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Abstract

We present a methodology for solving a variety of games involving
guessing the colors of hats. As an example, consider the following
game. Seven players sit in a circle. There are four blue hats and four
red hats. Seven hats are placed on the heads of the seven players,
and the remaining hat is discarded. Every player can see the colors
of the hats of the other six players, but cannot see the color of his
own hat, or that of the discarded hat. Then every player needs to
guess the color of his own hat. The players may coordinate a strategy
before the game begins, but once the hats are placed on their heads,
there is no communication of any form between the players, and in
particular, no player knows whether another player already produced
a guess. Is there a guessing strategy that guarantees (with absolute
certainty) that at least five of the players guess correctly?

1 Introduction

In this paper we consider several mutiplayer games in which every player
needs to guess the color of the hat placed on his/her head, while seeing
only the colors of the hats placed on the heads of other players. In all the
games that we consider, if all players guess at random, a certain number of
guesses are expected to be correct. The problem is to design a deterministic
strategy that guarantees that the number of correct guesses is as expected.
We call such a strategy a perfect strategy. The trigger to the work reported



here was a collection of results of Benjamin Doerr (currently unpublished),
concerning variations on a setting described by Peter Winkler [?].

This paper is organized as follows. The abstract presents a puzzle that
the reader may try to solve before reading the rest of the paper. In Sec-
tion 7?7 we describe several color guessing games. In Section 77 we give some
preliminary observations that may help orient the reader towards solutions
to our puzzles. In Section 7?7 we present solutions to two of our color guess-
ing games. In Section 77 we present a general methodology for establishing
that a large class of color guessing games have perfect strategies. We show
how this methodology applies to the remaining color guessing games of Sec-
tion ?7?. In Section ?7 we conclude with some additional observations and
open questions.

2 The games

In all our puzzles, the number of players is denoted by n. Sometimes, n will
need to be of a special form, and then we will use an additional parameter
k to indicate this. For example, n = 2k indicates that n is even. Players are
allowed to coordinate a strategy before the game begins. The game consists
of placing colored hats on the heads of the players, where C' denotes the set
of allowable colors in the game. For simplicity, these colors are denoted by
co, - - C|c|—1- Every player can see the colors of the hat of all other players
(and nothing else), and needs to guess the color of his own hat. Players have
names (and for simplicity, the names will be p1,...,p,). The colors of their
hats will be denoted by hq,...,h,. The guesses of the players are denoted
by g1,...,gn. Formally, a strategy is a collection of n stragies, one for each
player. A strategy s; : C"~! — C for player p; specifies the “guess” of p; as
a (deterministic) function of the tuple of colors (hy,...,hi—1,hit1,-- -, hn).

We may view the actual colors hq, ..., h, of the hats as being assigned
by an adversary who knows the strategy of the players, and tries to select
the combination of colors that causes the strategy to be least successful.

A strategy of the players will be called perfect if it meets some conditions
(that differ from game to game). In all games, the question is to find a perfect
strategy (or show that no such strategy exist).

2.1 The plain version

This version appears in [?].

Here |C| = 2 and n = 2k. A perfect strategy is one that guarantees that
at least k = n/2 players correctly guess the colors of their hats.

One may also consider the case of having more than two colors for the
hats. Then |C| = ¢ > 2, n = ck, and at least k = n/c players need to guess
correctly.



2.2 The discarded hat version

This is the version that appears in the abstract to this paper.

Here |C| =2 and n = 4k — 1. (The version in the abstract corresponds
to the choice k = 2.) The players are given one more piece of information
before the game begins, namely, that the total numbers of hats of color ¢
will be either 2k — 1 or 2k (with the rest of the hats being of color ¢;).
Equivalently, one may think of there being 2k hats of each color, and one
hat is discarded (without the players knowing which hat is discarded). In
this game, a perfect strategy guarantees that at least 3k — 1 players guess
their color correctly.

2.3 The everywhere balanced version

Here |C| = ¢ > 2 and n is arbitrary. The goal of the players is as follows. Let
H; be the set of the players that have a hat of color ¢;. Hence 5;(1) |Hj| = n.
(A player does not know to which set he belongs, and the players do not
know the cardinalities of the sets H;.) A perfect strategy guarantees that in
every such set H;, the number of players who guess correctly (namely, guess
cj) is between ||H,|/c| and [|H;|/c].

2.4 The majority version

This version was studied by Doerr (private communication).

Here |C| = 2, n is arbitrary, and there is an additional parameter m that
may depend on n. For H; as defined above, a perfect strategy guarantees
that at least max[|Hyl,|H1|] — m players guess their color correctly. How
small can m be for a perfect strategy to exist?

3 Preliminary observations

For the plain version (with ¢ = 2), it is not hard to see that no strategy
can guarantee more than n/2 correct guesses. Regardless of the strategy
of the players, if the adversary assigns the colors of the hats independently
at random, each player guesses his color correctly with probability half.
By linearity of the expectation, the expected number of players who guess
correctly is n/2. As expectation is an averaging operator, it follows that
there is some assignment of the adversary that causes the number of correct
guesses not to exceed n/2. (For ¢ > 2, the same argument shows that no
strategy can guarantee more than n/c correct guesses.)

For the discarded hat version, call the color that appears on 2k hats the
magjority color, and the color that appears on 2k — 1 hats the minority color.
Every player that has a hat of the minority color sees two more hats of the
majority color than the minority color, and hence knows the color of his own
hat. This guarantees 2k — 1 correct guesses. The players that have a hat
of the majority color see an equal number of hats of each color. It can be



shown that if the adversary assigns the colors at random, then regardless of
the strategy of the players, in expectation k of the players that have a hat
of the majority color guess correctly. Hence no strategy can guarantee more
than 3k — 1 correct guesses.

For the everywhere balanced version, again averaging arguments show
that no strategy may guarantee more than |H;|/c correct guesses, and simi-
larly, no strategy can guarantee less than |H;|/c correct guesses. Hence the
range between ||H,|/c| and [|Hj|/c] is the best one can hope for.

For the majority version, let us bound m from below as a function of n.
Recall that if the adversary assigns hat colors at random, in expectation n/2
players guess their color correctly. On the other hand, the majority color is
expected to include n/2+0©(y/n) hats (as this is the standard deviation of the
Binomial distribution). Hence in expectation, the number of correct guesses
is Q(y/n) below max|[|Hy|, |H1|], implying that one needs m > Q(y/n).

The reader may find it useful to tackle the plain version and the discarded
hat version by first considering the most simple setting of the parameters,
namely, that of £k = 1. For the plain version this gives two players, one of
whom needs to guess correctly. For the discarded hat version, this gives
three players, two receive hats of the same color and the other receives a hat
of a different color, and two players need to guess correctly.

4 Perfect strategies

In this section we present perfect strategies for two of the games of Sec-
tion ?77.

4.1 The plain version

The perfect strategy presented by Winkler for this version is to pair players
together (for 1 < i < k, the pairs can be p; and p;1), and have each pair
play the case n = 2. That is, player p; guesses h;1x as the color of his hat,
and player p;1 guesses the color not equal to h; as the color of his hat.

Another perfect strategy for the plain version (that came up in a dis-
cussion with Amir Shpilka) is based on a symmetric strategy. A strategy is
called symmetric if the guess of a player is a function of the number of hats
of each color (except his own), disregarding the distribution of hats among
the players. Different players may use different symmetric functions.

For 1 < i < k, player p; guesses ¢g if he sees an odd number of hats of
color ¢y, and ¢; otherwise. For k+1 < ¢ < 2k = n, player p; guesses ¢y if he
sees an even number of hats of color ¢y, and ¢; otherwise. As the true total
number of hats with color ¢ is either even or odd, either the first k players
all guess correctly, or the last.

The above solutions generalizes easily to the case ¢ > 2. We show the
generalization for the symmetric strategy. Think of the color names as the
numbers 0,...,c—1. For 0 < j <c¢—1, for jk+1 <i < (j+ 1)k, player



i guesses for his hat the color g; that leads to equality in g; + >, i = j
(modulo ¢). As there is some j such that Y ;. ; hy = j (modulo ¢), exactly k
players guess correctly. (The above startegy in fact appears in a manuscript
of Doerr for the case ¢ = n.)

4.2 The discarded hat version

Recall that the difficulty in the discarded hat version is to ensure that of
those players that have a hat with the majority color (that we call the
magjority players), half would guess correctly. A player call easily tell whether
he is a majority player or not (but without knowing which is the majority
color), and all minority players guess correctly their colors. Hence we shall
only specify the strategy that players use when they are majority players.

Symmetric strategies cannot be perfect in the discarded hat version. All
majority players see exactly 2k — 1 hats of color ¢y and 2k — 1 hats of color
c1. Hence there are only two possible symmetric strategies in this case:
either guess ¢y, or guess c¢;. If all players have symmetric strategies, then
at least 2k players have the same symmetric strategy (say, guess c¢1). The
adversary may assign these 2k players hats of color ¢y and all other players
hats of color ¢;. In this case, all majority players fail in their guess, and the
number of correct guesses is only 2k — 1.

We now present a perfect nonsymmetric strategy for the discarded hat
version. Think of the players as sitting in a circle. Every player that sees
2k — 1 hats of each color (and hence does not know the color of his own
hat), computes which of the two colors occurs more times among the hats
of the (4k — 2)/2 = 2k — 1 players that follow him in clockwise order. He
then guesses the same color for his own hat.

We show now that exactly k of the majority players guess correctly.
Assume without loss of generality that there are 2k blue hats, and consider
only the players having blue hats. Starting with an arbitrary such player,
name them from b; to by in clockwise order. Now for every 1 < i < k,
exactly one of the two players b; and by; guesses correctly, because either
by sits at most 2k — 1 locations after b; (and then b; guesses correctly) or
b; sits at most 2k — 1 locations after by, (and then by ; guesses correctly).
This is an exclusive or that follows from the fact that there are exactly 4k—1
players altogether.

5 A general methodology

In Section 7?7 we presented strategies for the plain version and the discarded
hat version of the color guessing game. These solutions were elegant (so the
author thinks), and may well be understood by nonmathematicians. How-
ever, they were of an ad-hoc nature, and it is difficult to see how to extend
them to other color guessing games (such as the everywhere balanced ver-
sion and the majority version). In this section we present general principles



for establishing that certain color guessing games have perfect strategies.
Though we try to keep the presentation at a fairly elementary level, some
level of mathematical maturity is needed in order to follow this section. In
particular, we only prove the existence of a perfect strategy, but do not ac-
tually exhibit one. (Our methodology provides an algorithm for designing
a perfect strategy, but the complexity of the algorithm is exponential in
n. As bad as this complexity sounds, it is still much better than the time
complexity of exhaustive search over all possible strategies, which is doubly
exponential in n.)

A common property of all our color guessing games is that it is relatively
easy to come up with randomized strategies for the players that achieve
the goal of the game in expectation. For example, for the plain version, if
every player guesses a random color for his hat, in expectation n/2 players
guess correctly. Our methodology is based on transforming a randomized
strategy into a deterministic one. Rather that discuss randomized strategies,
we shall deal with what we call fractional strategies. In the following we
shall use b = (h1,...,h,) € C™ to denote a vector of n hat-colors, and
h; = (h1y... hi—1,hit1, ..., hy) € C™ 1 to denote the subvector of colors
seen by player p;.

Definition 1 A fractional strategy s; : (C,C""1) — C for player p; maps
to every color g € C and every tuple of colors h; € C"! a value z
where the following two constraints must be satisfied:

i7g7ﬁi7

1. For everyi,g and h we have Zi g = 0-
2. For every i and h we have > ogeC Zigh; = L.

Intuitively, one may view z; , ;- as the probability that player p; guesses
color g upon seeing colors h;, or as a confidence level that p; associates with
color g upon seeing colors h;. We note that true strategies are special cases
of fractional strategies, as they satisfy the additional Boolean constraint
that for every 4, g, h, we have Zi gk € {0,1}. B

In the color guessing games, for every assignment h of hat colors, there
is some goal that needs to be met by the strategies of the players (a certain
number of correct guesses). We may extend this goal to apply also to frac-
tional strategies. Recall our notation that H j(ﬁ) denotes the set of players
that have a hat of color ¢; in h. Then for example, for the plain version, we
may add the following set of constraints. For every h,

Z Zi 0,k T Z Z,~71,;;i:n/2.

i€Ho(h) i€Hy(h)

We have seen in Section 7?7 some perfect strategies for the plain version that
indeed meet the constraint above. But assume now that we were not clever
enough to find perfect strategies for the plain version. We show how our
methodology can be used to infer that perfect strategies exist (but without
actually exhibiting a strategy).



There is a trivial fractional strategy that satisfies all the constraints,
namely, all z; , p. =1 /2. We shall show that this strategy can be rounded to
give a true (Boolean) strategy that still satisfies all constraints. The main
point that we use in this case is that every wvariable z participates in
exactly three constraints:

i,9,hi

1. The nonnegativity constraint z; , ;= > 0.

g,ni —

1

2. The strategy constraint dec Zighy = 1.

3. The goal constraint 3~y (%) 25,05, + 2 jeHy (R) %515, = /2, for h that
has h; = g and h agrees with h; for all indices j # i.

Ignoring the nonnegativity constraints, we consider a bipartite graph
(that we call the constraint graph) with all strategy constraints on one side,
and all goal constraints on the other side. Every variable z; , ;. contributes
one edge to the bipartite graph, namely, the edge connecting the two con-

straints in which z; , - participates. This edge is labeled by the value of

ZL i

gWe present a rounding procedure that rounds all edge values to 0/1
values, while preverving the sum of edge values incident with every vertex.
This gives a true strategy for the game that satisfies the goals of the game.
The rounding procedure that we describe has multiple iterations. In every
iteration, some edges that previously had fractional values get integer values
(either 0 or 1), and are frozen. When all edges are frozen, the rounding
procedure ends. An invariant preserved by the rounding procedure is that
for every vertex, the sum of values that are incident with it does not change.

An iteration of the rounding procedure works as follows. Assume that
G contains at least one nonfrozen edge (as otherwise we are done). Observe
that the subgraph induced on the nonfrozen edges has minimum degree 2,
as otherwise the sum of label values incident with some vertex is noninteger.
Hence it must contain a cycle. This cycle must be of even length, because
the constraint graph is bipartite. Starting at an arbitrary edge e along the
cycle, consider the edges of the cycle as alternating between positive and
negative. Add a small value § > 0 to the values of the labels of all positive
edges, and subtract § from the values of the labels of all negative edges.
Note that this does not change the sum of label values incident with any
vertex. Now choose § to be the smallest possible value that makes (at least)
one such edge reach a 0/1 value. By this, at least one more edge becomes
frozen and the iteration is completed.

Using the approach outlined above, one can show that both the plain
version and the discarded hat version have a perfect strategy. But for the
everywhere balanced game, and for the majority game, we need to address
one technicality. The distinction is that in these latter games, the goal con-
straints are inequalities rather than equalities. For example, in the every-
where balanced game, the goal is to have in every set H; between ||H,|/c|
and [|Hj|/c] correct guesses. A fractional strategy that satisfies the goal
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constraints might have the property that in the constraint graph, the sum
of values of edges incident with a goal constraint is noninteger. If this
happens, it is no longer true that in the rounding procedure the subgraph
induced on nonfrozen edges has minimum degree 2. To handle this issue,
we add one more vertex r on the strategy constraint side of the bipartite
graph, and connect it to every vertex in the goal constraint side. Now if
s(u), the sum of values given by the fractional solution to the edges incident
with a goal constraint w, is noninteger, then we give to the edge (r,u) the
fractional value that rounds s(u) up to the nearest integer. Now the sum
of values incident with each goal constraint is integer. For every fractional
strategy, it also must hold that the sum of values incident with each strategy
constraint is integer. As the values summed up on the left hand side of the
bipartite graph must be equal to the values summed up on the right hand
side, it follows that also for r the sum of values incident with it is integer.
Hence we can round the fractional strategy to an integer strategy. An edge
(r,u) ends up with value 0 if s(u) was rounded up, and with value 1 if s(u)
was rounded down.
Summarizing, we have the following general theorem.

Theorem 1 Using the notation of this section, consider an arbitrary color-
guessing game with the following properties:

1. Every goal constraint addresses one particular b and one particular set
I c{l,...,n} xC, and has the form q < > (ig)el Zigh; < D, where q
and p are integers (possibly, ¢ = p).

2. Every variable z; , . appears in at most one goal constraint.

Then such a game has a perfect strategy iff it has a perfect fractional strategy.

5.1 The everywhere balanced version

The goal constraints of the everywhere balanced game are for every h and
j€{0,...,c—1},

[Hl/e) < 2, m, < T1Hj/c].

1€H;

The conditions of Theorem 7?7 are satisfied. Hence we shall only show a per-
fect fractional strategy for the everywhere balanced game, and then Theo-
rem 77 implies the existence of a perfect strategy (without actually exhibit-
ing one). The fractional strategy is simple: for all 7, g, h we set Zi g = 1/c.
It is easy to check that all strategy constraints and all goal constraints are
satisfied by this fractional strategy.

5.2 The majority version

Let the two colors be 0 and 1. For a given h, recall that Hy and H; denote
the set of players with O-hats and 1-hats respectively. For player p;, let H}



be the set of players with 0-hats that are seen by p; (which differs from Hy
when p; himself has a 0-hat). Consider the following fractional strategy.
For a given h, if |H}| > n/2 4 /n, then zy; = 1 and 2, = 0. If
|Hj| < n/2—y/n, then z; o 7. = 0and 2, ;. = 1. Else, let b denote |Hj|—n/2.
Then z; 4, = 1/2 + b/2\/ﬁ and 2, p, = 1/2 —b/2y/n.

Clearly, the above fractional strategy satisfies all strategy constraints.
We now consider goal constraints. So as to slightly simplify the presentation,
for every h we stregthen the corresponding goal constraint by breaking it
into two separate constraints, one for Hy and one for H;. They are:

. |Ho| —1—n/2
> i, = min{|Hol, ||Hol(5 + )
1€Hy 2\/ﬁ

1 |Ho| —n/2
3 e 2 minlahl 101G - S5 2O |

These constraints are satisfied by the above fractional strategy. Moreover,
as goal constraints they satisfy the conditions of Theorem ?7. Hence, there
is a Boolean strategy satisfying the same goal constraints.

Now, for arbitrary h, if |[Ho| > n/2 + /n (or |Hy| > n/2 + \/n, respec-
tively) then all Hy players (Hi, respectively) guess correctly and the number
of correct guesses is max[|Hy|, |H;|]. If ||Ho| — |H1|| < 2y/n, then sum up
the two goal constraints. The number of correct guesses is:

n |Ho| —n/2  |Ho| n f
D ziomt Y Zinh = o+ (Hol—|Hil) -2 >3
i€Hg 1€EH, 2 2\/ﬁ 2\/7

As max[|Hyl,|H1|] < n/2+ y/n in these cases, this gives a perfect strategy
for the majority game with m < 3y/n/2. (The leading constant in front of
\/n can be improved with more careful analysis.)

6 Discussion

We presented perfect strategies for various color guessing games. The plain
version and the discarded hat version can be appreciated also by nonmathe-
maticians. The everywhere balanced and the majority version are presented
so as to illustrate a general approach for solving such problems, via Theo-
rem ?7.

In the constraint graph for the discarded hat game, all strategy constraint
vertices have degree 2, and all goal constraint vertices have even degree. By
shortcutting the degree 2 vertices, we get a bipartite graph of even degree,
with Hy goal constraints on one side and Hj goal constraints on the other
side. This graph is Eulerian. Every Eulerian cycle in this graph gives a
perfect strategy, by having red/blue alternate along the edges of the cycle.
Moreover, every perfect strategy for the discarded hat game can be viewed
as a strategy obtained in such a way from an Eulerian cycle. (Think of



the red/blue values as giving right/left orientations to the underlying edge.
The resulting directed graph is Eulerian.) Using this characterization of
perfect strategies it is not hard to show that every perfect strategy for the
discarded hat game must be unbiased in the following sense: every majority
player guesses red on exactly half of the possible hat assignments to the
other players, and blue on the other half. (Hint: colors necessarily alternate
between two successive visits to edges associated with the same player p;.)

For the majority game, Doerr presents an explicit strategy (one for which
the computation performed by every player takes time that is at most poly-
nomial in n), but for m = O(n?/3) rather than m = O(y/n). The author
does not know whether the majority game has an explicit strategy when
m = O(y/n).

The puzzles and solutions given in this paper are related to some well
studied research areas.

Theorem 7?7 can be viewed as a special case of the well known fact that
linear programs with integer constraints and a totally unimodular constraint
matrix always have integer optimal solutions. The connection between total
unimodularity and the solution of integer programs was apparently first
made in [?], and can be found in any of a number of textbooks.

The puzzles studied here can be cast as questions about discrepency.
The approach we used to solve them (by rounding a fractional solution) has
been previously use in order to prove other results concerning discrepency,
such as the well known Beck-Fiala theorem [?].
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