
Path coloring on the mesh - constructive version

Shira Kritchman

May 4, 2010

In this document I explain how Rabani’s result [1] about path coloring on the mesh

can be made constructive, using a result by Moser and Tardos [2].

The document follows closely Rabani’s paper by its organization, and some of the

text is copied as is from Rabani. The main differences from Rabani’s paper are:

• Use of constructive version of LLL + necessary computations to show it applies

• Proof sketch for the constructive version of LLL

• Lemma (2), which was missing from Rabani’s paper

• Many illustrations

• Completed / simplified a few other things

1 The Problem

An instance of the minimum path coloring problem (MPCP) specifies a graph G, and

a list of pairs of vertices of G, (s1, t1), (s2, t2),... ,(sn, tn). These vertices are named

terminals and the pairs are named connections. A solution to the instance specifies n

paths, path i connecting si and ti, and a color for each path. The assigned paths and

colors must satisfy the condition that paths of the same color are edge disjoint. The

objective function in the optimization version of the problem is to minimize the number

of colors used.

1

S1
S2 S3

S4 S5
S6 S7

S8S8

t8

t1 t2 t3 t4 t5 t6 t7

S1
S2 S3

S4 S5
S6 S7

S8S8

t8

t1 t2 t3 t4 t5 t6 t7

Figure 1: Left: an instance of the MPCP problem on a grid. Right: a possible optimal

solution, using two colors.

We focus on the MPCP problem on an N × N grid. We denote such a grid by

MN . Figure 1-left is an example of an instance of the problem. It is quite clear that

the minimal number of colors needed in this example is two. Figure 1-right suggests a

solution using two colors.

2 Solution scheme

In this section we describe in short the entire flow of Rabani’s solution. Given an MPCP

instance on MN , the first stage is a separation of the list of pairs of terminals into long

and short connections, depending on the distance between them. This is discussed in

Lemma (1). The heart of the solution is algorithm A, which is given as input an instance

of MPCP on MN with long connections only, and outputs an O(1)-approximation. The

flow of the entire solution is as follows:

• Input: MPCP instance on MN , optimal solution: c0

• Lemma (1): Separate the problem into O(1) problems and solve them

using separate sets of colors

1. Short connections: O(1) disjoint smaller problems

– Short short connections – optimal solution: c1, find using exhaustive

search

2

– Long short connections – optimal solution: c2, use A to find c̃2 ≤ O(1) ·c2

2. Long connections – optimal solution: c3, use A to find c̃3 ≤ O(1) · c3

3. Combined solution: c1 + c̃2 + c̃3 ≤ O(1) · c0

The flow of algorithm A is described by:

1. Input: MPCP instance on MN with long connections only

Optimal solution: k0

2. Reduce to MPCP instance on another graph, Gν

Optimal solution: k1

Lemma (2): k1 ≤ O(1) · k0

3. IP formulation

Optimal solution: k1

4. Solve corresponding LP

Optimal solution: k2

Clearly, k2 ≤ k1. Solve using an approximation scheme and get k3, where k2 ≤

k3 ≤ O(1) · k2 ≤ O(1) · k1

5. Round using Lovász Local Lemma

Rounding results in: k4

Theorem (5): k4 ≤ O(1) · k2

6. Translate the solution back to a solution on MN

Translation results in: k5

Lemma (4): k5 ≤ O(1) · k4

7. Altogether, k0 ≤ k3 ≤ O(1)k0, making k3 an O(1)-approximation of k0

The non constructive part is the use of the Lovász Local Lemma at stage (5) of algorithm

A. We show that a recent result by Moser and Tardos [2] can be used to make this part

constructive.

3

Figure 2: Left: a 1-neighborhood of a 3-tile located at (3,2). Right: a 3-partition of a

9×9 grid

3 The reduction

In this section we discuss shortly the first stage (separation into short and long con-

nections), and the first and last stages of algorithm A (reduction to the graph Gν and

translation back into MN). We start with a few definitions, illustrated by Figure 2.

Definition 1. (Tiles): Let x, y, λ, µ be integers. A λ-tile located at (x, y) is the subset of

vertices of MN of the form {(i, j)|x ≤ i ≤ x+ λ and y ≤ j ≤ y + λ}. A µ-neighborhood

of a λ-tile τ located at (x, y) is the (λ+ 2µ) tile located at (x−µ, y−µ). The λ-partition

of MN is the collection of disjoint λ-tiles, including the one located at (0, 0), which covers

the nodes of MN .

The following lemma describes the partition into short and long connections.

Lemma 1. (Lemma 1 in [1]) Let α, d be constants. Let A be a polynomial time MPCP

f(N)-approximation algorithm to instances where each pair of terminals is at least

α lndN apart (for all N). Then, there is an O(f(N))-approximation algorithm to MPCP.

Proof Sketch. (taken from Rabani with small changes) Call connections whose terminals

are at least α lndN apart long, and the other connections short. We use separate sets

of colors for the long and short connections. We route the long connections using A.

For the short connections, we use the fact that there is a fixed number of collections of

4

Figure 3: Two different collections of tiles (in red) with disjoint 3-neighborhoods (in

green) on the same grid (in black)

β lndN -tiles (β > α a constant), such that (i) for every short connection, both terminals

are contained in a single tile in at least one of the collections; and (ii) the 3β lndN -

neighborhoods of the tiles in a collection are all disjoint. Figure (3) shows two different

collections of tiles with disjoint 3-neighborhoods.

These collections induce a partition of the short connections into classes. Each class

contains the connections whose terminals are contained in a single tile of the correspond-

ing collection. (If a connection fits into more than one collection, pick one arbitrarily.)

We use a separate set of colors for each class of short connections. In each class, every

β lndN -tile is routed separately within its 3β lndN -neighborhood. (Colors are reused for

each tile.) A simple argument, described graphically in figure (4) shows that we do not

increase the number of colors needed to route the connections in a tile by restricting the

routes to its neighborhood. Routing the connections in each tile is done by calling A

recursively. Notice that one level of recursion is enough. The next level has to deal with

poly(ln lnN)-tiles, and there the problem can be solved by exhaustive search.

From now on we concentrate on finding an O(1)-approximation algorithm A for the

long connections only. We now define the network GN .

Definition 2. (The network GN): Let α, d be constants, and let λ = lndN . The network

GN is a modification of the mesh MN . Consider a λ-partition of a mesh MN . Remove

the edges connecting between different tiles. For each tile, add a representative node, and

connect it to the boundary nodes of the tile by an edge with capacity 1. Also, connect

5

Figure 4: Left: an arbitrary routing of pairs in the inner tile. Right: the routing of the

same pairs can be done inside the 3-neighborhood of the inner tile.

Figure 5: Left: the graph MN . The blue rectangles are αλ tiles. Right: the graph Gν

constructed from MN .

each two representative nodes of adjacent tiles by an edge with capacity λ. Such an edge

’replaces’ the λ edges that connect two adjacent tiles in MN .

We denote the edges with capacity 1 (inside tiles, and between tile and representative)

thin edges, and denote the edges with capacity λ fat edges.

Let ν = N/α. Given an instance of MPCP on MN we reduce it into an MPCP

instance on Gν . That is, Gν is constructed by downsampling MM to a coarser mesh Mν ,

and from there constructing Gν as in the definition. A terminal in MN is mapped to the

leaf corresponding to the tile containing the terminal in the α-partition of MN . Figure

(5) illustrates the construction of GN/α.

6

The following Lemma guarantees that by reducing the instance to the graph Gν , the

optimal number of colors doesn’t increase by more than a constant factor. The proof

uses Theorem (5), which will be presented in section (4).

Lemma 2. (Missing from Rabani’s paper) Given an MPCP instance on MN , let c

be the optimal solution. Consider the equivalent MPCP instance on Gν , achieved by

the reduction mentioned above. Let k be the optimal solution for this instance. Then,

k < O(1) · c.

Proof. Consider an optimal integral solution f to an MPCP instance on MN , using c

colors. The solution can be translated into a solution on Gν in a straightforward way.

This solution, however, may have a flow of up to α on some of the thin edges, and a flow

of αλ on the fat edges. We thus duplicate each color α times and decrease the flow by a

factor of α. This gives a valid (though non-integral) solution to the LP of definition (1),

which uses αc colors. From Theorem (5) we have that k ≤ O(1)αc = O(1)c.

The following two Lemmas implicate that any solution on Gν can be converted to

a solution to the original problem on MN , while increasing the number of colors by a

constant factor.

Lemma 3. (A simplification of Lemma 2 in [1]) Given an MPCP instance on GN ,

consider solutions satisfying the following additional constraint: For each color c, for

each leaf, at most one path colored c leaves the leaf. Then the optimal solution with

this additional constraint is within a factor of O(1) of the optimal solution without this

constraint.

Proof. Given a feasible solution to MPCP on GN , we convert it to a feasible solution

satisfying the additional constraint as follows: For each color c, consider the graph whose

nodes are the paths colored c with two paths adjacent if they leave the same terminal.

The maximum degree of a node in this graph is bounded by 6, so its chromatic number

is at most 7. So, by replacing each color in the original solution by at most 7 distinct

colors (according to the coloring of the nodes of the constructed graph), we impose the

additional constraint.

7

Lemma 4. (This is Lemma 3 in [1]) Consider any set of edge-disjoint paths in Gν

connecting leaves. Assume that any leaf is a terminal of at most one path. Further

assume that for any path, its two terminals are located in two λ-tiles whose representatives

are at distance at least two apart. Consider the tiles in the α-partition of MN which

correspond to terminals. Suppose that α is a sufficiently large constant. Then, we can

choose any single node in each such tile, so that the collection of pairs of nodes in pairs

of tiles that correspond to pairs of terminals connected in Gν can all be connected by

edge-disjoint paths in MN .

Proof Sketch. (taken from Rabani, where a more detailed proof sketch can be found)

The idea is to simulate Gν on MN in a general way (that is, that doesn’t depent on the

problem instance). Some small adjustments might be needed, depending on the instance.

Choose the nodes in the λ-tiles that correspond to terminals. Gν is simulated as follows.

Its leaves are simulated by the tiles in the α-partition of MN , and its representatives are

simulated by the tiles in the αλ-partition of MM .

Call the nodes in MN which lie on the edge of an αλ tile, and are also corners of

an α tile, edge-nodes (these are the nodes connected to representative nodes in figure

5). Also, call the nodes in Gν which are connected to a representative, edge-nodes. In

Gν , We have three connection types to consider: (1) Connections between a leaf and an

edge-node (these connections have capacity 1), (2) connections between an edge-node

and a representative node (these connections have capacity 1), (3) Connections between

two adjacent representative nodes (these have capacity λ).

To simulate type (1) connections we build a network which connects any small α-tile,

to any edge-node of the bigger αλ-tile surrounding it. This is called the escape network.

To simulate types (2)+(3) connections we build a network which connects any edge-node

of an αλ-tile, to any other edge-node of the same tile which lies on a different side, called

the high capacity network, and a network which connects any edge-node of an αλ-tile,

to any other edge-node of the same tile (even if they lie on the same side), called the

redirection network,

If α is a sufficiently large, then the edges of these networks can all be embedded as

mutually edge-disjoint paths, and furthermore, none of the networks block the chosen

8

1

2

3

4

5 6

7

8

Figure 6: Simulating a path on Gν (in red and green) using the simulation networks

on MN is done as follows: (1-2) Escape network, (2-3) redirection network, (3-4) edge

between them, (4-5) high-capacity network, (5-6) edge between them, (6-7) redirection,

(7-8) escpse network.

terminal nodes (to this end we might need to adjust the networks according to the

problem instance).

Using these networks, we can simulate any path on Gν . See figure 6 for an example.

4 Main

The MPCP problem on the graph GN can be formulated as the following (exponential

size) integer linear program, denoted IP [c]:

Definition 3. Minimize γ subject to:

∑
j,k f

i
j,k ≥ 1 ∀i ∈ {1, 2, . . . , n} ;∑

i,j f
i
j,kq

i
j(e) ≤ γc(e) ∀k ∈ {1 . . . , c} , ∀e ∈ E(G);

f ij,k ∈ {0, 1} ∀i, j, k

(1)

where f ij,k is the flow of commodity i over path j with color k, qij denotes the characteristic

function of the jth path of commodity i, and c(e) ∈ {1, λ} is the capacity of the edge e.

9

The MPCP instance can be solved using c colors iff there is a solution to IP [c] with

γ ≤ 1.

We relax the last set of conditions to f ij,k ∈ [0, 1], obtaining a linear program, which

we denote LP [c]. Clearly, if the optimal solution to IP [c] is ≤ 1, so is the optimal

solution to LP [c]. The optimal solution to LP [c] can be found using an approximation

scheme, as explained later in this section.

For an integer B, we call a solution B-integral if all paths have weight 1
B (or zero). A

solution with γ < 1 is denoted feasible. A 1-integral feasible solution is denoted proper.

Let γ∗IP [c] denote the optimal solution to IP [c], and let γ∗LP [c] denote the optimal

solution to IP [c]. We show the following theorem:

Theorem 5. (Theorem 5 in Rabani) There exists a constant µ such that if γ∗LP [c] ≤ 1,

then γ∗IP [µc] ≤ 1.

Before turning to the proof of theorem (5), we introduce some notation. Define

G = GN by taking λ = ln2N . Fix c, and let {γ, f} be a solution to LC[c] with γ ≤ 1.

Let γ̄(f) denote an upper bound on the capacity utilization for edges connecting

representatives, and let γ̂`(f) denote an upper bound on the maximum over all rectangles

with boundary capacity at least ` contained in any single λ×λ tile, over all colors, of the

amount of flow of that color leaving the rectangle divided by the total capacity of edges

leaving the rectangle. Note that γ̄ and γ̂ denote some upper bound, not necessarily a

tight one. Also, let η`(f) be a common upper bound on γ̄(f), γ̂`(f).

The following Lemma explains why we consider these quantities, by showing that if

we bound them well enough, then we can convert the solution to a solution with bounded

γ by solving a maximal flow problem:

Lemma 6. (A close version of Lemma 8 in Rabani) Given a 1-integral solution {γ, f}

to LP [c], with η1(f) ≤ 1, one can find in polynomial time a 1-integral solution {1, f ′′}

(that is, a proper solution).

Proof. (This is a more detailed version of Rabani’s proof) First note that γ̄(f) ≤ η1(f) ≤

1 is guaranteed by definition, so we only need to worry about the paths inside the λ-tiles,

and leave the portion of the paths that use the fat edges as is. Consider one λ-tile and

10

one color c. Consider the set of terminals S in this tile that use the color c. We have

to show that we can find |S| disjoint paths that connect the members of S to the tile’s

boundary. Thus, we consider the tile as an independent graph. We add a vertex s and

connect it to each of the terminals in S. We consider the boundary vertices to be one

vertex denoted t. We give all edges capacity of 1. We consider the cut-flow problem

on this graph. Claim: the minimal s − t cut is |S|. Proof: Let C be a minimal s − t

cut. We want to show that each v ∈ S contributes at least one edge to C. Consider a

terminal v ∈ S. If the edge (s, v) is in C, then v contributes this edge. Otherwise, v is

connected to s by an edge which is not in C. Thus, it must be disconnected from t using

tile edges. The edges in C that are part of the original grid can be partitioned to a set

of disjoint closed curves. Consider one such closed curve containing k terminals. Denote

its length by `. A closed curve of length ` in a grid is always contained in a rectangle

R of length ≤ `. By definition of γ̂1(f), the number of paths leaving R is ≤ `γ̂1(f) ≤ `.

Thus, the number of terminals inside a connected component of length ` is ≤ `. Thus,

for each connected component, each terminal inside the component can be associated

with a unique edge.

We now see that each terminal contributes at least 1 to the number of edges in C,

thus |C| ≥ |S|. Thus the maximal flow is ≥ |S|. Since the edge capacities are integral,

the maximal integral flow equals the maximal flow. An integral flow with total flow |S|

must have a disjoint path for each terminal, because we must have flow of 1 going from s

to each of its |S| neighbors, the terminals S. Thus, by solving the maximal flow problem,

we find a proper solution.

The strategy for obtaining an integral solution has five steps:

1. Find a near-optimal feasible solution {γ1, f1} to LP [c], with minimal c

This can be done using binary search on c and an approximation scheme for multi-

commodity flow based on Lagrangian relaxations (e.g. [3], which can be used since

we have small integral capacities). We are guaranteed to get a near optimal solu-

tion (sufficient for our purposes) with a polynomial number of flow paths carrying

the same amount of flow each.

Problem: it is not clear to me why the approximated minimal number of

11

colors c is an O(1)-approximation of the truly minimal number of colors

for a feasible solution of the LP . This is used in step 4 of algorithm A’s

flow.

2. Let B0 be a constant. Convert the optimal solution into a feasible solu-

tion {γ2, f2} to LP [4B0c] satisfying the following constraints: γ2 ≤ (2B0)−1,

and f2 is h-integral for some h. Since f2 is computed in polynomial time,

we have h ≥ 2−N
O(1)

.

This step is simple and we don’t explain it here.

3. Converting {γ2, f2} into a B−1
1 -integral solution {γ3, f3}, where B1 ≤ B0,

through a series of stages, such that the increase in η1(f) is restricted in

each step, and throughout the steps it doesn’t increase by more than a

factor of two. Thus, η1(f3) ≤ B−1
0 .

In this step the number of colors increases by a constant factor. This can be done

using Lemma (7).

4. For each commodity, selecting an arbitrary path and giving it weight

one. This gives a 1-integral solution {γ4, f4} with η1(f4) ≤ B1 · η1(f3) ≤ 1.

5. Find a proper solution {γ5, f5} through Lemma (6).

Lemma 7. (Lemma 6 in [1]) Let B0, a < 2B0 be sufficiently large constants. Let B ≥ B0

and let ` = O(1) be a positive integer. Let η be such that η` ≥ a ln−1B. Given a B−1-

integral solution {γ, f} to LP [c] with γ̄`(f), γ̂`(f) ≥ η, we can find in polynomial time a

ln−3B-integral solution {γ′, f ′} to LP [c] with η`(f
′) ≤ (1 + ε)2γ̄, where ε = 1/

√
lnB.

Note: The constraint ` = O(1) is missing from Lemma 6 in [1], where ` is defined as

just an ` > 1 integer. This constraint is necessary for the Lemma to be correct, but

adding it doesn’t harm the proof, because Lemma (7) is only used with ` = 1 or ` = B0.

The constraint a < 2B0 is also missing from [1].

To prove Lemma (7) we use the constructive version of the general LLL by Moser

and Tardos.

This is how Lemma (7) is used to implement step (3):

12

1. Start with the h-integral solution {γ2, f2}, where γ2 ≤ (2B0)−1.

2. Repeatedly apply Lemma (7) with ` = 1, as long as B ≥ e2aB0 . This takes

O(log∗N) iterations.

For the i’th step we apply Lemma (7) with η = ηi = (1 + ε)2i (2B0)−1. As we

will see, through the steps η does not grow by more than a factor of two, thus we

always have η ≤ B−1
0 . Denote by f i2 the solution after i invocations of Lemma (7).

The conditions for using Lemma (7) are always met:

(a) B ≥ B0: B ≥ e2aB0 ≥ B0.

(b) η` ≥ a ln−1B: for ` = 1, η = ηi ≥ (2B0)−1 = a (2aB0)−1 ≥ a ln−1B.

(c) η1(f i2) ≤ ηi, that is, ηi is a proper upper bound on the capacity utilization of

the flow f i2 that we get after i iterations: Recall that γ2 ≤ (2B0)−1. Thus,

η1(f2) ≤ (2B0)−1. Lemma (7) guarantees that η1(f i2) ≤ η1(f2)(1 + ε)2i ≤ ηi.

3. In the following steps we will no longer be able to use ` = 1 but only ` = B0. Thus,

in this step, we take care of all the ’small’ rectangles. The previous step left us

with a solution f ′2 with B < e2aB0 , and with γ̂B0(f ′2) ≤ η1(f ′2) ≤ B−1
0 . This means

that for each rectangle Q with boundary capacity B0 and for each color k there are

at most e2aB0 fractional paths of color k that leave Q. By duplicating each color a

(large) constant number of times, we can partition the paths among the duplicates

so that at most a single path leaves each such rectangle Q. Note that this step

does not increase η` for any `.

4. Repeatedly apply Lemma (7) with ` = B0. After O(1) iterations we end up with a

(B0)−1-integral solution (B0 is chosen large enough so that this is possible). The

conditions for using Lemma (7) are always met:

(a) B ≥ B0: By definition.

(b) η` ≥ a ln−1B: for ` = B0, ηi` ≥ (2B0)−1B0 = 2 ≥ a ln−1B0 ≥ a ln−1B.

(c) ηB0(f i2) ≤ ηi: Same as before.

5. We now have a B0-integral solution {γ3, f3} with η(f3) ≤ B−1
0 , and step 3 is

completed.

13

Throughout the stages of step 3 we increased ηB0 by a factor of at most

t∏
i=1

(
1 +

1√
lnBi

)2

,

where the Bi’s are given by the recurrence Bi = e
3
√
Bi−1 , and t = O(log∗N). For a

sufficiently large choice of B0, this product is at most 2.

4.1 Proving Lemma (7)

Consider the following randomized rounding procedure: select path qij and color k with

probability f ij,k(1 + ε) ln3B, and assign to it a new flow f̄ ij,k = ln−3B, independently for

all i, j, k. This defines a probability space over ln−3B-integral (not necessarily feasible)

flows. We shall show that there is a point in this probability space that is both feasible

and within the claimed capacity utilization bounds. In proving this we use the following

version of the Local Lemma:

Theorem 8. [Constructive Lovász Local Lemma - Constructive Version] Let P be a finite

set of mutually independent random variables in a probability space. Let A be a finite

set of events determined by these variables, where event A is determined by vbl(A). Let

G = (A, E) be a dependency graph for the set of events A, where (A,B) ∈ E iff A 6= B

and vbl(A)
⋂

vbl(B) 6= Φ. Then, if there exists an assignment of reals x : A → {0, 1}

such that

Pr[A] ≤ x(A)
∏

(A,B)∈E

(1− x(B)) ∀A ∈ A, (2)

then there exists an assignment of values to the variables P not violating any of the

events in A.

Moreover, there exists a randomized algorithm that resamples an event A ∈ A at

most an expected x(A)/(1 − x(A)) times before it finds such an evaluation. Thus the

expected total number of resampling steps of the algorithm is at most
∑

A∈A
x(A)

1−x(A) .

See the proof sketch at the appendix.

We rephrase Lemma (7) in the terminology of Theorem (8). The set of mutually

independent random variables P is defined as the set ξij,k, where ξij,k denotes whether

14

path qij with color k was chosen in the randomized procedure. Define the following

events:

• Let Fi denote the event that there are less than ln3B flow paths picked for com-

modity i.

• For a fat edge e, let Ae,k denote the event that the total flow of color k over e is

more than (1 + ε)2ηλ after rounding.

• For a rectangle Q with boundary capacity ≥ ` contained in a big tile, let EQ,k

denote the event that the total flow of color k out of Q is more than (1 + ε)2η∇Q,

where ∇Q denotes the total capacity of the edges leaving Q.

We define A = {Fi}i
⋃
{Ae,k}e,k

⋃
{EQ,k}Q,k. An assignment for P which doesn’t violate

any of the events in A gives a ln−3B-integral flow which fulfills the conditions in Lemma

(7). We now have to show that the conditions in Theorem(8) are all met; that is, we

have to find an assignment x : A → {0, 1} which satisfies Eq. (2). This is exactly the

same thing that Rabani showed in his paper, by using the assignment: for all i, xFi =

XF = B−2, for all e, k, xAe,k = xA = B−1N−2, for all Q, k, xEQ,k = xQ = B−2e−∇Q.

Rabani showed the computations only for events of type F and mentioned that for the

other events this is similar.

To use the algorithm suggested by Moser and Tardos we also have to show that the

number of random variables defining the bad events is polynomial, that the number of

bad events is polynomial, that to check whether a bad event occurs takes polynomial

time, and that to resample the random variables associated with a bad event takes

polynomial time. Most of these are trivial, but we show how to bound the number of

bad events:

• # of events of type F : n

• # of events of type A: 2N2c.

• # of events of type E: for ∇Q = m, ≤ N2mc. m can go from ` to 4 ln2N , so

altogether we have a bound of O(N2 ln4Nc).

15

Moser and Tardos also suggest a parallel version of their algorithm. The conditions

for using it and its properties are stated in the following Theorem:

Theorem 9 (Constructive Lovász Local Lemma - Parallel Version). Let P be a finite

set of mutually independent random variables in a probability space. Let A be a finite

set of events determined by these variables, where event A is determined by vbl(A). Let

G = (A, E) be a dependency graph for the set of events A, where (A,B) ∈ E iff A 6= B

and vbl(A)
⋂

vbl(B) 6= Φ. Then, if there exists an assignment of reals x : A → {0, 1}

such that

Pr[A] ≤ (1− δ)x(A)
∏

(A,B)∈E

(1− x(B)) ∀A ∈ A, (3)

then the parallel version of our algorithm takes an expected O
(

1
δ log

∑
a∈A

x(A)
1−x(A)

)
steps

before it finds an evaluation violating no event in A.

We don’t give here a proof of this Theorem. In the appendix we show computations

which prove that the parallel version can be applied to our problem, with δ = 1
2 .

Note: the conditions for applying the deterministic version of the algorithm are not

met.

5 Proving LLL

The original proof of the Local Lemma, given in 1975 by László Lovász and Paul Erdős [4],

is non-constructive and does not yield an efficient procedure for searching the probability

space for a point with the desired property. Moser and Tardos were the first to give a

full algorithmic proof that provides such a procedure. Here we sketch the proof given in

[2], while trying to give some intuition.

Let Γ(A) be the set of neighbors of A in G, and let Γ+(A) = Γ(A)
⋃
{A}. If B ∈

Γ+(A) we say that A and B are inclusive neighbors.

Proof Sketch for Theorem (8). We will show that the following randomized algorithm

fulfills the conditions listed in the Theorem:

function LLL(P,A)

16

for all P ∈ P do

vP ← a random evaluation of P ;

while ∃A ∈ A is violated when (P = vP : ∀P ∈ P) do

pick an arbitrary violated event A ∈ A;

for all P ∈ vbl(A) do

vP ← a new random evaluation of P ;

return (vP)P∈P

We fix some (randomized or deterministic) procedure for picking an arbitrary violated

event.

To describe an execution of the algorithm we define the execution trace. This is the

list R : N → A of violated events that were picked by the algorithm, in the order in

which they were picked.

A witness tree is a pair (τ, στ), where τ is a rooted tree and στ : V (τ) → A is a

labelling of its vertices with events. We denote [v] = σT (v). A witness tree is said to be

proper if distinct children of the same vertex always receive distinct labels. Given the

trace, we will associate with each resampling step t carried out a witness tree τR(t) that

can serve as a ’justification’ for the necessity of that correction step.

We construct τR(t) step by step, starting with a root vertex labelled R(t). We follow

the trace backwards from t. After j steps, we consider R(t−j). If R(t−j) is an inclusive

neighbor (in the dependency graph) of some event which already appears in the graph,

we add a vertex labelled R(t − j) to the graph, as far from the root as possible. The

only restriction is that it should be added as a child of a vertex which is its exclusive

neighbor (in the dependency graph). For an example of building such a tree, see figure

(7).

We say that the witness tree τ occurs in the trace R if there exists t ∈ N such that

τR(t) = τ . We will use the following claim without a proof:

Claim. Let τ be a fixed witness tree and R the (random) trace produced by the algorithm.

(i) If τ occurs in R, then τ is proper.

(ii) The probability that τ appears in R is at most
∏
v∈V (τ) Pr ([v]).

17

AA

B C

D ED

A

C

C

B

D

EE

Tr: (E,D,C,B,C,D,A)

Figure 7: Left: dependency tree for the events A,B,C,D,E. Right: witness tree com-

patible with the trace EDCBCDA. The dashed line offers an alternative way to connect

the vertex denoted E.

Part (i) is rather straightforward. To convince yourself with part (ii), observe that

in a witness tree, in each level, all the events are independent of each other. Consider

the deepest (farthest from the root) level in a witness tree. For an event A in the

deepest level, when the algorithm picks A, the assignment for vbl(A) is the original

assignment given by the algorithm. Thus, all the events in this level are violated in

the original assignment sampled by the algorithm. Since these events are independent,

the probability for this to happen is ≤
∏
v in deepest level Pr([v]). After resampling the

deepest level, the same holds for the assignment of the next level, and so on until we

reach the root.

For an event A ∈ A, let NA be the random variable which counts the number of

occurrences of A in the trace. We want to compute E[NA]. We denote by TA all the

proper witness trees rooted at A. For any τ ∈ TA, let ξτ be the characteristic function

indicating whether τ occurs in the trace. An important observation is that a tree cannot

occur more than once in a trace. This is true because for the tree τR(t) associated with

time t, its root is labelled R(t), and R(t) appears in the tree exactly the same number

of times that R(t) appears in the t-suffix of R. Thus, for each occurrence of an event A

in the trace, there is a unique tree τ ∈ TA that occurs in R. Thus, NA =
∑

τ∈TA ξτ , and

E[NA] =
∑
τ∈TA

Pr[τ occurs in the trace] ≤
∑
τ∈TA

∏
u∈V (τ)

Pr([u]) ≤
∑
τ∈TA

∏
u∈V (τ)

x′([u]),

where for an event B, x′(B) = x(B)
∏
C∈Γ(B) (1− x(C)), and the last inequality follows

18

from the condition (2) we have on x.

We now wish to bound the last term. To this end, consider the Galton-Watson

branching process for generating witness trees rooted at A. We start with a single

vertex labelled A. In each subsequent round, we consider each vertex v produced in the

previous round independently. For each event B ∈ Γ+([v]), we add a vertex labelled B

with probability x(B). This process creates proper witness trees, and a tree τ is created

with probability

pτ =
1− x(A)

x(A)

∏
v∈V (τ)

x′ ([v]) ,

and hence
∑

τ∈TA pτ ≤ 1. Therefore,

∑
τ∈TA

∏
v∈V (τ)

x′ ([v]) =
∑
τ∈TA

x(A)

1− x(A)
pτ =

x(A)

1− x(A)

∑
τ∈TA

pτ ≤
x(A)

1− x(A)
.

We conclude that

E[NA] ≤
∑
τ∈TA

∏
u∈V (τ)

x′([u]) ≤ x(A)

1− x(A)
.

6 Computations

In order to use the parallel version of the GLLL algorithm, one needs to show that for

some δ > 0 (which we want to be large), for any bad event A,

Pr[A] ≤ (1− δ)x(A)
∏

B∈ΓA(A)

(1− x(B)). (4)

where we use the same assignments as before: for all i, xFi = XF = B−2, for all e, k,

xAe,k = xA = B−1N−2, for all Q, k, xEQ,k = xQ = B−2e−∇Q. We show here that we can

have δ = 1
2 .

To simplify notation, let f(ε) = eε

(1+ε)1+ε . We will use the following inequality, which

holds for 0 < ε < 1
2 :

f(ε) ≤ e−
ε2

4 . (5)

19

Proof. First note that f(ε) = eε−ln(1+ε)(1+ε). Using the inequality ln(1 + x) > x− x2

2 we

get

ε− ln(1 + ε)(1 + ε) < ε−
(
ε− ε2

2

)
(1 + ε)

=
ε2

2
(−1 + ε)

< −ε
2

4

where the last inequality uses ε < 1
2 .

We will use the following bounds, given by Rabai, on the probabilities of the bad

events:

Pr[Fi] < exp
[
− ln2B/2(1 + ε)

]
Pr[Ae,k] < f(ε)γ̄ ln2 N ln3 B

Pr[EQ,k] < f(ε)γ̂∇Q ln3B,

where ε = 1/
√

lnB. The bounds are achieved by applying Chernoff bounds.

6.1 Computation for type F events

In [1] we have the following computation:

xF (1− xA)
4N2

ln4 N

4 ln2N∏
∇Q=`

(1− x∇Q)2(∇Q)3B

≥ B−2

(
1− 5

ln4N

)(
1− 18

B

)

20

We continue from here:

B−2

(
1− 5

ln4N

)(
1− 18

B

)

=

[
e−2

{(
1− 5

ln4N

)(
1− 18

B

)}1/ lnB
]lnB

≥
[
e−2e− ln 2

]lnB

≥
[
2e−

lnB
4

]lnB

≥
[
2e
− lnB

2(1+ε)

]lnB

≥ 2e
− ln2 B

2(1+ε)

≥ 2 Pr[Fi]

6.2 Computation for type A events

We now show that Eq. (4) holds for events of type Ae,k with δ = 1
2 .

From Eq. (5) it follows that

Pr[Ae,k] ≤ f(ε)γ̄ ln2N ln3B ≤ e−
ε2

4
γ̄ ln2N ln3B = e−

γ̄ ln2 N ln2 B
4

21

We compute:

xA
∏

(A,B)∈E

(1− x(B))

≥ xA(1− xA)4N2/ ln4N (1− xF)Bγ̄ ln2 N
4 ln2N∏
∇Q=`

(1− xQ)2(∇Q)3γ̄ ln2N

=
1

BN2
(1−B−1N−2)4N2/ ln4N (1−B−2)Bγ̄ ln2 N

4 ln2 N∏
∇Q=`

(1−B−2e−∇Q)2(∇Q)3

γ̄ ln2 N

≥ 1

BN2
(1−B−1N−2)(BN2−1)(5/ ln4NB)(1−B−2)(B2−1)(2γ̄ ln2N/B)

(
1− 18

B

)γ̄ ln2N

≥ 1

BN2
e−5/(ln4NB)e−2γ̄ ln2N/B

(
1− 18

B

)γ̄ ln2N

=
1

BN2

{
e−5/(γ̄ ln6 NB)e−2/B

(
1− 18

B

)}γ̄ ln2N

≥
[(
BN2

)−1/(γ̄ ln2 N)
e−5/(γ̄ ln6NB)

(
1− 2

B

)(
1− 18

B

)]γ̄ ln2N

≥
[(
BN2

)− lnN lnB/(a ln2 N)
e−5 lnN lnB/(a ln6NB)

(
1− 2

B

)(
1− 18

B

)]γ̄ ln2 N

=

[(
BN2

)−1/(a lnN)
e−5/(a ln5NB)

{(
1− 2

B

)(
1− 18

B

)}1/lnB
]γ̄ ln2 N lnB

=

[(
elnB+2 lnN

)−1/(a lnN)
e−5/(a ln5 NB)

{(
1− 2

B

)(
1− 18

B

)}1/lnB
]γ̄ ln2N lnB

=

[
e−

lnB/ lnN+2+5/(ln5 NB)
a

{(
1− 2

B

)(
1− 18

B

)}1/ lnB
]γ̄ ln2N lnB

≥
[
e−

lnB/ lnN+3
a e− ln 2

]γ̄ ln2N lnB

=
[
e−

lnB/ lnN+3+a ln 2
a

]γ̄ ln2 N lnB

≥
[
e
− lnB

4
+ ln 2
γ̄ ln2 N lnB

]γ̄ ln2 N lnB

= 2
[
e−

lnB
4

]γ̄ ln2N lnB

≥ 2 Pr[Ae,k]

6.3 Computation for type E events

We now show that Eq. (4) holds for events of type BQ,k with δ = 1
2 . Denote q = ∇Q.

22

From Eq. (5) it follows that

Pr[EQ,k] ≤ f(ε)γ̂q ln3B ≤ e−
ε2

4
γ̂q ln3 B = e−

γ̂q ln2 B
4

We compute:

xQ
∏

(Q,B)∈E

(1− x(B))

≥ xQ(1− xA)
4N2

ln4 N (1− xF)Bγ̂q
4 ln2N∏
∇Q′=`

(1− x∇Q′)2(∇Q′)3γ̂q

= B−2e−q(1− xA)
4N2

ln4 N (1− xF)Bγ̂q

4 ln2N∏
∇Q′=`

(1−B−2e−∇Q
′
)2(∇Q′)3

γ̂q

≥ e−2 lnB−qe−5/(ln4 NB)

{(
1− 2

B

)(
1− 18

B

)}γ̂q
≥ e−2 lnBe−qe−5/(ln4NB)

{(
1− 2

B

)(
1− 18

B

)}γ̂q
=

[
exp

{
−2 lnB + q + 5/(ln4NB)

γ̂q

}{(
1− 2

B

)(
1− 18

B

)}1/ lnB
]γ̂q lnB

≥
[
exp

{
−2 lnB + q + 5/(ln4NB) + const

a

}]γ̂q lnB

.

Now recall that B ≥ B0, where B0 is a large enough constant, and a is also a large

enough constant, restricted only by a < 2B0, and that q ≥ 1. Thus, for large enough

B0, a and N , we can have

2 lnB + q + 5/(ln4NB) + const

a
≤ lnB

4
− ln 2

γ̂q lnB
,

which implies

xQ
∏

(Q,B)∈E

(1− x(B))

≥

[
exp

{
− lnB

4
+

ln 2

γ̂q lnB

}γ̂q lnB
]

= 2e−
γ̂q ln2 B

4

≥ 2 Pr[EQ,k].

23

References

[1] Y. Rabani, ”Path coloring on the mesh”, In Proc. of the 37th Ann. IEEE Symp. on

Foundations of Computer Science. , October 1996, pages 400-409

[2] R. Moser and G. Tardos, ”A constructive proof of the general Lovasz Local Lemma”,

Journal of the AMS , to appear.

[3] P. Klein, S. Plotkin, C. Stein, and É. Tardos, ”Faster approximation algorithms for

the unit capacity concurrent flow problem with applications to routing and finding

sparse cuts”, SIAM J. Comput., 23(3):466487, 1994.

[4] N. Alon and J. H. Spencer, ”The probabilistic method”, second edition, John Wiley

& Sons, Inc. 2000.

24

