
The permanent and the determinant

Uri Feige

December 30, 2009

1 Introduction

Given an order n matrix A, its permanent is

per(A) =
∑
σ

n∏

i=1

aiσ(i)

where σ ranges over all permutations on n elements. Recall that the determinant of a
matrix is

det(A) =
∑
σ

(−1)σ
n∏

i=1

aiσ(i)

where (−1)σ is +1 for even permutations and −1 for odd permutations. (For those more
familiar with the inductive definition of the determinant, obtained by developing the deter-
minant by the first row of the matrix, observe that the inductive definition if spelled out
leads exactly to the formula above. The same inductive definition applies to the permanent,
but without the alternating sign rule.)

The determinant can be computed in polynomial time by gaussian elimination, and
in time nω by fast matrix multiplication. On the other hand, there is no polynomial time
algorithm known for computing the permanent. In fact, Valiant showed that the permanent
is complete for the complexity class #P , which makes computing it as difficult as computing
the number of solutions of NP-complete problems (such as SAT, Valiant’s reduction was
from Hamiltonicity).

For 0/1 matrices, the matrix A can be thought of as the adjacency matrix of a bipar-
tite graph (technically, A is an of-diagonal block of the adjacency matrix), and then the
permanent counts the number of perfect matchings. Computing the permanent of integer
matrices can be reduced in polynomial time to that of computing the permanent of 0/1
matrices.

The permanent and the determinant can both be viewed as multilinear polynomials,
when the entries of the respective matrices are variables. Hence computing the permanent
or determinant can be viewed as evaluating a multinomial whose coefficients are given by
the respective matrix. Valiant showed how the evaluation of any explicit multinomial (one
that may have exponentially many terms, though there is a polynomial time algorithm that
given a term computes its coefficient) can be reduced in polynomial time to computing the
permanent of some matrix.

1

2 Computing the permanent

The natural algorithm takes time roughly n!. Ryser showed a quicker way to compute the
permanent, using the exclusion-inclusion formula.

For a nonempty set S of columns, let Ri(S) denote the sum of items in columns S of
row i. Then:

per(A) =
∑

S

(−1)n−|S|
n∏

i=1

Ri(S)

Computing the permanent using the above formula takes time roughly 2n.
To see that Ryser’s formula is correct, consider the representation of the permanent

as a multinomial, and observe that Ryser’s formula gives the correct coefficient for every
monomial. For monomials that correspond to permutations, this coefficient is 1. For mono-
mials that involve variables from c columns,the number of times that they appear in Ryser’s
formula is

n−c∑

j=0

(−1)n−c+j

(
n− c

j

)
= 0

(Equality with 0 can be seen by the equivalence with having n− c coin tosses, requiring
that an even number of them come up heads. It all depends on the last coin toss.)

3 Relations with matchings

To see whether a bipartite graph has an even or odd number of perfect matching, compute
the permanent modulo 2. This is equivalent to computing the determinant modulo 2, and
hence can be done in time O(nω).

To see whether the number of perfect matching is divisible by 3, compute the permanent
modulo 3. However, this problem is difficult (unless P=NP).

To see whether a bipartite graph has a perfect matching, Lovasz suggests the following
randomized algorithm that works in time roughly nω. Observe that there is a perfect
matching iff the determinant, with formal variables replacing the 1 entries in the matrix,
is not the 0-multinomial. Let p > n2 be prime, replace the 1 entries by random entries in
{0, . . . p− 1} and compute the determinant modulo p. If there is no perfect matching, the
answer is 0. If there is a perfect matching, the answer is nonzero with probability at least
(p− n2)/p. This last fact follows from the Schwartz-Zippel lemma.

Lemma 1 Let p be prime, and assume that all computations are performed in Zp (namely,
all coefficients are in {0, . . . p−1} and all computations are done modulo p). Let P (x1, . . . , xk)
be a multilinear polynomial over k variables that is not identically 0. Let x be a random as-
signment to all variables, where the the value of each variable is chosen independently at ran-
dom from {0, . . . p−1}. Then the probability that P (x) 6= 0 is at least (1−1/p)k ≥ (p−k)/p.

Proof: The proof is by induction on k. For the base case k = 1, P (x) is a linear
polynomial ax + b. If a = 0 then b 6= 0, and the polynomial is never 0. If a 6= 0, then
P (x) = 0 only for x = −b/a modulo p, and there is a unique such x in {0, . . . p− 1}.

2

For the inductive step, assume the lemma for k and prove for k+1. Write A(x1, . . . xk+1) =
xk+1A1(x1, . . . xk) + A2(x1, . . . xk). Pick random values for x1, . . . , xk first. By induc-
tion, with probability at least (1 − p)k, A1(x1, . . . xk) 6= 0. If so, then when picking
xk+1 at random, with probability (p − 1)/p, xk+1 6= A2(x1, . . . xk)/A1(x1, . . . xk). Hence
P (x1, . . . , xk+1) 6= 0 with probability at least (1− 1/p)k+1. 2

The approach described above can be extended to testing whether a non-bipartite graph
has a perfect matching, and also to actually find a perfect matching, essentially in time nω.
See [1] for more information.

4 Counting spanning trees

As we have seen, counting matchings is NP-hard. Here we sketch the famous tree-matrix
theorem of Kirchoff, that shows how to efficiently count spanning trees. A clear exposition
with more details can be found at [2]. The same exposition also explains Kasteleyn’s
polynomial time algorithm for counting the number of perfect matchings in a planar graph,
though this algorithm will not be shown in class.

Direct edges arbitrarily. Consider the incidence matrix M of the directed graph with
vertices as rows, edges as columns, and +1 and −1 entries for incoming and outgoing edges.

Restrict attentions to n− 1 columns (edges). The rank of this submatrix is precisely n
minus the number of connected components in this subgraph. To see this, transpose this
matrix, and see that every eigenvector must be constant on every connected component.
Hence the rank is n − 1 iff these edges form a spanning tree. Remove one row from this
matrix to get a matrix B. The rank does not change, because all rows sum up to 0, and
hence the removed row was spanned by the other rows. Hence the matrix has full rank and
nonzero determinant iff the edges form a spanning tree. Being a matrix with at most one
+1 and at most one −1 entry in each column, the matrix is totally unimodular, and hence
its determinant is ±1. It follows that det(BBT) = det(B)det(BT) = 1 if the columns form
a spanning tree, and 0 otherwise.

Hence removing one row from from M and having S range over all blocks of n − 1
columns, we have proved that the number of spanning trees is exactly

∑
B det(BBT).

Observe that MMT is exactly the Laplacian of the graph (degrees along the diagonal,
−1 in entry Li,j if there is an edge (i, j).

Now we can use the Binet-Cauchy expansion of the determinant. For r by n matrices A
and B (we shall take A to be M without one row and B = A, and hence in our application
r = n− 1 and m = n) we have:

det(ABT) =
∑

S

det(AS)det(BS)

where AS is the block of S columns from A, with |S| = r.
This shows that removing an arbitrary row and same column from the Laplacian, the

determinant counts the number of spanning trees.
We now prove the Binet-Cauchy formula. Note that we may assume that n > r. For

n = r the Binet-Cauchy formula is the known equality det(ABT) = det(A)det(B), and for
n < r we have that the rank of ABT is at most n < r, and hence det(ABT) = 0. (The

3

right hand side of the Binet-Cauchy formula is undefined in this case.) Let ∆ be an order
n diagonal matrix with formal variables xi along the diagonal. We show that

det(A∆BT) =
∑

S

det(AS)det(BS)
∏

i∈S

xi

are identical as formal polynomials, and the Binet-Cauchy formula follows by setting xi = 1
for all i.

Observe that A∆BT is an order r matrix with entries that are linear forms in the xi

variables. Hence det(A∆BT) is a homogeneous polynomial of degree r. For monomials with
fewer than r distinct variables, their coefficient must be 0. This can be seen by substituting
arbitrary values in these variables and 0 in the rest. The rank of A∆BT in this case
becomes smaller than r, and hence the polynomial restricted only to these variables is the
0 polynomial. The coefficients of other monomials (say, defined over a set S of r variables)
can be determined by substituting 1 for the S variables and 0 for other variables. Then
A∆BT = AS(BS)T and the coefficient of

∏
i∈S xi is indeed det(AS)det(BS).

References

[1] Nicholas J. A. Harvey. Algebraic Algorithms for Matching and Matroid Problems.
SIAM Journal on Computing, 39(2):679-702, 2009.

[2] Mark Jerrum. Chapter 1 in the lecture notes in
http://homepages.inf.ed.ac.uk/mrj/pubs.html.

4

