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Abstract

We prove the following inequality: for every positive integer n and
every collection X1, . . . , Xn of nonnegative independent random variables
that each has expectation 1, the probability that their sum remains below
n + 1 is at least α > 0. Our proof produces a value of α = 1/13 ' 0.077,
but we conjecture that the inequality also holds with α = 1/e ' 0.368.

As an example for the use of the new inequality, we consider the prob-
lem of estimating the average degree of a graph by querying the degrees
of some of its vertices. We show the following threshold behavior: ap-
proximation factors above 2 require far less queries than approximation
factors below 2. The new inequality is used in order to get tight (up to
multiplicative constant factors) relations between the number of queries
and the quality of the approximation. We show how the degree approx-
imation algorithm can be used in order to quickly find those edges in a
network that belong to many shortest paths.

1 A new inequality

For a random variable X, its typical value may be very different from its mean.
In particular, the probability that X exceeds its mean may be arbitrarily close
to 1. In some special cases (e.g., when X is symmetric around its mean),
the probability that X exceeds its mean is at most 1/2. The purpose of this
manuscript is to investigate the probability that X exceeds its mean when X
is the sum of n independent random variables. We show that for nonnegative
random variables, this probability is bounded away from 1, provided that we
give ourselves a little slackness in exceeding the mean.
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Theorem 1 Let X1, . . . , Xn be arbitrary nonnegative independent random vari-
ables, with expectations µ1, . . . , µn respectively, where µi ≤ 1 for every i. Let
X =

∑n
i=1 Xi, and let µ denote the expectation of X (hence, µ =

∑n
i=1 µi).

Then for every δ > 0,

Pr[X < µ + δ] ≥ min[δ/(1 + δ), 1/13] (1)

The term δ/(1+δ) in Theorem 1 is best possible, as one can take X1 = 1+δ
with probability 1/(1 + δ) and 0 otherwise, and all of the other Xi as the
constant 1. This gives µi = 1 for every i. For this case Pr[X < µ + δ] =
Pr[X1 = 0] = δ/(1 + δ). For large δ (e.g., δ = 1), it is not true that Pr[X ≤
µ + δ] ≥ δ/(1 + δ). One can take for every i, Xi = n + δ with probability
1/(n + δ) and 0 otherwise. This gives µi = 1 for every i, implying µ = n. For
this case Pr[X < n + δ] = (1− 1/(n + δ))n, which is roughly 1/e for large n.

Based on the two examples above we make the following conjecture.

Conjecture 1 In the setting of Theorem 1, for every value of δ and n, one of
the two examples above is the worst case for Pr[X < µ + δ].

Conjecture 1, if true, would allow us to replace the constant 1/13 by 1/e in
Theorem 1. A conjecture very similar in nature to Conjecture 1 is the following
conjecture that was suggested by Samuels in [6].

Conjecture 2 Let X1, . . . , Xn be arbitrary nonnegative independent random
variables, with expectations µ1, . . . , µn respectively, where µ1 ≥ . . . ≥ µn. Then
for every λ >

∑n
j=1 µj there is some 1 ≤ i ≤ n such that Pr[

∑n
j=1 Xj < λ] is

minimized when the random variables Xj are distributed as follows:

• For j > i, Xj = µj with probability 1.

• For j ≤ i, Xj = λ−∑n
k=i+1 µk with probability µj

λ−Pn
k=i+1 µk

, and Xj = 0
otherwise.

The difference between the settings of the two conjectures is that in Con-
jecture 2 all means are given, whereas in Conjecture 1 only an upper bound on
the means is given. The difference in the conclusions of the conjectures is that
in Conjecture 2 we may have an arbitrary i ∈ {1, . . . , n}, whereas Conjecture 1
effectively states that i is restricted to one of two values, i ∈ {1, n}.

Samuels (see [6, 7] and references therein) proves Conjecture 2 when n (the
number of random variables) is at most four. The case n = 2 was proved
earlier in [2]. When n ≥ 5, Samuels shows that Conjecture 2 is true when
λ ≥ (n − 1)

∑n
j=1 µj . In contrast, in the current paper we are interested in

the case (that when put in the framework of Conjecture 2 corresponds to) λ =
δ +

∑n
j=1 µj with δ fairly small (e.g., δ = µ1).

In may be instructive to consider how some standard probabilistic tools relate
to Theorem 1. Consider the case that the Xi are identically distributed. Then
the central limit theorem implies that when n is large enough, X approaches
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the normal distribution and hence Pr[X < µ] approaches 1/2. However, in our
Theorem 1 the variables Xi may depend on n, and hence n cannot be thought
of as being “large enough” with respect to the Xi (even if they are i.i.d.). This
relates to the fact that we place no bounds on the variance of the Xi, and
hence standard bounds on deviations of random variables from their expecta-
tion (such as Chebyschev’s bound, or Chernoff’s bound) are not applicable.
The only restriction on the random variables (other than being independent) is
their nonnegativity. In particular, this means that X is nonnegative, and that
Markov’s inequality can be used to show that Pr[X ≤ µ + δ] ≥ δ/(µ + δ). For
the sum of independent identically distributed random variables, this bound
tends to 0 as n grows (unlike the bound in Theorem 1).

In addition to the work by Samuels mentioned above, the author is aware
of some other work of nature similar to Theorem 1. There are results surveyed
and developed by Siegel [8] that show that under certain conditions the median
of the sum of random variables does not exceed the mean. This holds for
example for the sum of Bernoulli random variables (if the mean is an integer).
The book “How to gamble if you must” by Dubins and Savage [4] analyses
strategies for gambling when the goal is to maximize the probability of ending
up with a net profit of δ. There the strategies are adaptive (next gamble may
depend on outcomes of previous gambles) and the gambler may quit once a
net profit of δ is achieved. One of the main findings of [4] is a set of sufficient
conditions under which the strategy of “playing boldly” is optimal. Informally,
this strategy tries to reach a net profit of δ (taking into account also previous
losses) in one gamble. A simple example is the repeated doubling approach to
gain one dollar when there are 50/50 odds, in which the gambler first gambles
one dollar, and then doubles the gamble until the first win (or until he/she runs
out of money). The scenario in Theorem 1 can be viewed as a version of “how
to gamble in parallel”, in which n unbiased gambles with independent outcomes
can be placed in parallel in an attempt to reach a net profit of δ units, where
each gamble is allowed to risk at most one unit. Our results show that when δ is
small (specifically, δ ≤ 1/12), having n > 1 does not lead to higher probability
of achieving a net profit of δ compared to the case that n = 1. For larger values
of δ, there is an advantage of having n > 1, but regardless of the value of n, the
probability of achieving a net profit of δ is bounded away from 1. Regardless of
the value of δ, it appears to us (though our proof does not actually show this
when δ > 1/12) that similar to the “play boldly” principle, the optimal strategy
is based on hoping for one successful gamble. (Namely, when δ is small only one
gamble is nonzero, and when δ is large, all gambles are identical, and it suffices
for one successful gamble to both reach a profit of δ and cover for all the losses
in the other gambles.) Despite similarities in the nature of the results, the proof
techniques from [4] and [8] do not appear to be applicable to the setting of
Theorem 1.

Theorem 1 can in principle be used whenever one is interested in bound-
ing the probability that the sum of independent random variables significantly
exceeds its expectation. However, in many contexts the random variables are
known to have some additional properties (e.g., bounded variance), and useful
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results can also be derived by other means. The application that motivated the
development of the inequality (1) is described in Section 2.

2 Estimating the average degree

Let G(V, E) be a graph with n vertices. A degree query specifies a vertex v ∈ V ,
and gets in reply dv, the degree of v in G. We are interesting in estimating
m = |E| by making only degree queries. Equivalently, we wish to estimate the
average degree d = 2m/n. We say that an algorithm provides a ρ estimation if
its output d∗ satisfies

d∗ ≤ d ≤ ρd∗.

Naturally, we limit our interest to ρ ≥ 1. As our sampling based algorithms
are randomized, there is some probability that their output fails to be a ρ es-
timation. We require this failure probability to be at most 1/3. We note that
the failure probability can be reduced to an arbitrarily small value δ, by repeat-
ing the estimation algorithm O(log 1/δ) times independently, and outputting
the median of all estimates. Our goal is for given ρ, to design ρ estimation
algorithms with as few queries as possible, and with failure probability at most
1/3.

Let us note here an observation that helps us to drastically reduce the num-
ber of queries in our algorithms. Consider first the case where rather than having
an actual graph as input, the input is simply a sequence of integers d1, . . . , dn,
with the only restriction that for every i, 0 ≤ di ≤ n. (For simplicity of the
presentation we allow here values to range up to n, even though degrees can
range only up to n − 1.) Let d = 1

n

∑n
i=1 di. We wish to estimate d. It is not

hard to see that for any value d0 (which one may think of as a large constant
independent of n), Ω(n/d0) queries are required in order to distinguish between
the cases d = 0 and d ≥ d0. The reason is that it may happen that there are d0

numbers with value n, and all other numbers have value 0. If we perform less
than n/2d0 queries, most likely we always get the 0 answer, which is exactly the
answers that we would get if d = 0.

To get estimation algorithms with fewer queries, we shall use the fact that
not every sequence d1, . . . , dn is a degree sequence of graphs. For example, if
d1 = n − 1, then necessarily di ≥ 1 for all i. Still, the bad example given
above can be modified to show that Ω(n/d0) queries are required in order to
distinguish between the cases d ≤ d0 and d ≥ 2d0 − O((d0)2/n). In the first of
these two cases we can have all di = d0. In the second of these two cases we can
have di = d0 for all vertices except for d0 vertices of degree n− 1. Hence if we
wish to have estimation algorithms with a sublinear (in n) number of queries,
we need to restrict ourselves to ρ ≥ 2.

There is one more restriction that we introduce. Observe that if G contains
only one edge, one needs Ω(n) queries to distinguish this case from d = 0. To
avoid the problem of handling such very sparse graphs (which are often not
interesting anyway), we shall assume that d ≥ d0, for some d0 that will be a
parameter of our estimation algorithms. The reader may think of d0 as typically
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having value at least 1. Hence the estimation algorithm is allowed to output
d∗ = 0 as an estimation of d for very sparse graphs, even though the ratio
between d and d∗ is in this case infinite. (The assumption that d ≥ d0 can be
replaced by allowing the estimation algorithm to have an additive error of d0 in
addition to the multiplicative error of ρ.)

As noted above, for ρ < 2 and d0 = 1, the number of queries needed by an
estimation algorithm might be Ω(n). Our main observation is that for ρ > 2 and
for d0 = 1, the number of queries in the estimation algorithm drops dramatically,
from Ω(n) to O(

√
n). This result is stated in more technical terms in the

following theorem.

Theorem 2 For any d0 > 0, ε > 0 and ρ = 2 + ε, there is a ρ estimation
algorithm for the average degree of a graph that uses O( 1

ε

√
n/d0) queries, and

is applicable to all graphs of average degree at least d0.

In terms of the application of estimating the average degree in the graph,
the more interesting part of our upper bound on the number of queries is the
term

√
n/d0. The dependency on ε may be less interesting, especially if one

is satisfied with large values of ε, such as ε = 1. However, achieving a linear
dependency in 1/ε (rather than some polynomial dependency) is the part that
uses Theorem 1.

In Section 4 we prove Theorem 2. In Section 5 we show how Theorem 2
can be used in order to obtain Theorem 3, addressing a problem that is studied
in [3].

Theorem 3 There is a randomized algorithm that runs in time O(mn log n
ε
√

c
) on

graphs with n vertices and m edges, and outputs a list of edges that with high
probability satisfies:

1. Every edge that is on at least c shortest paths is on the list.

2. No edge that is on less than (1/2− ε)c shortest paths is on the list.

3 Proof of Theorem 1

In this section we prove Theorem 1. Let us first try to clarify our proof plan. It
is based on a sequence of transformations whose goal is to simplify the random
variables until a case analysis becomes manageable. Known arguments (the
reduce support operation that will be explained in our proof) show that we may
assume that every random variable by itself is “simple” in the sense that it has
small support. Hence it is reasonable to expect that if the number of random
variables is a small constant, then the theorem (if true) can be proven by a
“brute force” case analysis. For example, Samuels [6] mentions 25 cases that
are to be considered if one is to prove Conjecture 2 for the case n = 4. In
our proof we describe a merge operation that replaces two random variables by
one random variable. However we do not perform this merge operation until
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the number of random variables becomes small, because this operation might
create random variables whose mean is larger than 1. After rescaling the random
variables, this corresponds to decreasing δ in the statement of Theorem 1 to be
arbitrarily small, and drives the bound δ/(1 + δ) to 0. Instead, we perform the
merge operation until a step in which many random variables may still remain,
but they have nice properties. Namely, all random variables except for perhaps
one have roughly the same mean, and moreover, have small “surplus” (to be
defined in the proof). Thereafter, case analysis becomes possible, through the
use of Proposition 8 that allows us to analyse many such random variables as if
they were just one random variable. It is interesting to note that even though
our proof plan does not seem to allow us to prove tight bounds (due to the fact
that we generate random variables with mean above 1), it does in fact provide
optimal bounds when δ is small (δ < 1/12). We shall comment more on our
proof in Section 3.2, and now we present the proof itself.

Proof: Fix n, δ, and arbitrary nonnegative random variables X1, . . . , Xn

with means at most 1. We prove that inequality (1) holds. We assume with-
out loss of generality that the support of every random variable is composed
of a finite set of values. (This is a standard argument, but we sketch it for
completeness. Any value larger than µ + δ in the support of a random variable
can be lowered to µ + δ, without increasing the probability that X < µ + δ.
Thereafter, any continuous random variable can be approximated by a discrete
random variable with the same mean and whose support includes only multiples
of ε, where ε is chosen to be much smaller than δ/n. For these new random
variables, X ′

1, . . . , X
′
n, the event X ′ < µ + δ′ where δ′ = δ − εn implies that for

the original variables, X < µ + δ. By making ε arbitrarily small, we can make
δ′ arbitrarily close to δ.)

Our proof of inequality (1) consists of a sequence of transformations on the
variables Xi. We may view these transformations as occurring in discrete time
steps, and in our notation, superscripts will denote time steps. Hence, after
time step t, random variables are denoted by Xt

i , their sum by Xt and the
expectation of Xt by µt. For t = 0, we have the original random variables. All
our transformations will have the property that for every t ≥ 0,

Pr[Xt+1 < µt+1 + δ] ≤ Pr[Xt < µt + δ]. (2)

Some properties of the random variables may change by the transformations. In
particular, the reduce support transformation (to be defined shortly) when ap-
plied to two random variables that were originally identically distributed might
transform them to new random variables that are not identically distributed.
Moreover, the merge transformation might generate random variables whose
mean is larger than 1, even though all original random variables have mean at
most 1. We now describe the transformations.

Remove constant. This transformation is applied whenever there is a random
variable Xt

i that is constant, that is, Pr[Xt
i = µt

i] = 1. Such a random variable
is removed, and µt+1 = µt−µt

i. Clearly, remove constant satisfies inequality (2).
Reduce support. This transformation is applied to every random variable

whose support has at least three values, and replaces it with a new random
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variable with the same mean, and whose support includes at most two values
from the original support.

Lemma 4 Let Xt
i be a random variable whose support includes at least three

values. Then Xt
i can be replaced by a new variable Xt+1

i with µt+1
i = µt

i, and
whose support includes only two values from the original support of Xt

i . This
can be done in a way that satisfies inequality (2).

Proof: Let {v1, . . . , vk} be the support of Xt
i , and for 1 ≤ j ≤ k, let qj

denote the conditional probability of the event [Xt < µt + δt], conditioned
on the event [Xt

i = vj ]. For Xt+1
i and for 1 ≤ j ≤ k, we wish to select

pj = Pr[Xt+1
i = vj ], under the restrictions that the mean of Xt+1

i is the same
as the mean of Xt

i , and that inequality (2) is satisfied. This can be expressed
by the following linear program over the variables pj :
Minimize

∑k
j=1 qjpj

subject to:

• ∑k
j=1 pj = 1

• ∑k
j=1 pjvj = µt

i

• pj ≥ 0, for every j.

The above linear program is feasible (as the probabilities associated with the
original Xt

i satisfy the constraints). By the theory of linear programming, there
is a basic optimal solution in which at most two pj are nonzero. ¤

We remark that Lemma 4 has several alternative proofs, and in general
does not require Xt to have finite support. A similar lemma (with a functional
analytic proof) is used in [6].

Align with 0. This transformation is applied to every random variable whose
support has two values and these values are greater than 0 (say Xt

i has value
v1 with probability p and v2 with probability (1 − p), with 0 < v1 < v2), and
replaces it by a random variable Xt+1

i that has value v1−v1 = 0 with probability
p, and has value v2 − v1 with probability (1 − p). Hence µt+1

i = µt
i − v1, and

µt+1 = µt − v1. Clearly, align with 0 satisfies inequality (2).
Merge. This transformation takes the two random variables with smallest

mean (say Xt
i and Xt

j), and replaces them by a new random variable in three
steps. First, replace Xt

i and Xt
j by a new random variable that is distributed

like their sum Xt
i +Xt

j . Then apply reduce support to this new random variable.
Finally, apply align with 0 or remove constant to the new random variable (if
applicable).

It is easy to see that the transformation merge satisfies inequality (2).
The sequence of transformations that we perform is partitioned into two

stages. We now describe the first stage.
Stage 1:

1. Whenever possible, apply remove constant.

7



2. Apply reduce support until all random variables have support of size at
most two. (Different variables may have different support.)

3. Apply align with 0 to all variables.

4. Apply merge until either the number of random variables is reduced to
one, or all random variables have mean at least 1/2 (whichever happens
first).

Stage 1 must end because with each application of merge, the number of
random variables decreases. Let t denote the step after which stage 1 ends,
and let Xt

1, . . . , X
t
n′ be the random variables that remain. We assume that they

are sorted in order of decreasing µt
i. Their number n′ may be smaller than n,

because some of the transformations remove random variables. These are not
arbitrary random variables, as each of them has a support of two values, one of
which is 0, and the stopping condition for the merge transformations has been
reached. For a random variable Xt

i as above, let µt
i denote its mean, {0, vt

i} its
support, and let st

i = vt
i − µt

i denote its surplus. Let st =
∑n′

i=1 st
i denote the

total surplus.

Proposition 5 If the total surplus satisfies st < δ, then Pr[Xt ≥ µt + δ] = 0.

Proof: Xt is maximized when Xt
i = vt

i for all i. In this case

Xt =
n′∑

i=1

(µt
i + st

i) = µt + st < µt + δ.

¤
Hence we may assume without loss of generality that st ≥ δ.

Lemma 6 If stage 1 ended with a random variable with mean below 1/2, then
Pr[Xt < µt] ≥ δ/(1/2 + δ).

Proof: In this case, exactly one random variable remains. Let Xt
1 be the

random variable left, with mean µt
1 < 1/2 and support {0, v1 = µt

1 + st}. Note
that the event Xt

1 = 0 implies Xt < µt. Now Pr[Xt
1 = 0] = st/(µt

1 + st) ≥
δ/(1/2 + δ), because st ≥ δ and µt

1 < 1/2. ¤
Observe that Lemma 6 offers a conclusion that is even stronger than that

required by Theorem 1, as is illustrated by the following sequence of inequalities.

Pr[X < µ + δ] ≥ Pr[Xt < µt + δ] ≥ Pr[Xt < µt] ≥ δ

1/2 + δ
>

δ

1 + δ
.

Hence we may also assume that stage 1 ended with all random variables having
mean at least 1/2. The following property will be used in this case.

Proposition 7 If stage 1 ended with all random variables having mean at
least 1/2, then µt

1/2 ≤ µt
n′ ≤ µt

1 < 3/2.
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Proof: Recall that the random variables are assumed to be sorted with µt
1

being the largest mean and µt
n′ being the smallest mean.

If no random variable has mean greater than 1, then we are done. Hence
consider the first time that a random variable with mean greater than 1 is
created. This happens by merging two random variables, say at time step r
(shortly we will see that in fact it must hold that r = t − 1), with the random
variables being Xr

i and Xr
j . Let µr

i ≥ µr
j be their means before the merge. By

the definition of merge, no other variable had mean smaller than µr
i . By the

stopping rule for stage 1, µr
j < 1/2. To get a variable with mean greater than 1,

we must have µr
i > 1/2. Note that stage 1 ends after the merge, because no

variable with mean below 1/2 is left. Hence the new variable created becomes
Xr+1

1 with 1 < µr+1
1 < 1 + 1/2 = 3/2. But as µr+1

1 ≤ 2µr
i and µr+1

n′ ≥ µr
i , it

follows that µr+1
n′ ≥ µr+1

1 /2. ¤
Let us pause at this point and explain what remains to be proved. All

random variables can be assumed to be 2-valued, with one of the values being 0,
and with all means µt

i satisfying µt
1/2 ≤ µt

i ≤ µt
1. Moreover, the total surplus st

satisfies st ≥ δ. For random variables as above we in fact will bound Pr[Xt < µt]
rather than Pr[Xt < µt + δ]. Lemma 9 (its first part) and Lemma 10 will show
that Pr[Xt < µt] ≥ min[δ/(µt

1 + δ), 1/13]. This almost proves Theorem 1,
except that it might happen that at the end of stage 1, µt

1 > 1. This possibility
is handled in the second part of Lemma 9, by showing that one merge operation
before the end of stage 1 we had Pr[Xt−1 < µt−1 + δ] ≥ δ/(1 + δ).

The following proposition is used several times in the proofs of Lemmas 9
and 10. It is most effective when s < µn, and µn is not much smaller than µ1.

Proposition 8 Let X1, . . . , Xn be independent random variables with means
µ1 ≥ . . . ≥ µn and supports {0, µ1 +s1}, . . . , {0, µn +sn}, and let X =

∑n
i=1 Xi,

µ =
∑n

i=1 µi and s =
∑n

i=1 si. Then

Pr[X < µ− µn + s] ≥ s

µ1 + s

Proof: It suffices that one random variable comes up zero to imply X <
µ + s − µn. (The inequality is strict because only a variable with si > 0 may
come up 0.) Hence:

Pr[X ≥ µ + s− µn] =
n∏

i=1

µi

µi + si
≤

n∏

i=1

µ1

µ1 + si
.

Given that
∑n

i=1 si = s and that si ≥ 0, the above product is maximized when
s1 = s and si = 0 for all i > 1, giving µ1/(µ1 + s). Hence Pr[X < µ−µn + s] ≥
s/(µ1 + s). ¤

The following lemma illustrates the desired outcome of stage 1.

Lemma 9 1. If stage 1 ended with all random variables having mean at
least 1/2, and if st < µt

n′ , then

Pr[Xt < µt] ≥ δ

µt
1 + δ

≥ δ

3/2 + δ
.
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2. If in addition δ ≤ 1/12 then either Pr[Xt < µt] < δ/(1+ δ), or one merge
operation before the end of stage 1 it must have been the case that

Pr[Xt−1 < µt−1 + δ] ≥ δ/(1 + δ).

Remark: The choice of δ ≤ 1/12 in the second part of Lemma 9 is made
because δ/(1 + δ) = 1/13 for δ = 1/12. The limiting factor for improving
beyond 1/13 is Lemma 10 rather than Lemma 9. For δ > 1/12 the second
part of Lemma 9 simply implies that Pr[Xt−1 < µt−1 + δ] ≥ Pr[Xt−1 <
µt−1 + 1/12] ≥ 1/13.

Proof: The surplus st is smaller than the mean of any of the random vari-
ables. Using Proposition 8 we then have Pr[Xt < µt] ≥ st

µt
1+st . Using the

assumption that st ≥ δ and the fact that µt
1 ≤ 3/2 (Proposition 7), we have

that Pr[Xt < µt] ≥ δ/(3/2 + δ).
To prove the second part of the lemma, note that if it happens that µt

1 ≤ 1
then we have Pr[Xt < µt] ≥ δ/(1 + δ). Hence we may assume that µt

1 > 1,
implying in particular that Xt

1 is the result of the last merge operation (see
proof of Proposition 7). Let s′ = st − st

1 be the surplus of all variables except
for Xt

1. If s′ > 0 (which implies µt
2 ≥ 1/2 > 0) then analysis as in the proof of

the first part of the Lemma implies that

Pr[Xt ≥ µt] ≤ µt
2

µt
2 + s′

≤ 1
1 + s′

.

Hence if s′ ≥ δ, Pr[Xt < µt] ≥ δ/(1 + δ). So we can assume that s′ < δ
(including also the possibility that s′ = 0).

Let us backtrack the last merge operation. Hence instead of Xt
1 we have

two variables Xt−1
i and Xt−1

j that were merged to give Xt
1. Let their means

be µt−1
i ≥ µt−1

j , and their surpluses be st−1
i and st−1

j . Observe that necessarily
µt−1

j < 1/2 (otherwise the merge operation would not have been performed),
and then the assumption that µt

1 > 1 implies that µt−1
i > 1/2. As the total

surplus of all random variables except for Xt−1
i and Xt−1

j is s′ < δ, we must
have Xt−1

i + Xt−1
j come up larger than µt−1

i + µt−1
j for Xt−1 ≥ µt−1 + δ. We

consider now two cases.
Case 1: st−1

i > 2δ. Then Pr[Xt−1
i = 0] = st−1

i

µt−1
i +st−1

i

≥ 2δ
µt−1

i +2δ
. If

Xt−1
i = 0, then in order to have Xt−1

i + Xt−1
j > µt−1

i + µt−1
j we must have

Xt−1
j > µt−1

i + µt−1
j . But this happens with probability at most

µt−1
j

µt−1
i +µt−1

j

≤
1/2

µt−1
i +1/2

. Hence

Pr[Xt−1 < µt−1 + δ] ≥ 2δ

µt−1
i + 2δ

· µt−1
i

µt−1
i + 1/2

≥ δ

1 + δ

where the last inequality holds for δ ≤ 1/2 because 1/2 ≤ µt−1
i ≤ 1.

Case 2: st−1
i ≤ 2δ. Define s′′ = s′ + st−1

i as the surplus of all random
variables except for st−1

j , and observe that s′′ < 3δ ≤ 1/4, the last inequality
holding for δ ≤ 1/12. We now consider several subcases.

10



• s′′ < δ and st−1
j ≥ 1/2. The fact that s′′ < δ implies that it suffices

for Xt−1
j to come up 0 to ensure Xt−1 < µt−1 + δ. This happens with

probability at least st−1
j /(µt−1

j + st−1
j ) ≥ 1/2.

• s′′ < δ and st−1
j < 1/2. The fact that all random variables except for Xt−1

j

have mean at least 1/2 implies that it suffices for one random variable to
come up 0 to ensure Xt−1 < µt−1 + δ. As necessarily s′′ + st−1

j ≥ δ and
µt−1

k ≤ 1 for all k, this happens with probability at least δ/(1 + δ), by
Proposition 8.

• δ ≤ s′′ < δ+µt−1
j and st−1

j ≥ δ. It suffices for Xt−1
j to come up 0 to ensure

Xt−1 < µt−1 + δ. This happens with probability at least δ/(1/2 + δ).

• δ ≤ s′′ < δ+µt−1
j and st−1

j < δ. It suffices for some random variable other
than Xt−1

j to come up 0 to ensure Xt−1 < µt−1−1/2+ s′′+ δ < µt−1 + δ.
(We used the facts that every random variable except for Xt−1

j has mean
at least 1/2, and that s′′ ≤ 1/4.) This happens with probability at least
δ/(1 + δ), by Proposition 8.

• s′′ ≥ δ + µt−1
j . By Proposition 8, there is probability of at least

δ+µt−1
j

1+δ+µt−1
j

for a random variable other than Xt−1
j to come up 0. Thereafter Xt−1

j

must come up at least µt−1
j + δ + 1/2 − s′′ ≥ µt−1

j + δ + 1/4 for Xt−1 ≥
µt−1+δ to hold. The probability of this is at most µt−1

j /(µt−1
j +1/4+δ) ≤

µt−1
j /(µt−1

j + 1/4). Hence

Pr[Xt−1 < µt−1 + δ] ≥ δ + µt−1
j

1 + δ + µt−1
j

· 1/4
µt−1

j + 1/4
≥ δ

1 + δ

where the last inequality holds when 4(δ + δ2 + µt−1
j δ) ≤ 1, which is true

for our parameters of µt−1
j ≤ 1/2 and δ ≤ 1/12.

¤
Summarizing, Lemmas 6 and 9 prove Theorem 1 except for the case that

stage 1 ended with µt
1/2 ≤ µt

n′ ≤ µt
1 and st ≥ µt

n′ . We now address this
last case. For this case we shall not use the extra slackness offered by δ, but
rather we shall show the stronger inequality Pr[Xt < µt] ≥ 1/13. To prove
this last inequality, we perform stage 2 of our sequence of transformations. It
is composed of a modified form of the merge operations, that we call modified
merge. The modification will allow us to deal with the event Xt < µt rather
than Xt < µt + δ. Recall that the reduce support operation was based on a
linear program that minimized Pr[Xt+1 < µt+1 + δ] (via the definition of the
qj in the proof of Lemma 4). Modify the reduce support operation by modifying
the objective function of the linear program to be Pr[Xt+1 < µt+1] (by making
the respective change in the definition of qj). Use this modified reduce support
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rather than the original reduce support as the second step of modified merge.
Now modified merge maintains the inequality

Pr[Xt+1 < µt+1] ≤ Pr[Xt < µt]. (3)

Note that an application of modified merge cannot increase the total surplus
(this was true also for merge). This works in our favor, because as the proof
of Lemma 9 demonstrates, it is easier to perform case analysis when the total
surplus is small. However, an application of modified merge may result in a
random variable whose mean is smaller than µt+1

1 /2. (For simplicity of notation,
we assume that after every step the variables are renamed so as to keep µt+1

1

the largest mean.) This will complicate our case analysis. But note that even
with repeated applications of modified merge, there will be at most one such
random variable. Let us define s′ =

∑
si, where the sum is taken over all

random variables whose mean is at least µ1/2. In particular, at the time when
stage 1 ends we may assume that s′ = st, by Proposition 7.

Stage 2. Apply modified merge (on the two random variables with cur-
rently lowest mean) until a step (that we shall denote by r) after which either
the number of remaining (nonconstant) random variables is one, or the condi-
tion s′ ≤ αµr

1 has been reached, for some constant 0 < α < 1/2 that will be
determined later. Stage 2 must eventually end, because with each application
of modified merge the number of random variables decreases.

Lemma 10 Let α = 1/3, and let r denote the time step at which stage 2 ends.
Then either Pr[Xr < µr] ≥ 1/13, or one modified merge operation before
stage 2 ends Pr[Xr−1 < µr−1] ≥ 1/13.

Proof: The proof of Lemma 10 is based on a case analysis. Some of the
details in the case analysis are included so as to get the explicit bound of 1/13.
Those readers who are just interested in verifying that the lemma holds for some
universal constant (though perhaps much smaller than 1/13) may simply think
of α as some small constant (say α = 1/10) and β (to be introduced shortly)
as a much smaller constant (say β = 1/100), and read each case only up to the
point where it becomes clear that under this setting of the parameters, the case
in question gives a probability bounded away from 0.

Lemma 11 If stage 2 ends without the condition s′ ≤ αµr
1 being reached, then

Pr[Xr < µr] > α/(1 + α).

Proof: In this case we have only one nonconstant random variable, Xr
1 ,

with support {0, µr
1 + s′}.

Pr[Xr < µr] = Pr[Xr
1 = 0] =

s′

µr
1 + s′

>
α

1 + α
.

¤

12



Lemma 12 If stage 2 ends with βµr
1 ≤ s′ ≤ αµr

1, where 0 ≤ β ≤ α is some
constant that will be optimized later, then

Pr[Xr < µr] ≥ min
[(α− 2α2

1 + α

)
,

(β − 2β2

1 + β

)]
.

Proof: Consider first only the random variables with mean at least µr
1/2,

let X ′ be their sum and let µ′ be the expectation of X ′. Over these random
variables, the surplus is s′ = γµr

1, with β ≤ γ ≤ α < 1/2. By Proposition 8,

Pr[X ′ < µ′ − (1/2− γ)µr
1] ≥

s′

µr
1 + s′

=
γ

1 + γ
.

The event X ′ < µ′ − (1/2 − γ)µr
1 does not yet imply that Xr < µr. There

still might be one variable Xr
n′′ with µr

n′′ < µr
1/2. If Xr

n′′ turns out µr
n′′ + sr

n′′

and sr
n′′ ≥ (1/2− γ)µr

1 then it still may hold that Xr ≥ µr.
Let us first assume that µr

n′′ ≤ s′ = γµr
1. Then by Markov’s inequality,

Pr[Xr
n′′ = µr

n′′ + sr
n′′ ] =

µr
n′′

µr
n′′ + sr

n′′
≤ γµr

1

γµr
1 + (1/2− γ)µr

1

= 2γ.

Hence

Pr[Xr < µr] ≥ γ

1 + γ
· (1− 2γ) =

γ − 2γ2

1 + γ
.

For 0 < β ≤ γ ≤ α < 1/2, the expression above is minimized when γ ∈ {α, β}.
We are left with the case that µn′′ > s′. But then we have

Pr[Xr < µr] ≥ Pr[Xr
n′′ = 0] =

sr
n′′

µr
n′′ + sr

n′′
≥ 1/2− γ

1− γ

where we have used the facts that µr
n′′ < µr

1/2 and sr
n′′ ≥ (1/2−γ)µr

1. As γ ≤ α,
we have that Pr[Xr < µr] ≥ (1/2 − α)/(1 − α). But this probability is larger
than (α− 2α2)/(1 + α) of the previous case, and hence can be ignored. ¤

Lemma 13 If stage 2 ends with s′ < βµr
1, and 0 < β < α/2, then one merge

prior to the end of stage 2 it must have been the case that Pr[Xr−1 < µr−1] was
at least the minimum of the following expressions:

1. α−β
1/2+α−β · 1/2−β

1−β

2. α−3β/2
1+α−3β/2 · 1−3β/2

3/2−3β/2

3. α−2β
1+α−2β

4.
(

1/2−β
1−β

)2

5. 1/2−3β/2
3/2−3β/2 · 1−3β/2

3/2−3β/2
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The proof of Lemma 13 involves a detailed case analysis and appears in
Section 3.1.

Summing up, Lemma 12 and 13 imply that after stage 2, either Pr[Xr < µr]
or Pr[Xr−1 < µr−1] is at least the smallest of the following quantities (where
0 < β < α/2 < 1/4):

• α−2α2

1+α

• β−2β2

1+β

• α−β
1/2+α−β · 1/2−β

1−β

• α−3β/2
1+α−3β/2 · 1−3β/2

3/2−3β/2

• α−2β
1+α−2β

•
(

1/2−β
1−β

)2

• 1/2−3β/2
3/2−3β/2 · 1−3β/2

3/2−3β/2

Choosing (suboptimally) α = 1/3 and β = 1/8 gives at least 1/13 in all
cases.

This completes the proof of Lemma 10. ¤
We can now summarize the proof of Theorem 1. We have the original random

variables for which we wish to prove Pr[X < µ+ δ] ≥ min[δ/(1+ δ), 1/13]. The
proof proceeds in two stages. In stage 1 we apply a sequence of transformations
maintaining the inequality (2) until a step t in which all random variables have
mean at least 1/2 (or only one random variable remains, which is an easy case
to handle). Then Lemma 9 implies the theorem whenever the total surplus st

is small (st < µt
n′). To handle the case that the surplus is large, we perform a

sequence of transformations in stage 2, this time maintaining the inequality (3),
until a step r in which the surplus of all variables (except for the variable with
smallest mean) is no longer large compared to the maximum mean (namely, s′ ≤
αµr

1). Then Lemma 10 implies that also in this case (corresponding to the case
that st was greater than µt

n′) the theorem holds. Note that overall, depending
on which case is considered, Lemmas 9 and 10 do not prove inequality (1) on
the original random variables, but on transformed random variables that appear
after one of the steps t− 1, t, r − 1 or r. But this implies inequality (1) on the
original random variables, because of the inequalities (2) and (3). ¤

3.1 Remaining analysis for stage 2

We prove here Lemma 13, whose proof was the only part omitted from the proof
of Theorem 1.

Proof: Consider the last two random variables to have been merged, say
Xr−1

i and Xr−1
j , with means µr−1

i ≥ µr−1
j , and let µr−1

1 be the largest mean

14



at time r − 1. After the modified merge of Xr−1
i and Xr−1

j , the largest mean
µr

1 may still have been µr−1
1 , but it could also be as high as µr−1

i + µr−1
j , if

this happens to be higher than µr−1
1 . In fact, µr

1 may also be lower than µr−1
1 ,

if only one variable is left at the end of stage 2, and this variable underwent
an align with 0 operation. However, in this case the bounds that we get for
Xr−1 < µr−1 are much stronger than what we get otherwise (details omitted),
so we shall ignore this case.

We analyse the situation one merge operation before the end of stage 2. Note
that we know that at that time, s′ ≥ αµr−1

1 , because otherwise stage 2 would
have ended earlier. Likewise, the sum

∑
sr−1

i taken over all variables except
Xr−1

i and Xr−1
j is at most max[βµr−1

1 , β(µr−1
i + µr−1

j )], because otherwise we
could not have had s′ < βµr

1 at the end of stage 2. We consider now two cases.
Case 1: µr−1

j < µr−1
1 /2. Hence Xr−1

j did not contribute to s′ at time step
r − 1. Note that µr−1

i ≥ µr−1
1 /2 and hence Xr−1

i did contribute to s′ at time
step r−1. It follows that sr−1

i ≥ αµr−1
1 −βµr

1. (This last expression is positive,
because Lemma 13 assumes that β < α/2, and µr ≤ 2µr−1.) Hence,

Pr[Xr−1
i = 0] ≥ αµr−1

1 − βµr
1

µr−1
i + αµr−1

1 − βµr
1

If Xr−1
i = 0 then in order to have Xr−1 ≥ µr−1, Xr−1

j must contribute at least
µr−1

j + µr−1
i − βµr

1 to Xr−1. (The expression µr−1
i − βµr

1 is positive because
β < 1/4 and µr−1

i ≥ µr−1
1 /2 ≥ µr

1/4.) This may happen with probability at
most µr−1

j /(µr−1
j + µr−1

i − βµr
1). We then have

Pr[Xr−1 < µr−1] ≥ αµr−1
1 − βµr

1

µr−1
i + αµr−1

1 − βµr
1

· µr−1
i − βµr

1

µr−1
j + µr−1

i − βµr
1

The above expression is minimized when µr−1
j is maximized, namely, when

µr−1
j = µr−1

1 /2. As µr−1
i ≥ µr−1

1 /2, it follows that µr−1
i + µr−1

j ≥ µr−1
1 . The

expression above is minimized when µr
1 is maximized, namely, µr

1 = µr−1
j +µr−1

i .
Normalising µr−1

1 to 1, and using the notation µi to denote µr−1
i /µr−1

1 , we have
after some rearrangements

Pr[Xr−1 < µr−1] ≥ α− β/2− βµi

(1− β)µi + α− β/2
· (1− β)µi − β/2
(1− β)µi + 1/2− β/2

The expression above is defined for all µi ≥ 0. It equals 0 for µi ∈ {β/2(1 −
β), (α − β/2)/β} and is positive in between. Moreover, there are at most two
points where the derivative with respect to µi of this expression vanishes (as it
is a ratio of two non-proportional quadratics), and for β < 2α/3 the expression
is positive in the allowed range of 1/2 ≤ µi ≤ 1. It follows that the expression
is minimized when µi ∈ {1/2, 1}, giving

Pr[Xr−1 < µr−1] ≥
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min
[ α− β

1/2 + α− β
· 1/2− β

1− β
,

α− 3β/2
1 + α− 3β/2

· 1− 3β/2
3/2− 3β/2

]

This gives items 1 and 2 in the statement of Lemma 13.
Case 2: µr−1

j ≥ µr−1
1 /2. Hence both sr−1

i and sr−1
j did contribute to s′

(before the last merge), and moreover, µr−1
i + µr−1

j ≥ µr−1
1 . This together with

the inequality µr
1 ≤ max[µr−1

1 , µr−1
i +µr−1

j ] imply that we may use µr−1
i +µr−1

j

as an upper bound on µr
1. To simplify notation and without loss of generality

we may assume that µr−1
1 = 1, and then 1/2 ≤ µr−1

j ≤ µr−1
i ≤ 1. We have that

sr−1
i + sr−1

j > α− β(µr−1
i + µr−1

j ) ≥ α− 2β. Recall (from the paragraph prior
to case 1) the sum

∑
sr−1

i taken over all variables except Xr−1
i and Xr−1

j is at
most β(µr−1

i + µr−1
j ). Hence if Xr−1

i + Xr−1
j < µr−1

i + µr−1
j − β(µr−1

i + µr−1
j ),

then necessarily Xr−1 < µr−1. We let B denote the event [Xr−1
i + Xr−1

j <

(1− β)(µr−1
i + µr−1

j )], and perform a subcase analysis for Pr[B]. The subcases
are partitioned according to which of Xr−1

i and Xr−1
j (or both, or either one)

needs to come up 0 in order for B to hold.

1. It suffices that either Xr−1
i = 0 or Xr−1

j = 0 for B to hold. In this case,
using µr−1

i ≤ 1 and sr−1
i + sr−1

j ≥ α− 2β, Proposition 8 implies that

Pr[B] ≥ α− 2β

1 + α− 2β

This gives item 3 in the statement of Lemma 13.

2. B holds iff Xr−1
i = 0. In this subcase necessarily µr−1

i + sr−1
i ≥ (1 −

β)(µr−1
i + µr−1

j ). Using the fact that µr−1
i ≤ 1 and µr−1

j ≥ 1/2 we have
that sr−1

i ≥ µr−1
j − βµr−1

i − βµr−1
j ≥ 1/2− 3β/2 and therefore

Pr[B] = Pr[Xr−1
i = 0] =

sr−1
i

µr−1
i + sr−1

i

≥ 1/2− 3β/2
3/2(1− β)

This subcase is dominated by the subcase above and hence can be ignored.

3. B holds iff Xr−1
j = 0. This subcase is analogous to and dominated by the

subcase above, and can be ignored.

4. B holds only if both Xr−1
i = 0 and Xr−1

j = 0. Then necessarily µr−1
i +

sr−1
i ≥ (1−β)(µr−1

i +µr−1
j ) and µr−1

j + sr−1
j ≥ (1−β)(µr−1

i +µr−1
j ). We

have
Pr[B] ≥

( (1− β)(µr−1
i + µr−1

j )− µr−1
i

(1− β)(µr−1
i + µr−1

j )

)
·
( (1− β)(µr−1

i + µr−1
j )− µr−1

j

(1− β)(µr−1
i + µr−1

j )

)

For fixed µr−1
i + µr−1

j this expression is minimized when µr−1
i − µr−1

j is
maximized. Hence either µr−1

i = 1 or µr−1
j = 1/2. Thereafter, it can be
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verified that the expression is minimized when the other mean is either
maximized or minimized, giving us three possible local minimum points,
µr−1

i , µr−1
j ∈ {1/2, 1}, µr−1

j ≤ µr−1
i . Two of these give identical values

(the cases that µr−1
i = µr−1

j ), hence we obtain

Pr[B] ≥ min
[(1/2− β

1− β

)2

,
(1/2− 3β/2

3/2− 3β/2
· 1− 3β/2
3/2− 3β/2

)]

This gives items 4 and 5 in the statement of Lemma 13.

¤

3.2 Some comments

It is straightforward to modify inequality (1) so that there is no formal require-
ment that the random variables are nonnegative, or that their mean is bounded
by 1. Let w be the maximum over all random variables X1, . . . , Xn of the
respective µi − li, where li is the lowest value in the support of Xi. Then

Pr[X ≤ µ + δw] ≥ min[δ/(1 + δ), 1/13] (4)

The constant 1/13 in Theorem 1 is not best possible, and can be improved
with more detailed case analysis. We suspect that the true constant should
be 1/e. Presumably, the way to prove a tight result is to find a sequence of
transformations on the random variables that does not increase Pr[X < µ + δ],
and that gradually brings them to the conjectured worst case for [X < µ + δ].
The sequence of transformations performed in our proof of Theorem 1 manages
to achieve this only when δ ≤ 1/12 (or some other constant not far from 1/12).
However, it fails to characterize the worst case for the perhaps more interesting
δ = 1. The idea in the proof is to transform the random variables into a situation
where a case analysis becomes manageable, at the possible cost of giving up the
tightness of the bound. The main principles used are reducing the support
of every random variable to two values, getting all random variables (perhaps
except one) to have roughly the same mean, reducing the surplus to be of order
of magnitude comparable to this mean, and extracting from arbitrarily many
random variables a single event of interest, as done in Proposition 8. It should
be clear to the reader that more detailed case analysis would provide tighter
results. But let us point out some limitations that relate to Lemma 10. As long
as one chooses α not larger than µ1/2 (and in fact, not larger than 3µ1/2), and
analyses only the situation at the end of stage 2 or one step earlier, one cannot
obtain a bound better than Pr[X < µ] ≥ 2/9. For example, assume that during
stage 2 we are left with three variables, each with support {0, µ} and mean µ/3.
At this point, Pr[X < µ] = (2/3)3 = 8/27 < 1/e. After a merge operation, this
probability decreases further to (1/3) · (2/3) = 2/9. One merge operation later,
stage 2 ends. Hence to get (nearly) tight results using the current approach, one
may need to modify the definition of stage 2, and perform much more extensive
(possibly computer assisted) case analysis.
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4 Proof of Theorem 2

The reader is assumed to be familiar with elementary methods in probabil-
ity (such as the use of Markov’s inequality, Chebyschev’s inequality, Chernoff
bounds). If needed, see details in [1], for example.

We query at random t vertices, and obtain their degrees. Let di be the degree
returned by the ith query. Basically, our estimator for d will be d∗ = 1

t

∑t
i=1 di.

In section 4.3 we shall modify this estimator so as to improve its quality. For
simplicity of the analysis, we assume that sampling is done with replacement
(the same vertex might be queried more than once). This is insignificant when t
is small (e.g., t ≤ √

n), though note that for large values of t (and in particular,
when t = n) sampling without replacement gives better estimates than sampling
with replacement.

Note that the expectation of our estimate satisfies

E[d∗] = d (5)

Hence the estimator is unbiased. In deviations from the expectation, we will
analyse separately the events d∗ > d and d∗ < d, or rather, d∗ < d/2.

4.1 The estimate is not too high

Here we shall use Theorem 1. As an immediate consequence of this theorem
(taking δ = 1, and using the fact that the degree of a sampled vertex is a non-
negative random variable with expectation d) we have the following corollary.

Corollary 14 There is some universal constant α > 0 such that for every graph
with average degree d, by querying t random vertices (with replacement) for their
degree, the average d∗ satisfies Pr[d∗ ≤ (1 + 1/t)d] ≥ α.

We can take α = 1/13 in Corollary 14, and we conjecture that the Corollary
is also true with α = 1/e.

4.2 The estimate is not too low

We assume that the average degree in the graph is at least d0. Our sampling
algorithm queries t = k

√
n/d0 vertices at random and reports the sum of the

degrees. Here k is a parameter that will later be chosen to be of order 1/ε.
Let Xi be the random variable that denotes the degree of the ith query, and

let X =
∑t

i=1 Xi. Then E[X] = t · d. The following lemma shows that the
typical value of X is not much smaller than E[X]/2.

Lemma 15 For arbitrary δ > 0 (that will later be fixed to 50
√

2/α, where α is
as in Corollary 14), with probability at least 1− 4

√
2/δ − 2−Ω(δ),

X ≥ E[X]
2

(1− δ

k
)
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Proof: Essentially, the proof of the lemma is based on Chebyschev’s inequal-
ity. To apply Chebyschev’s inequality directly, one would need the variance of
X to be small compared to (E[X])2. Unfortunately, vertices of very high de-
gree may cause the variance to exceed (E[X])2. To overcome this problem we
observe (and will soon show formally) that in every graph, the vertices of very
high degree contain at most slightly more than half the endpoints of the edges.
The contribution to X of vertices whose degree is not very high is concentrated
around its mean, because for them the variance is small. This explains why the
value of X is likely to be not much smaller than E[X]/2. We now present our
proof of the lemma, based on the above principles.

Partition the set of vertices of G into two sets, H (for high) and L (for low).
For a constant c (independent of n, d, k) that will be determined later, the set
H contains the c

√
nd/k vertices of highest degree (breaking ties arbitrarily).

The set L contains the other vertices. Every edge has two endpoints. Let us
partition the endpoints of edges into the following four sets:

• EH,L (the endpoints in H of edges between H and L)

• EL,H (the endpoints in L of edges between H and L)

• EH,H (the endpoints in H of edges between H and H)

• EL,L (the endpoints in L of edges between L and L)

Observe that |EH,H | ≤ |H|2 = c2nd/k2. It will be the case that c is a
universal constant whereas k ≥ Ω(1/ε), and hence |EH,H | = O(ε2nd). Moreover,
we allow an error of ε · nd in our estimation of nd. Hence, EH,H has only a low
order effect on the accuracy of the estimation. So as to simplify notation and
the presentation, we shall simply assume that |EH,H | = 0. We shall not give a
rigorous proof that this assumption has only a low order effect on our analysis,
but merely note here that formalists may redo the analysis without assuming
that |EH,H | = 0, and at worst this will effect some constants that are eventually
hidden by the O notation.

Let m1 = |EH,L|, m2 = |EL,H | and m3 = |EL,L|. Hence m1+m2+m3 = dn.
Note that m2 = m1, because |EL,H | = |EH,L|. Let us break the random variable
X into the sum of three random variables X = Y1 + Y2 + Y3, according to the
contribution to X from m1, m2 and m3 respectively. Let h denote the minimum
degree of a vertex in H.

Proposition 16 With probability 1− 2−Ω(c),

Y1 ≥ ch/2

Proof: The expected number of vertices queried from H is t|H|/n = k
√

n/d0·
c
√

d0n/kn = c. With probability 1 − 2−Ω(c), the actual number of vertices
queried from H is at least c/2. Each such vertex contributes at least h to Y1.
¤
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Proposition 17 A vertex in L can cover at most |H| = c
√

nd0/k endpoints in
EL,H .

Proof: For every endpoint in EL,H covered by a vertex in L, the other
endpoint of the respective edge is in H. As the original graph is a simple graph
with no parallel edges, the proof follows. ¤

Proposition 18 For λ > 0, with probability at least 1− 1/λ2,

Y2 ≥ E[Y2]− λ
√

cdn/2

Proof: The variance of Y2 is maximized if the endpoints of EL,H are con-
centrated on m2/|H| vertices (each covering |H| endpoints). Hence:

var[Y2] ≤ |H|2 m2

n|H| t = cm2 ≤ cdn/2

The proof now follows from Chebyschev’s inequality. ¤

Proposition 19 For λ > 0, with probability at least 1− 1/λ2,

Y3 ≥ E[Y3]− λ

√
hkm3√

d0n

Proof: The maximum degree of any vertex in L is h. Hence the graph
induced by the edges EL,L also has maximum degree at most h. Thus

var[Y3] ≤ h2 m3

h

t

n
= hm3k/

√
d0n

The proof now follows from Chebyschev’s inequality. ¤

Proposition 20 With probability at least 1− 2/λ2 − 2−Ω(c),

X ≥ E[X]
2

+
ch

2
− λ

√
cdn

2
− λ

√
hkm3√

d0n
+

km3

2
√

d0n

Proof: X = Y1 + Y2 + Y3. By propositions 16,18 and 19 we have that with
probability at least 1− 2/λ2 − 2−Ω(c),

X ≥ E[Y2] + E[Y3] +
ch

2
− λ

√
cdn

2
− λ

√
hkm3√

d0n

As E[Y1] = E[Y2], we have that E[X]/2 = E[Y2] + E[Y3]/2. Using E[Y3] =
m3t/n = km3/

√
d0n the proof follows. ¤

Fix c = 4λ2. Then

ch

2
· km3

2
√

d0n
≥

(
λ

√
hkm3√

d0n

)2

20



implying
ch

2
− λ

√
hkm3√

d0n
+

km3

2
√

d0n
≥ 0.

Hence for c = 4λ2, the inequality in Proposition 20 can be replaced by

X ≥ E[X]
2

− λ

√
cdn

2

The term λ
√

cdn
2 = λ2

√
2dn is at most E[X]

2 2λ2
√

2/k, because E[X] = dt =

k
√

nd
√

d/d0. Renaming 2
√

2λ2 by δ, Lemma 15 is proved. ¤

4.3 Combining the upper and lower bound

Let us set k = 3δ/ε (where ε is taken from Theorem 2), and hence from
Lemma 15 we have that with probability at least 1− 4

√
2/δ − 2−Ω(δ),

X ≥ E[X]
2

(1− ε/3)

By Corollary 14, we have that with probability at least α, X ≤ E[X](1 + 1/t).
The ratio between the upper bound on X and the lower bound on X is 2(1 +
1/t)/(1 − ε/3) ≤ 2 + ε. This last inequality holds when ε is sufficiently small
(which implies Theorem 2 also for larger values of ε), and t is sufficiently large
compared to 1/ε (which is true in our context because t is a parameter that
grows with the number of vertices n, and the O notation in the statement of
Theorem 2 implies that it suffices to prove the theorem when n is sufficiently
large).

An unbiased estimate consists of taking t samples and returning their sum
X. Perform 2/α independent unbiased estimates for X, where α is taken to be
as in the discussion following Corollary 14. Our estimation procedure returns
Xmin, the minimum of these estimates. (Equivalently, we set d∗ = Xmin/t.)

Pr[Xmin ≤ E[X](1 +
1
t
)] ≥ 1− (1− α)2/α ≥ 1− 1

e2
≥ 5

6

Pr[Xmin ≥ E[X]
2

(1− ε/3)] ≥ 1− 2
α

(
4
√

2
δ

+ 2−Ω(δ)) ≥ 5/6

where the last inequality uses δ = 50
√

2/α. This gives k = 3δ/ε < 220/αε. The
total number of queries used in our estimation procedure is 2t/α. This gives:

Corollary 21 For some universal constant β, using

β

√
n/d0

ε

queries, one can estimate the average degree d of an n node graph within a ratio
of (2 + ε), provided that d > d0.
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Proof: Setting β = ( 2
α )( 220

α ) = 440/α2, we perform 2/α unbiased esti-
mates, each with t = 220

√
n/d0α

−1ε−1 queries, and take the minimum of the
estimations that they give. ¤

Let us note here the role of Corollary 14. It allows us to substitute a universal
constant for α (which is shown to be at least 1/13 in Theorem 1, though we
conjecture that 1/e also works). If not for Theorem 1, we could have used
Markov’s inequality in a proof of a modified Corollary 14, showing (for example)
that Pr[d∗ ≤ (1+ ε/3)d] ≥ ε/4. This would have been equivalent to replacing α
in the proof of Corollary 21 by ε/4, which would require the number of queries
used by the estimation procedure to be β

√
n/d0ε

−3 (for some constant β). This
a factor of ε−2 worse than the bounds that we get through the use of Theorem 1.

4.4 Optimality of sample size

The sample size in Corollary 21 is essentially best possible, as the following
proposition shows.

Proposition 22 For every (reasonable) n, d, ε, one can construct a graph G1

with (1 + ε)nd edges and a graph G2 with dn/2 edges, such that Ω( 1
ε

√
n/d)

vertices need to be queried in order to have probability above 2/3 of distinguishing
between them.

Proof: Graph G1 has a set A of ε
√

nd vertices of degree (1 + ε)
√

nd/ε, and
a set B of (1 + ε)

√
nd/ε vertices of degree ε

√
nd (e.g., arranged as a complete

bipartite subgraph between A and B). The other vertices have degree 0. Graph
G2 has a set C of

√
nd/ε vertices of degree ε

√
nd.

We sketch the proof of why Ω(
√

n
d ε−1) queries are necessary. Assume that

the number of queries is
√

n
d ε−1. Then there is constant probability that no

vertex from A is queried, and the expected number of vertices queried from B
is ε−2 + ε−1. The expected vertices queried from C is ε−2. As the standard
deviation is of order

√
ε−2 = ε−1, there is constant probability that G1 and G2

will be confused. ¤
The optimality of the sample size was proved under the assumption that the

only information used by the estimation algorithm is the degree of the queried
vertices. More generally, one may think of randomized estimation algorithms
that make use of additional information. For example, when querying a vertex
of positive degree, the next vertex to query may be chosen at random from the
list of neighbors of the current vertex. The use of a more general class of random
estimation algorithms may allow either quicker or more accurate estimation of
the average degree in a graph. See [5], for example. However, let us explain
here some the the advantages of “degree only” sampling, advantages that might
be lost by other estimation algorithms.

1. All queries can be made in parallel, which in some contexts results in
saving time.
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2. Sampling can be done anonymously. The estimation algorithm need not
know the identity of queried vertices, nor the identity of their neighbors.
Privacy issues may sometimes require that this be the case. For exam-
ple, vertices of a graph may represent persons in some community, and
an edge may represent some sort of interaction that took place between
the respective persons. Persons may be willing to fill an anonymous ques-
tionnaire stating with how many different persons they had interaction
(namely, their degree), but may not be willing to disclose with whom they
had interaction.

3. In Section 5 there are several different graphs Ge defined on the same set of
vertices, and in a single degree query one gets the degrees of the respective
vertex in all graphs simultaneously. In order to efficiently estimate the
average degree in all graphs, it is useful to have an estimation algorithm
for which the choice of which vertex to query does not depend on the
graph in question.

5 Quickly estimating the load on a network

We have seen how to estimate the average degree in a graph using a relatively
small number of degree-queries. Graph problems are often abstractions of other
more concrete problems. As an example (which motivated this study), consider
the following problem motivated and studied in [3].

The input is a connected network G with n vertices and m edges (namely, a
graph). Between every two vertices there is a shortest path (a path that crosses
the smallest number of edges). We assume here that shortest paths are unique, a
point that we shall return to later. For an integer parameter c (that may depend
on n), we wish to find all edges that are members of at least c shortest paths. In
the terminology of [3], these edges are called “weakest links”, apparently because
these are the edges where failure may cause the largest amount of damage to
the performance of the network. Finding all weakest links can be done in time
O(nm) using an algorithm for all pairs shortest paths. The goal in [3] is to do
better. They propose a randomized algorithm that with high probability, has
the following guarantee:

• Finds weakest links. It outputs all edges that belong to at least c
shortest paths.

• Avoids false alarms. It does not output any edge that is a member of
less than (1− ε)c shortest paths.

The running time of the algorithm in [3] is O(mn2 log n
cε2 ), which is better than that

of all pairs shortest paths when c À n log n. The basic idea in this algorithm is
to choose k ' n2 log n

cε2 pairs of vertices at random, and for each pair to perform
a shortest path computation (taking O(m) operations per-pair). Using the
collection of k shortest paths that are found, one estimates in how many shortest
paths each edge participates.
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Here we present a faster algorithm for finding the weakest links. It is based
on two observations. One is that the cost of performing single source shortest
path computations (namely, that of finding the shortest paths from one vertex to
all other vertices) is O(m), similar to that of finding the shortest path between
one pair of vertices. The other observation is that the estimation problem that
this gives rise to can be cast as that of estimating the average degree in a graph,
or more precisely, in m different graphs simultaneously. The improved running
time comes at a cost of a somewhat weaker guarantee in terms of false alarms.

• Avoids false alarms. The algorithm does not output any edge that is a
member of less than (1/2− ε)c shortest paths.

As in [3] we assume that shortest paths are unique. This requires a convention
for breaking ties between paths of equal length. We shall use the same con-
vention that is proposed in [3], namely, to take the lexicographically first such
path. This convention assumes that vertices are labelled and that there is a
total ordering on the labels. For example, the labels can be 1 to n. A path can
be viewed as a sequence of vertices in a natural way. Hence a path is a sequence
of labels. In fact, two sequences correspond to the same path, depending on
which of its two endpoints is considered to be the head of the path, and which
is considered to be the tail. The name of the path is taken to be the lexico-
graphically smaller of the two. Given two different paths that connect the same
pair of vertices, if they are of equal length we use the convention that the one
with the lexicographically smaller name is considered to be shorter.

Proposition 23 Under the tie breaking convention specified above, there is an
O(m)-time algorithm that does the following. Given a connected graph G with
n vertices and m edges and an arbitrary vertex v, it simultaneously counts for
every edge e, for how many vertices u does edge e participate in the shortest
path connecting u and v.

Proof: We assume a model of computation in which algorithms such as
single source shortest path take O(m) time. In particular, some basic operations
(such as comparison between two O(log n)-bit words) take unit time.

Given a starting vertex v, the distances to all other vertices in G can be
computed in O(m) time using breadth first search (BFS). The BFS tree rooted
at v gives also shortest paths from v to all vertices. It is quite straightforward
to also count for each edge in the BFS tree (starting from edges furthest from
the root and moving towards the root) in how many shortest paths (starting
from v) it participates. The counting requires only O(n) operations, as there
are only n− 1 edges in the BFS tree.

In general, several different BFS trees can be constructed starting at the
same vertex v, because a vertex at distance i from v may have more than one
neighbor at distance i−1 from v. We shall need to construct two such trees. For
both trees, we may scan the vertices of the graph in the following order, starting
at v: within a level of the BFS tree, vertices are scanned in the order under
which they were first discovered, and every vertex scans its neighbors in order of
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increasing labels. The forward tree rooted at v (gives the lexicographically first
shortest paths when v is the first vertex of the path) is constructed using the
following rule: for every vertex discovered at level i keep a pointer to its level
i− 1 neighbor that was first to be discovered (according to the scanning order
described above). The backward tree rooted at v (gives the lexicographically
first shortest paths when v is the last vertex of the path) is constructed using
the following rule: for every vertex discovered at level i keep a pointer to its
level i− 1 neighbor of smallest label. Both the forward tree and the backward
tree can be constructed in O(m) time.

Given both the forward tree and the backward tree for a vertex v, and
using the convention that for vertices with a label smaller than v one uses the
backward tree and for vertices with a label larger than v one uses the forward
tree, one can simultaneously count in O(n) time how many shortest paths with
an endpoint at v pass through every edge. (Note that this count is 0 for all but
at most 2n− 2 edges of the two BFS trees.) ¤

We now consider m different graphs, one for every edge e. We denote the
graph that we associate with edge e by Ge. The vertices of Ge are the vertices of
G. Two vertices are connected by an edge in Ge iff e is on their unique shortest
path in G. It follows that edge e is on c shortest paths in G iff the average
degree in Ge is at least 2c/n. Hence to find all weakest links, if suffices to find
(or estimate) the average degrees of all graphs Ge. We shall now combine two
facts.

1. By Theorem 2, O(
√

n/d0/ε) degree queries suffice in order to estimate the
average degree in a graph with average degree at least d0. To make the
probability of error in this estimation below 1/n2, one can repeat the esti-
mation procedure O(log n) times, and take the median of the estimations.
We shall set d0 = (1− ε)c/n.

2. For any vertex v, Proposition 23 implies that in time O(m) one can si-
multaneously obtain the degree of v in all graphs Ge.

Hence using k = O( log n
√

n/(c/n)

ε ) = O(n log n
ε
√

c
) single source shortest path com-

putations one can with high probability simultaneously estimate the average
degree in all graphs Ge, and by this find all weakest links (edges that are on
more than c shortest paths) while avoiding any false alarms (by edges that are
on less than (1/2− ε)c shortest paths). This proves Theorem 3.

Theorem 3 offers a saving of roughly n/
√

c in the running time compared
to the running time of O(mn2 log n

cε2 ) in [3]. (Note however that ε has different
meanings in the two bounds. Hence the saving comes at the cost of allowing
more false alarms.)
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