4. Find the minimum capacity s-t separator S; in Gj;.
5. Let A; U {s} be the component of G[V U {s,t} \ S;] containing s, let B; =V \ (4; U S;).
6. Output the vertex separator (4;, B;,S;) for which a®P*“(A;, B;, S;) is minimal.

The analysis. Suppose that we have a cost function cost : V. — R,. We say that the map
f:V — R is path-compatible with the cost function cost if, for any path p = v1,v9,...,v; in G,

k
> " cost(vi) > |f(v1) — flve)]. (1)

i=1



‘We now move onto the main lemma of this section.

Lemma 3.3 (Charging lemma). Let G = (V, E) be any capacitated graph with demand function
w: VxV — Ry. Suppose additionally that we have a cost function cost : V. — Ry and a
path-compatible map f :V — R. If ag is the sparsity of the minimum ratio vertex cut output by
FINDCUT(G, f), then

3 e, - cost(v) > % 3" wu, )| f(u) — (o).

veV u,veV

Proof. Recall that we have sorted the vertices v according to the value of f(v): {y1,y2,...,9yn}
Let C; = {y1,...,yi} and &; = f(yi+1) — f(y;). First we have the following lemma which relates
the size of the separators found to the average distance under f, according to w.

Lemma 3.4.

Z&anp ) >0 Y wu,v)|f(u) — f(v)].

u,veV

Proof. Using the fact that «p is the minimum sparsity of all cuts found by FINDCUT(G, f),

cap(S;) > ap Z Z

ueA;US; veB;US;

> wY Y

ueC; veV\C;

Multiplying both sides of the previous inequality by ¢; and summing over ¢ € {1,2,...,n — 1}
proves the lemma. ]

Now we come to the heart of the charging argument which relates the cost function to the
capacity of the cuts occurring in the algorithm.

Lemma 3.5 (Charging against balls).

Z ¢y - cost(v Z g; cap(S.

veV

Proof. We first present an interpretation of the quantity Z?;ll g; cap(9;). Consider a nonnegative
function ¢ defined on the line segment [f(y1), f(yn)] whose value at point z is defined as g(z) =
cap(S;), where i is the unique value such that z is in the half open interval [f(v;), f(yi+1)). Then
Z?le g; cap(S;) is precisely the integral of g.

Now, for every v, we present an interpretation of 2¢, - cost(v). Consider a nonnegative function
gy whose value is ¢, on the interval [f(v) —cost(v), f(v)+cost(v)] and 0 elsewhere. Then 2¢, - cost(v)
is precisely the integral of g,. We shall refer to the support of g, as the ball of v (as it is a ball
centered at f(v) of radius cost(v)).

Lemma 3.5 can now be rephrased as

oz < > [tz

We shall prove this inequality pointwise.



Consider an arbitrary point z, belonging to an arbitrary interval [f(v;), f(yi+1)). Since S; is a
minimum capacity s-t separator, applying Menger’s theorem yields a family of s-t paths p1,...,pm
(where m = cap(S;)) which use no vertex v € V more than ¢, times. We view each of these paths
as contributing 1 to the value of ¢g(z), and hence fully accounting for the value g(z) = cap(S;). We
now consider the contribution of these paths to the functions g,.

Consider an arbitrary such path p;. Since it crosses from C; to V' \ Cj, there must exist two
consecutive vertices along the path (say u and v) such that u € C; and v € V' \ C;. The fact that
f is path-compatible implies that the union of the balls of u and v covers the interval [f(u), f(v)]
that includes the interval [f(y;), f(yi+1)). Hence z is in at least one of these two balls (say, the ball
of v), and then we have p; contribute one unit to g,(z). Note that the total contribution of the m
disjoint paths to g,(z) can be at most ¢,, because v can occur in at most ¢, of these paths.

In summary, based on the disjoint paths, we provided a charging mechanism that accounts for
all of g(z), and charges at least as much to > g,(z), without exceeding the respective values c,.
This completes the proof of Lemma 3.5. O

Combining Lemmas 3.4 and 3.5 finishes the proof of Lemma 3.3. O

3.2 Line embeddings and distortion

Let (X, d) be a metric space. A map f: X — R is called 1-Lipschitz if, for all z,y € X,

[f (@) = f(y)] < d(z,y).

Given a 1-Lipschitz map f and a demand function w : X x X — R, we define its average distortion
under w by

Zm,yGX w(m7 y) ' d(xv y)
Zx,yex W(xay) ’ ’f(.%) - f(y)’ '

We say that a weight function w is a product weight if it can be written as w(x,y) = 7(z)7(y)
for all z,y € X, for some 7 : X — R;. We now state three theorems which give line embeddings of

small average distortion in various settings. The proofs of these theorems are sketched in Appendix
A2.

avd,(f) =

Theorem 3.6 (Bourgain, [14]). If (X, d) is an n-point metric space, then for every weight function
w: X x X — Ry, there exists an efficiently computable map f: X — R with avd,(f) = O(logn).

Theorem 3.7 (Rabinovich, [40]). If (X, d) is any metric space supported on a graph which excludes
a K,.-minor, then for every product weight wp : X x X — R, there exists an efficiently computable
map f: X — R with avd,, (f) = O(r?).

Theorem 3.8 (Arora, Rao, Vazirani, [7]). If (X,d) is an n-point metric of negative type, then for
every product weight wp : X x X — R, there exists an efficiently computable map f: X — R with

avdy, (f) = O(y/logn).
We also recall the following classical result.

Lemma 3.9. Let (Y,d) be any metric space and X CY. G’z;ven a 1-Lipschitz map f : X — R,
there exists a 1-Lipschitz extension f : Y — R, i.e. such that f(x) = f(z) for all z € X.

Proof. One defines

f(y) = sup [f(x) — d(z,y)]

zeX
forally e Y. O
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3.3 Analysis of the vector program

We now continue our analysis of the vector program from Section 2.3. Recall that m(i)(1—x? —yZ ) is
the contribution of vertex i to the objective function. For every i € V, define cost(i) = 4(1—x? —y?).
We will consider the metric space (V, d) given by d(i, j) = (x; —2)? (note that this is a metric space
precisely because every valid solution to the SDP must satisfy the triangle inequality constraints).
The following key proposition allows us to apply the techniques of Sections 3.1 and 3.2 to the
solution of the vector program.

Proposition 3.10. For every edge (i, j) € E, cost(i) + cost(j) > 2(z; — ;)%

Proof. Since (i,j) € E, we have z; - y; = x; - y; = 0, and recall that z; - y; = z; - y; = 0. It follows
that

(i — 25)? <2[(wi +yi — 0)* + (25 +yi — )] <2[(1—2f —y7) + (1 - 2F — 4})).

(The first inequality follows from the fact that (v; — z7)? = ((; + y; —v) — (¥; + ¥ —v))?, and the
inequality (z —y)? < 2(2? 4 y?). Substitute z = z; +y; —v and y = z; + y; — v.)

Putting y; instead of y; in the above equation gives (x; — ;)% < 2[(1 —2? — yJQ) +(1— x? - yjz)]
Summing these two inequalities yields

2w —a;)® <4[(1—af —yf) + (1 - af — y7)] < cost(i) + cost(j). (2)
O

Now, let U = supp(m) = {i € V : 7(i) # 0}, and put k = |U|. Finally, let f : (U,d) — R be any
1-Lipschitz map, and let f : V — R be the 1-Lipschitz extension guaranteed by Lemma 3.9.
Then for any path vy,...,v, in G, we have

m—1
’f(vl)_]?(vmﬂ <d'U17'Um Zdvlavl-l-l =
=1

NgE

('rﬂz - x’”z-&-l)Q

i=1

IN
—_

m
= Z cost(v;) + cost(viy1))

< Z cost(v;).
i=1

where the third inequality is from Proposition 3.10. We conclude that f is path-compatible with
cost.

Defining a product demand by w(i, j) = m(i)7(j) for every i,j € V and capacities ¢; = (i), we
now apply FINDCUT(G, f). If the best separator found has sparsity ag, then by Lemma 3.3,

[\

w1t — ) = e Yecosti) = 20 ST w(ing) - |F) - FU)
i€V eV 1,JEV
Qp . . .
= SN wliod) S6) - )
i,jeU
o a0 Digev@(h9) () — ()]
o 4 Ei7j€Uw(i7j) ' d(laj)
— @0
 4-avd,(f)
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It follows that & (G) > /(4 - avd,(f)). Since the metric (V,d) is of negative type and w(-,-)
is a product weight, we can achieve avd,(f) = O(y/logk) using Theorem 3.8. Using this f, it fol-
lows that FINDCUT(G, f) returns a separator (A, B, S) such that ax(4, B, S) < O(y/logk) é-(G),
completing the analysis.

Theorem 3.11. Given a graph G = (V,E) and vertex weights m : V. — Ry, there exists a
polynomial-time algorithm which computes a vertex separator (A, B,S) for which

ax(4, B, S) < O(V1ogk) ax(G),
where k = |supp(m)]|.
In the next section, we extend this theorem to more general weights. This is necessary for some
of the applications in Section 6.3.
3.4 More general weights

An important generalization of the min-ratio vertex cut introduced in Section 2 is when a pair of
weight functions 71,79 : V' — R, is given and one wants to find the vertex separator (A, B,S)
which minimizes

m1(5)

T, A,B, = .
amm (4B, S) = e (B US)

We can also give an O(y/logk) approximation in this case, where again k = |[supp(m2)|.
Let
&M,WQ(A?BvS) = 7T1(S)/[7T2(A) : WQ(B U S)]v

where mo(A) > m(B). Also define ar, ,(G) and G, ,(G) as before. By changing the vector
program so that K is defined in terms of m and the objective is to minimize % >,y m1(4)(1 —
x? — y?), it becomes a relaxation for dy, r,(G). The rounding analysis goes through unchanged to

yield a separator (A, B, S) with

(A, B,S) < O(I1ogk) ér, ., (G).

The only difficulty is that if (A*, B*, S*) is the optimal separator, the relation between the two
notions, o, r,(A*, B*,S*) and ay, x, (A%, B*,5%), is no longer as clear. If they are not within a
factor of 2, then it must hold that ma(A*US*) > 2ma(A*), i.e. m2(S*) > ma(A*). (Where we assume
that 7'('2(14*) > WQ(B*).)

In this case,

m1(S*)
— <4dan .
772(3*)2 — «Q 1, Z(G)

Hence it suffices to find an approximation for a different problem, that of finding a subset S C V'
which minimizes the ratio 71(S)/m2(S)%. This problem can be solved in polynomial time; see
Appendix A.3.

Theorem 3.12. Given a graph G = (V, E) and vertex weights my,m : V. — Ry, there exists a
polynomial-time algorithm which computes a vertex separator (A, B,S) for which

(A, B, S) < O(V1ogk) ar, ,(G),

where k = |supp(ma)|.
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4 Approximate max-flow/min-vertex-cut theorems

Let G = (V, E) be a graph with capacities {c¢, },ey on vertices and a demand function w : VxV —
Ry. The mazimum concurrent verter flow of this instance is the maximum constant € € [0, 1] such
that one can simultaneously route an € fraction of each u-v demand w(u,v) without violating the
capacity constraints. For a vertex v, the capacity constraints give an upper bound on the total flow
allowed through v, where this total includes flow paths in which v is either the source vertex, or
the sink vertex, or an intermediate vertex.

Let Py be the set of all u-v paths in G, and for each p € Py, let p** denote the amount of the
u-v commodity that is sent from u to v along p. We now write a linear program that computes the
maximum concurrent vertex flow.

maximize €
subject to Z p’ > e-w(u,v), u,v eV
PEPuv
Z Z "’ < ey, wevV
u,EV pEPyy:wEP
p >0 u,v € V,p € Py

We now write the dual of this LP with variables {s,},ev and {lyy }uvev-

minimize Z Cy Sy
veV
subject to Z Sw = buw p € Puy,Vu,v €V
wep
> Wl 0)l > 1
u,veV
byp > 0,8, >0 u,v € V.

Finally, define
dist(u,v) = min st.

P

By setting £y, = dist(u,v), we see that the above dual LP is equivalent to the following.

minimize Z CySu
veV
subject to Zw(u,v) -dist(u,v) > 1.
u,v

Remark. The dual LP above is derived by defining the length of a path p = vy,...,v; to be
> <i<k Sv;- However, a “cleaner” definition would take only half of the contribution of the endpoints
of the path, giving it length sy, /2 + > 5 i cp_q Sv; + Sv, /2. Under this second definition, each edge
(u,v) has length (s, + s,)/2, and the length of a path is the sum of the lengths of its respective
edges. In terms of approximating vertex cuts, the two definitions differ by a factor of at most two,
which makes little difference for us. We choose to work with the first definition because it simplifies
some of the notation. However, in Section 4.3 we shall switch to the second definition.

13



4.1 Rounding to vertex separators

Any vertex separator (A, B, S) yields an upper bound on the maximum concurrent flow in G via
the following the expression:
cap(S5)

a®P¥ (A, B,S) = .
( ) > ucAus 2wepus W(w, v)

The numerator is the capacity of the separator. Every unit of demand served between u € A
and v € A must consume at least one unit of capacity from S. Likewise, every unit of demand
served between v € B and v ¢ B must consume at least one unit of capacity from S. Every unit
of demand served between u € S and v € S must consume at least two units of capacity from
S. Hence the denominator is proportional to the maximum amount of demand that can be sent
through S. Minimizing over all vertex separators, we see that a®*?* is an upper bound on the
maximum concurrent flow.

We wish to study how tight this upper bound is. In order to do so, we take the dual of the
max-concurrent-flow LP from the previous section and round it to a vertex separator. The increase
in cost incurred by the rounding provides an upper bound on the worst possible ratio between
a®P¥ and the maximum concurrent flow.

We will write a = a®*P* if the capacity and demands are clear from context. For a graph G,
we will write a(G) for the minimum of (A, B, S) are all vertex separators in G. We note that
the dual LP is a relaxation of a(G), since every vertex separator (A, B, S) gives a feasible solution,
where s, = 1/X if v € S and s, = 0 otherwise. In this case dist(u,v) > 1/A if u € AU S and
v € BUS or visa-versa, so that setting A = >~ 4,5, pus W(u, v) yields a feasible solution.

4.2 The rounding

Before presenting our approach for rounding the LP, let us recall a typical rounding approach
for the case of edge-capacitated flows. In the edge context [37, 8], one observes that the dual
LP is essentially integral when dist(+,-) forms an L; metric. To round in the case when dist(-,-)
does not form an L; metric, one uses Bourgain’s theorem [14] to embed (V,dist) into L; (with
O(logn) distortion, that translates to a similar loss in the approximation ratio), and then rounds
the resulting Ly metric (where rounding the L; metric does not incur a loss in the approximation
ratio). This approach is not as effective in the case of vertex separators, because rounding an L
metric does incur a loss in the approximation ratio (as the example below shows), and hence there
is not much point in embedding (V,dist) into L; and paying the distortion factor.

The discrete cube. Let G = (V, E) be the d-dimensional discrete hypercube {0,1}¢. We put
¢y = 1 for every v € V, and w(u,v) = 1 for every pair u,v € V. It is well-known that a(G) =
O(1/(2%/d)) [26]. On the other hand, consider the fractional separator (i.e. dual solution) given
by s, = 10 - %. Note that dist(u,v) is proportional to the shortest-path metric on the standard
cube, hence »_,  dist(u,v) > 1, yielding a feasible solution which is a factor O(vd) away from
a(G). It follows that even when (V,dist) is an Lj metric, the integrality gap of the dual LP might

be as large as Q(y/logn).

Rounding with line embeddings. The rounding is done as follows. Let {s,},ecy be an optimal
solution to the dual LP, and let dist(-,-) be the corresponding metric on V. Suppose that the
demand function w : V' x V' — Ry is supported on a set S, i.e. w(u,v) > 0only if u,v € S, and that
|S| = k. Let f : (S,dist) — R be the map guaranteed by Theorem 3.6 with avd,(f) = O(logk),
and let f : (V,dist) — R be the 1-Lipschitz extension from Lemma, 3.9.
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For v € V, define cost(v) = s,. Then since f is 1-Lipschitz, for a path vi,ve,...,vm in G, we
have

Zcost(vi) > dist(v1, vm) > | f(v1) = f(vm)],
i=1

hence f is path-compatible with cost.
We now apply FINDCUT(G, f). If the best separator found has sparsity g, then by Lemma
3.3,

chsv = ZCU ~cost(v) > o Z w(u,v) |f(u) — f(v)]

vV
o)
D
® |8

e
N

3" w(u,v)dist(u,v) > Q (J&) .

u,veV

Theorem 4.1. For an arbitrary vertez-capacitated flow instance, where the demand is supported on
a set of size k, there is an O(logk)-approximate maz-flow/min-vertez-cut theorem. In particular,
this holds if there are only k commodities.

4.3 Excluded minor families

Here we shall switch to the “cleaner” definition for path lengths that is presented in the remark
following the description of the dual LP. This allows us to view path lengths as being induced by
edge lengths. A consequence of this is that if the graph G excludes some fixed graph H as a minor,
then the metric arising from the LP dual is an H-excluded metric. It follows that applying Theorem
3.7, yields a better result when G excludes a minor and the demand function w(u,v) is uniform
on a subset of the vertices. This special case will be needed later when we discuss treewidth, and
follows from the following theorem (because product demands include as a special case demand
functions that are uniform on a subset of the vertices).

Theorem 4.2. When G is an H-minor-free graph, there is an O(|V(H)|?)-approximate maz-
flow/min-vertex-cut theorem with product demands. Additionally, there exists an O(|V (H)|?) ap-
prozimation algorithm for finding min-quotient verter cuts in G.

4.4 More integrality gaps for uniform demands

Expanders. Our analysis for the integrality gap of the dual LP is tight. Just as in the edge case,
constant-degree expander graphs provide the bad example. If G = (V| E) is such a graph, with
uniform vertex capacities and uniform demands, then a(G) = 1/0(n), while the dual LP has a
solution of value 1/92(nlogn) (by setting s, = 1/92(n?logn) for every v € V).

Euclidean metrics. Even if the vertex-weighted distance function returned by the LP is equiv-
alent to a Euclidean metric, up to a universal constant, there may still be an integrality gap of

Q ( 10?1%) gn> We sketch the argument here. The idea is to take a fine enough “mesh” on a high-

dimensional sphere so that the shortest-path distance along the mesh approximates the Euclidean
distance. Using standard isoperimetric considerations on high-dimensional spheres, we are able to
determine the structure of the near-optimal vertex separators. Here we will only sketch the proof;
one may refer to [39] for a more detailed argument along these lines.
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Let S? be the d-dimensional sphere, let ¢ = 1/0(d), and let V be an e-net on the sphere S¢.
Standard arguments show that n = [V| < O(d)?. Define a graph G with vertex set V and an edge
between u,v € V whenever ||lu —v|l2 < 10e. We claim the following facts without proof (see [39]

for a similar argument). It follows that the integrality gap is at least ©(v/d) = © ( 102)?; gn>

Claim 4.3. The following three assertions holds true.
1. a(G) =1/0(nVd).
2. Setting s, = 1/©(n%d) in the dual LP yields a feasible solution with value 1/0(nd).

3. The (vertex-weighted) shortest path metric on G with weights given by {s,}vey 1S equiva-
lent (up to a universal constant) to a Fuclidean metric (V,d). (Namely the metric given by
d(u,v) = ||u — vl||2/n?, recalling that V C S%.)

5 An integrality gap for the vector program

Consider the hypercube graph. Namely, the n vertices of the graph (where n is a power of 2)
can be viewed as all vectors in {£1}°6" and edges connect two vertices that differ in exactly one
coordinate. Every vertex separator (A, B, S) has a(A4, B,S) > 1/0(ny/logn). This follows from
standard vertex isoperimetry on the cube [26]. We show a solution to the vector program with
value of O(n/logn), proving an integrality ratio of ©(y/logn) for the vector program, and implying
that our rounding technique achieves the best possible approximation ratio (relative to the vector
program), up to constant multiplicative factors.

In the solution to the vector program, we describe for every vertex ¢ the associated vectors
x; and ;. The vectors s; will not be described explicitly, but are implicit, using the relation
si = v — x; — y;. Bach vector will be described as a vector in 1 4+ nlogn + 2(n — 1) dimensions
(even though n dimensions certainly suffice). Our redundant representation in terms of number of
dimensions helps clarify the structure of the solution.

To describe the vector solution, we introduce two parameters, a and b. Their exact value will be
determined later, and will turn out to be a = 1/2 — O(1/logn), b = O(1/y/nlogn). We partition
the coordinates into three groups of coordinates.

G1. Group 1, containing one coordinate. This coordinate corresponds to the direction of vector v
(which has value 1 in this coordinate and 0 elsewhere). All x; and y; vectors have value a on
this coordinate.

G2. Group 2, containing n identical blocks of logn coordinates. The coordinates within a block
exactly correspond to the structure of the hypercube. Within a block, each x; is a vector in
{£b}°8" derived by scaling the hypercube label of vertex i (which is a vector in {41}1°&")
by a factor of b. Vector y; is the negation of vector x; on the coordinates of Group 2.

G3. Group 3, containing 2 identical blocks of n — 1 coordinates. The coordinates within a block
arrange all the x; vectors as vertices of a simplex. This is done in the following way. Let H,,
be the n by n Hadamard matrix with entries +1, obtained by taking the (logn)-fold tensor
product of the 2 by 2 the matrix Hy that has rows (1,1) and (1, —1). The inner product of
any two rows of H, is 0, the first column is all 1, and the sum of entries in any other column
is 0. Remove the first column to obtain the matrix H,,. Within a block, let vector x; be the
ith row of H,, scaled by a factor of b. Hence within a block, z;z; = b*(n— 1), and Ty = —b?
for ¢ # j. Vector y; is identical to x; on the coordinates of Group 3.
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We now show that the triangle constraints are satisfied by our vector solution. Recall (see
Section 2) that there is some flexibility in the choice of which triangle constraints to include in the
vector program (and likewise for many other constraints that are valid for 0/1 solutions but are
not used in our analysis). We shall address here a subset of the triangle constraints that is larger
than that actually used in the analysis of our rounding algorithm.

There are five sets of vectors from which we can take the three vectors that participate in a
triangle constraint: X (the xz; vectors), Y (the y; vectors), S (the s; vectors), v and 0. In our
analysis we used only triangle constraints over vectors from X. Here we show that all the triangle
constraints that involve only vectors from X JY are satisfied. All vectors in X |JY have the
identical value a in their first coordinate, and in every other coordinate they take only values from
+b. Hence per coordinate, every quadratic constraint that holds for all £1 vectors (including, but
not limited to, the triangle constraints) is satisfied for all z; and y; vectors.

Welet K =3, .y (% — z;)? = O(n®b? logn). The value of the parameters a and b is governed
by the following three constraints.

1. The exclusion constraints imply that

a? —nb*logn + 2b*(n —1) = 0

2. The edge constraints (and the fact that edges connect vertices of Hamming distance 1) imply
that
a? —nb*(logn — 2) — 20 = 0

3. The sphere constraints imply that
a = a®+nb*logn + 2b*(n — 1)

Hence we have a system of three equalities in two unknowns (a and b). This system is consistent,
because the first two equalities are in fact identical (due to our careful choice of number of blocks
in each group). They both give:

a® + (—nlogn + 2n — 2)b* =0

By setting b = a/v/nlogn — 2n + 2 the first two equalities are satisfied. The third equality now
reads a = a?(2 + ¢) for some € = ©(1/logn). This equality is satisfied by taking a roughly equal
to 1/2 — e/4, which is 1/2 — ©(1/logn).

It follows that in the vector solution all s? = 1 — 22 — y? is O(1/logn) for every i € V. Hence
our vector solution has value ) 1

2
— Sf = ———.
K ; O(nlogn)

Finally we note that rather than have only one coordinate in Group 1, we can have (a/b)? =
nlogn — 2n + 2 coordinates, and give the z and y vectors values b in these coordinates. Then all x
and y vectors become vertices of a 2nlog n-dimensional hypercube (of side length b). We see that
even in this special case, the integrality gap remains Q(y/logn).

6 Balanced separators and applications

6.1 Reduction from min-ratio cuts to balanced separators

In this section, we sketch a pseudo-approximation for finding balanced vertex separators in a graph
G = (V,E). Let W C V be an arbitrary subset of V. For 6 € (0,1), we say that a subset
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X C V is a d-vertex-separator (with respect to W ) if every connected component C' of G[V'\ X] has
|CNW| < §|W|. Our goal in this section is to show that we can find a 2-vertex-separator X C V
whose size is within an O(f3) factor of the optimal %—Vertex—separator of G, whenever we can find

approximate min-ratio cuts in G within factor 5. This technique is standard (see [35]).

The algorithm. Let m = |W/|, and for any subset U C V, define |U|,, = |UNW|. Let m;(v) =1
for every v € V, and ma(v) = 1 if v € W and m2(v) = 0 otherwise. These are the weights for
the numerator and denominator, respectively, i.e. we assume that we have a (-approximation for
Qry o (+). We maintain a vertex separator S C V. Initially, S = (). As long as there exists some
connected component U C V in G[V'\ S] with |U|,, > 2|W|, we use our S-approximation to find
a minimum-ratio vertex cut S’ in G[U] which is within § of optimal. We then set S «— SUS" and
continue.

The analysis. Let S be the final vertex separator. By construction, it is a %—Vertex separator since

every connected component U of G[V'\ S] has |[U|,, < 2|[W/|. Let T C V be an optimal i-vertex
separator.

Claim 6.1. |S| < O(B)|T.

Proof. We know that T separates G into two pieces, call them Ap, By C V such that |Ap U
T\, |BrUT|, > 5|W|. Suppose we are at a step where |U|,, > 2|W|. Let (A, B’,S’) be the
vertex separator in G[U] that we find by running our min-quotient cut algorithm with ratio 3, and
suppose that |A'|,, > |B’|,,. We know that

lw -

15|

7| _ 12T
A0S, - |B'US

(AruT)NU|, - |(BrUT)NU|, = m? ’

<p

lw

where the final inequality follows because |U|,, > 2. It follows that

/ !
'] < 125|T((| Bl + 15"|w)
m
To see that |S| < O(B)|T|, it suffices to see that when we sum |B’|,, + |S’|,, over all iterations,
the value is at most O(m). But since we throw away the vertices of B’ U S’ in every iteration (and
recurse only on A’), the sum is clearly at most m. O

6.2 Getting an O(y/logopt) approximation for vertex separators

In this section, we sketch a proof of how one can obtain an O(/logopt) pseudo-approximation for
finding balanced vertex separators. In other words, given a graph G with a %—vertex—separator of
size m, we find a %—vertex—separa‘cor whose size is at most (m+/logm). The method is based on the

following enhancement of Theorem 3.8.

Theorem 6.2. Let C' > 0 be a universal constant. Let (X, d) be an n-point metric space of negative
type, and let wg : X X X — Ry be any product weight. If

nyy WO(xv y) d(l’, y) -1
ngy wo ($, y) -

and there exists an e-net N C X with |[N| < m ande < 1/(C+/logm), then there exists an efficiently
computable map f: X — R with avd,,(f) = O(/logm).
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Proof. Assume that wo(z,y) = w(x)n(y) for all x,y € X. As in the proof of Theorem 3.8 (see
sketch in Section A.2), if there exists some point zg € X for which 7(B(zo, 123)) > $7(X), then
we achieve a map f : X — R with avd,,(f) = O(1). If no such xy exists, then it must be
the case (see the proof of [7, Lemma 14]) that there exists a set S C X x X of pairs for which

Z(Ly)esﬂ-(‘r)ﬂ-(y) 2 Q(l) Z$7y wo(x,y), and d(l’,y) Z ﬁ for (x,y) € S.

We construct a new weight function 7* : N — Ry on N as follows. Since N is an e-net, we
have X C UyeN B(y,¢). For every point € X, put z into a set S, for some net point y € N with
d(z,y) <€ (so that {Sy}yen is a partition of X). Define 7*(y) = >_,cq m(x) for every y € N.

We now consider the quantity

CZN _ Zx,yeN ™ (x)ﬂ’*(y) d(.%', y) Zw,yEN ZueSm,vesy 7T(’U,)7T(7)) d(l‘, y)

ZZ‘,yEN 7T* ("LA)TF* (y) B Ez”y (UO (x’ y)
We claim that dy = ©(1). But this follows since

Z Z m(u)m(v)d(z,y) > Z Z m(u)m(v) d(z,y)

z,yEN u€Sz,vESy z,yEN ueS; veSy,(u,v)ES

> > m(w)m(v) (d(u,v) — 2)

z,yEN ue S, ,vESy,(u,v)eS

> % S r(wyr(o) d(u, ) = (1) Y wolw, ).
z,Y

(u,v)€S

v

As discussed in Section A.2, the techniques of [7] now show that there exist two subsets L, R C N
for which d(L, R) > 1/O(y/logm) and 7*(L),7*(R) > 157*(X). Construct sets

L'={zeX:zeS,forsomeye L} and R ={re€ X:z €S, for some y € R}.
Note that 7(L') = 7*(L) and m(R') = 7*(R), hence m(L’),7(R’) > 75m(X). Finally, for any points
zr, € L', xg € R, let yr,yr be such that z;, € S, and xp € Sy, and notice that
1 1
d(zr,xr) = d(yL,yr) — d(xr,yr) — d(zr,yr) = OWlogm) 2e > O(Wlogm)’

where the last inequality holds for C' > 0 chosen sufficiently large. Now one simply takes the map
f(z) =d(z, L"), which has avd,,(f) = O(y/logm). O

Next, we make an observation about solutions to the SDP of Section 2.3.

Lemma 6.3. If {z;,y;} is a solution to the SDP with W =Y, .\, (1 — 2? — y?), then in the metric
space ({x1,...,2n},d) where d(i,j) = (z; — x;)?, there exists an e-net N C {x1,...,x,} with
IN| < O(W/e).

Proof. Let G = (V, E) be the original graph, and let dg be the shortest vertex-weighted path metric
where each vertex i € V has weight 1 — 22 — 2. We claim first that d(i, j) < 4dg(i, j). Indeed, let
1 =141,19,...,9 = j a shortest path in G, then

k—1
d(i, ) = (i —a;)* < Y (@i = wip,)? (3)
h=1
k—1
< 2) (- —gd)+ (-2, —3 ) (4)
h=1
< 4dg(i,j),



where (3) follows from the squared triangle inequalities, and (4) follows from line (2) in Proposition
3.10.

Thus it will suffice to find an €/4-net N in the metric dg, and the rest of the proof refers to this
metric on X = {x1,...,7,}. For a point x;, define w(z;) = 1 — 22 — y2, and for a subset S C X,
define w(S) = > cqw(x). Choose a maximal €/8-separated set Y C {z1,...,2,} among all points
x € X for which w(By,(x,e/16)) > €/16. Since the set Y is €/8-separated, the balls By, (x,c/16)
are disjoint for x € Y, hence |Y| < 16W/e, recalling that W = w(X).

So we are done once we prove that Y is an ¢/4-net in (X, dg). For the sake of contradiction,
suppose there is a point € X with dg(z,Y) > /4. Let y € Y be such that dg(z,y) = dg(z,Y),
and and consider any shortest-path x = z1,...,2; = y in G. Letting P = {x1,..., 2}, we know
that w(P) > €/4, because w(P) = dg(z,y). On the other hand, clearly w(By,(y,e/8) N P) <¢e/8,
hence there must be some vertex z € P\ By, (y,e/8) with w(Bg,(z,£/8)) > ¢/8. But then we
should have z € Y by our selection criteria above. It follows that Y is an €/4-net in (X, dg), and
hence an e-net in (X, d). O

Combining Theorem 6.2 and Lemma 6.3, along with the analysis of Section 3 yields an O(y/log m)-
approximation to vertex sparsest cut where m is the number of vertices in an optimal %—Vertex—
separator. Now applying the transformation of Section 6.1 yields the desired O(y/logopt) pseudo-
approximation for finding balanced vertex separators.

6.3 Applications

The notion of treewidth was introduced by Robertson and Seymour [42] and plays an important role
in their fundamental work on graph minors. In addition, it has numerous practical applications (see
e.g. [10]). A large amount of effort has been put into determining treewidth, which is NP-complete
even when the input graph is severely restricted (see the discussion in [20] for a brief history).

From the approximation viewpoint, Bodlaender et al. [11] gave an O(logn)-approximation al-
gorithm for treewidth on general graphs. Amir [4] improved the approximation factor to O(log opt)
where opt is the actual treewidth of the graph. Constant-factor approximations for treewidth were
obtained on AT-free graphs [13, 12] and on planar graphs [43]. The approximation for planar
graphs is a consequence of the polynomial-time algorithm given by [43] for computing the parame-
ter branchwidth, whose value approximates treewidth within a factor of 1.5. Recently, [5] obtained
a new approximation algorithm for treewidth in planar graphs with a constant factor slightly worse
than 1.5, and the authors of [20] derived a polynomial-time algorithms for approximating treewidth
within a factor of 1.5 for single-crossing-minor-free graphs, generalizations of planar graphs. A well-
known open problem is whether treewidth can be approximated within a constant factor.

Using our new approximation algorithms for vertex separators, we improve the approximation
ratio for treewidth, both in general graphs and in some special families of graphs. Our improvements
and some of their implications will be presented after we formally define the notion of treewidth.

Treewidth. The notion of treewidth involves a representation of a graph as a tree, called a tree
decomposition. More precisely, a tree decomposition of a graph G = (V, E) is a pair (T, x) in which
T =(I,F)isatree and x = {x; | i € I} is a family of subsets of V(G) such that (1) J;c;xi =V
(2) for each edge e = {u,v} € E, there exists an ¢ € I such that both v and v belong to x;; and
(3) for all v € V, the set of nodes {i € I | v € x;} forms a connected subtree of T'. To distinguish
between vertices of the original graph G and vertices of T' in the tree decomposition, we call vertices
of T nodes and their corresponding x;’s bags. The maximum size of a bag in x minus one is called
the width of the tree decomposition. The treewidth of a graph G, which we denote by tw(G), is the
minimum width over all possible tree decompositions of G. A tree decomposition is called a path
decomposition if T'= (I, F') is a path. The pathwidth of a graph G is the minimum width over all
possible path decompositions of G.
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Now we are ready to state our approximation result for treewidth.

Theorem 6.4. There exist polynomial time algorithms that find a tree decomposition of width at
most O(y/log tw(G) tw(Q)) for a general graph G and at most O(|V (H)|? tw(Q)) for an H-minor-
free graph G.

Proof. The proof follows by plugging our improved approximation ratios for balanced vertex sep-
arators into the known approximation algorithms for treewidth. Specifically, the algorithm of [11]
finds a tree decomposition by recursively using a balanced vertex separator algorithm. The vertex
separator algorithm is applied to subgraphs of the original graph, in a product demand setting.
It turns out that the approximation ratio obtained for treewidth is at most a constant factor
worse than that of the underlying vertex separator algorithm. Using our bounds from Section 6.2
one obtains the first part of Theorem 6.4, and using Theorem 4.2 one obtains the second part of
Theorem 6.4. O

Improving the approximation factor of treewidth improves the approximation factor for several
other problems (see [11]).

Corollary 6.5. There exist O(v/logopt) (resp., O(|V(H)|?)) approzimation algorithms for branch-
width, minimum front size and minimum size of a clique in a chordal supergraph of a general (resp.,
H-minor-free) graph G. Additionally, there are O(y/logoptlogn) (resp., O(|[V (H)|?logn)) approz-
imation algorithms for pathwidth, minimum height elimination order tree, and search number in a
general (resp., H-minor-free) graph G.

We also note that Theorem 3.12 with general weights 7y, 7o is useful for certain hypergraph
partitioning problems [35]. Improving the approximation factor for treewidth has a direct improve-
ment on the running time of approximation schemes and subexponential fixed parameter algorithms
for several NP-hard problems on graphs families which exclude a fixed minor. In such algorithms
finding the tree decomposition of almost minimum width, on which we can run dynamic program-
ming, plays a very important role. More precisely, Demaine and Hajiaghayi [18, 19] introduced the
concept of (contraction/minor) bidimensional parameters for planar graphs and more generally for
excluded-minor families. Examples of bidimensional parameters include number of vertices, diam-
eter, and the size of various structures, e.g., feedback vertex set, vertex cover, minimum maximal
matching, face cover, a series of vertex-removal parameters, dominating set, edge dominating set, r-
dominating set, connected dominating set, connected edge dominating set, connected r-dominating
set, and unweighted TSP tour (a walk in the graph visiting all vertices).

They show how one can obtain PTASs for almost all bidimensional parameters on planar graphs,
single-crossing-minor-free graphs and bounded genus graphs. In fact, as they mentioned their ap-
proach can be extended to work on apex-minor-free graphs for contraction-bidimensional parame-
ters and on H-minor-free graphs, where H is a fixed graph, for minor-bidimensional parameters
(see [18, 19] for appropriate definitions). However currently they obtained quasi-polynomial-time
approximation schemes for these general settings. The only barrier to obtain PTASs for these gen-
eral settings is obtaining a constant-factor polynomial-time approximation algorithm for treewidth
of an H-minor-free graph for a fixed H (this is posed as an open problem in [18]). Using The-
orem 6.4, we overcome this barrier and obtain PTASs for contraction-bidimensional parameters
in apex-minor-free graphs and for minor-bidimensional parameters in H-minor-free graphs for a
fixed H. As an immediate consequence, we obtain the following theorem (see [18, 19] for the exact
definitions of the problems mentioned below).

Theorem 6.6. There are PTASs for feedback vertex set, vertex cover, minimum mazimal matching,
and a series of vertex-removal problems in H-minor-free graphs for a fired H. Also, there are PTASs
for dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge
dominating set, connected r-dominating set, and clique-transversal set in apex-minor-free graphs.
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Among the problems mentioned above, PTASs for vertex cover and dominating set (but not its
other variants) using a different approach were known before (see e.g. [25]).

Acknowledgements. The second author would like to thank Erik D. Demaine and MohammadAli
Safari for helpful comments and discussions.
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A Appendix

A.1 A note about approximating vertex expansion

In the case of edge cuts, the value of the sparsest cut (under uniform weights) corresponds to edge
expansion of the graph G. Thus it is perhaps more natural to consider finding the vertex separator
(A, B, S) which minimizes the ratio |S|/|B|, where by convention, |B| < |A].

We now show that having the |S| term in the denominator, i.e. |S|/(|B| + |S]), is crucial to
obtaining polylogarithmic approximation ratios. We present here an argument (essentially due to
Shimon Kogan) that demonstrates this fact.

Consider the problem of balanced bipartite independent set (BBIS). The input is a bipartite
graph G(UJV, E) with |U| = |V| = n, and the goal is to find the maximum value of ¢ and sets
A CU,B CV with |A| = |B| =t with no edges between A and B. It is known that when ¢ is small
compared to n, approximating this problem (the value of ¢) within a ratio of n? for some § > 0 will
have some major algorithmic consequences [22, 23], including subexponential algorithms for all NP
problems [28]. Now modify G by making U into a clique and V into a clique, obtaining a graph G'.
The set S of vertices not in the maximum BBIS provides a vertex separator (4, B, S) for G'. The
ratio |S|/|B| for this separator is the minimum possible up to constant factors. (For every separator
(A", B',S"), side U cannot contain vertices both from A and from B. Hence |S’| = Q(n) unless
both A" and B’ are of size nearly n. When ¢ is known to be small, this implies that |S’| = O(n) for
all separators. Hence the ratio |S’|/|B’| of any separator in G’ is governed by |B’| rather than by
|S]. The value of |B’| is maximized by taking the separator (A, B,S).) This implies that for the
minimum balanced vertex separator the quantity |S|/|B| cannot be approximated within a ratio of
n® (unless NP has subexponential algorithms).

Remark. For a set B of vertices, let N(B) denote the set of vertices not in B that are neighbors
of vertices in B. Then the expansion of B is |[N(B)|/|B|. The expansion of a graph is the minimum
over all sets B up to a certain size of the ratio |N(B)|/|B|. The restriction on the size of B is
necessary so as to avoid B being the whole graph, giving expansion 0. For bounded degree graph,
one typically requires | B| < n/2. For graphs of unbounded degree, such a requirement is insufficient,
as it always bounds the expansion by 1 (taking B to be half the graph), whereas one would like to
allow for much higher expansions. A possible restriction on B in this case is to require it to be the
smaller side of an (A, B, S) vertex separator. Under this definition of vertex expansion, the above
argument shows that vertex expansion cannot be approximated within a factor of n? unless NP has
subexponential algorithms.
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A.2 Line embedding theorems

We now sketch how the following three theorems follow from their respective sources. We begin
with Bourgain’s theorem.

Theorem A.1 (Bourgain, [14]). If (X, d) is an n-point metric space, then for every weight function
w: X x X — Ry, there exists an efficiently computable map f : X — R with avd,,(f) = O(logn).

In [14], it is shown that every n-point metric (X,d) space embeds into a Hilbert space with
distortion O(logn), but Bourgain actually shows something stronger. He proves that there exists a
probability space (€2, ) on random subsets A, C X, 7 € 2, satisfying the following property. For

every x,y € X,
d(z,y)

O(logn)’

To show how this implies the theorem, note that by linearity of expectation

Eq [|d(z, A7) — d(y, Ar)[] =

Eq Z w('x?y) ’ ‘d(x’AT) - d(ywAT)‘ = O(l(:)lgn) Z w(x,y) ’ d(x7y)

z,yeX z,yeX

Hence there must exist some subset A; C X for which the map f : X — R given by f(z) = d(z, A;)
has avd,(f) = O(logn). An efficient randomized algorithm for sampling A is given in [37].

Theorem A.2 (Rabinovich, [40]). If (X, d) is any metric space supported on a graph which excludes
a K,.-minor, then for every product weight wg : X x X — R, there exists an efficiently computable
map f: X — R with avd,, (f) = O(r?).

In [40], Rabinovich proves precisely this fact, although only for the uniform weight function
wo(z,y) = 1 for all z,y € X. It is easy to see that we can assume arbitrary product form for wy
without loss of generality. Suppose that we have vertex weights 7 : V' — R,. We can replace X by
the pseudo-metric where each copy of # € X occurs 7(z) times. Then applying the analysis of [40]
immediately yields the desired result.

Theorem A.3 (Arora, Rao, Vazirani, [7]). If (X, d) is an n-point metric of negative type, then for
every product weight wg : X x X — Ry, there exists an efficiently computable map f: X — R with

avd,, (f) = O(y/logn).

Assume that wo(z,y) = w(z)n(y) for all z,y € X. We will “mentally” replace every copy of
x by m(x) copies, but we will ensure that this increase in the number of points doesn’t affect the

quality of our map f. Also, suppose that (by scaling) <1317) Zawex wo(z,y) - d(z,y) = 1.

2,y @0 (T,Y)

Suppose there exists some point 2o € X for which 7(B(zo, 1)) > 7(X). In this case, the map
f(z) =d (2, B(zo, 1)) has avdu,(f) = O(1) (see, e.g., [7, Lemma 14]).

Otherwise, the techniques of [7] show that there exist two subsets L, R C X for which d(L, R) >
1/0(y/logn) and w(L), 7(R) > 1—107T(X). The fact that the number of copies of a point = € X doesn’t
affect the analysis is somewhat technical, and relies on the fact that an “(e, §)-cover” has size which
is lower-bounded by the number of distinct points that it contains. In this latter case, one simply
takes the map f(z) = d(z, L), which has avd,, (f) = O(y/logn). A simpler algorithm for computing
the map f (which consists of choosing a few random hyperplanes) is given in [33].
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A.3 Approximating the “densest subgraph”

To orient the reader arriving at this section from Section 3.4, let us remark that m and w below
can correspond to 7 and a product distribution 7o X 7o in Section 3.4.

Given a set V' = {vy,...,v,} with a positive rational weight function 7 on V', and a nonnegative
rational weight function w on V' x V', we need to find a set S C V of maximum density, where the
density of a set is defined as

Zi,jGS W(i, ])

This is a weighted version of the densest subgraph problem, and can be solved in polynomial time
(see for example, Chapter 4 in [32]). For completeness, we sketch the algorithm.

Construct a bipartite graph with sides U and W, where U has n vertices labeled {u1,...uy},
and W has n? vertices labeled w;; for 1 < 4,7 < n. For every 4, connect vertex u; to the vertices
w;j and wj; (for all 7). All these edges have infinite capacity. Add two special vertices, s and ¢ to
the graph. For every i, connect vertex u; to s by an edge of capacity km (i), where k is a parameter
whose value will be optimized later. For every 1 <1,j < n, connect vertex w; ; to ¢t by an edge of
capacity w(i, j). Now compute the minimum capacity (s,t)-cut in the resulting capacitated graph
(a problem that can be solved in polynomial time by using flow techniques).

We now analyze the above algorithm. Observe first that the minimum (s, t)-cut contains only
edges that are connected to either t or s, as other edges have infinite capacity. Furthermore,
observe that if the parameter k is sufficiently large, then the minimum (s,t)-cut contains exactly
those edges connected to t. (Here we used our assumption that 7(i¢) > 0 for all ¢, but we remark
that this assumption can be made without loss of generality, because all v; with 7(i) = 0 can be
placed in S.) How low should & be so that the cut also cuts edges connected to s? This may happen
only when k£ < A (and will necessarily happen when k& < A), where A = ming A(S). The reason
is the following. Cutting a set S C U from s costs k7 (S). This needs to be offset by a gain on the
t side, resulting from the fact that edges between ¢t and vertices of W labeled by S x S no longer
need to be cut. This gives a saving of Ei’je gw(i,j). The saving equals the cost precisely when
k= A.

Using the above analysis, it follows that by performing a search over the parameter k, one can
find the value of A and the densest set S achieving this value.

A(S) =
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