
A Preemptive Algorithm for Maximizing Disjoint Paths on

Trees

Yossi Azar ∗ Uriel Feige † Daniel Glasner ‡

October 15, 2008

Abstract

We consider the online version of the maximum vertex disjoint path problem when
the underlying network is a tree. In this problem, a sequence of requests arrives in an
online fashion, where every request is a path in the tree. The online algorithm may
accept a request only if it does not share a vertex with a previously accepted request.
The goal is to maximize the number of accepted requests. It is known that no online
algorithm can have a competitive ratio better than Ω(log n) for this problem, even if the
algorithm is randomized and the tree is simply a line. Obviously, it is desirable to beat
the logarithmic lower bound. Adler and Azar [SODA 1999] showed that if preemption
is allowed (namely, previously accepted requests may be discarded, but once a request
is discarded it can no longer be accepted), then there is a randomized online algorithm
that achieves constant competitive ratio on the line. In the current work we present a
randomized online algorithm with preemption that has constant competitive ratio on
any tree. Our results carry over to the related problem of maximizing the number of
accepted paths subject to a capacity constraint on vertices (in the disjoint path problem
this capacity is 1). Moreover, if the available capacity is at least 4, randomization is
not needed and our online algorithm becomes deterministic.

1 Introduction

We consider the online version of the maximum vertex disjoint paths problem, and of
paths selection subject to congestion (a.k.a. capacity) constraints. Given a communication
network which is a connected graph G = (V, E) (where |V | = n), the on-line algorithm
processes a sequence of call requests. Each request specifies a pair of vertices (v, w) ∈ V ×V .
When a request arrives the algorithm can accept it by allocating a path connecting v and
w in G, or reject it. The goal is to maximize the number of accepted calls in such a way
that the allocated paths conform with the congestion constraints.

The performance of an on-line algorithm is measured by its competitive ratio. A de-
terministic or randomized on-line algorithm is ρ-competitive if for any input sequence its
(expected) benefit is not less than 1/ρ times the benefit of an optimal off-line solution.

∗Tel Aviv University, Tel Aviv, Israel, and Microsoft Research, Redmond Washington. azar@tau.ac.il.
Research supported in part by the Israel Science Foundation.

†Weizmann Institute, Rehovot, Israel. uriel.feige@weizmann.ac.il
‡Weizmann Institute, Rehovot, Israel. dglasner@gmail.com

1

A preemptive algorithm is an algorithm which is allowed to preempt accepted calls.
Such an algorithm may decide at any point to discard any number of calls which it has
already accepted. These calls may not be recalled at a later time and do not count towards
the algorithm’s benefit.

Versions of this problem and its generalization, the call control problem, in which call re-
quests also have varying bandwidth and benefit specifications, have been extensively studied.
See for example [4, 6, 8], for surveys of the problem see [10] and [15].

Our results: We present a randomized preemptive algorithm for the on-line maximum
vertex disjoint paths problem on trees, and show that it has constant competitive ratio.
Our result is best possible in the sense that if one disallows either randomization or pre-
emption, then every online algorithm cannot be better than Ω(log n) competitive, even on
line networks [12, 7, 17]. We also extend our result to maximizing the number of paths
subject to a congestion bound of b for all b > 1. When b ≥ 4, our algorithm can be made
deterministic. For any b, preemption is still provably required if one is to achieve a constant
competitive ratio.

Previously, Θ(log D) competitive algorithms were known for trees where D is the di-
ameter of the tree (see [8] and [16]). Those algorithms are non-preemptive. A constant
competitive algorithm was known only for the line network [1], and as noted above, it is
unavoidable that the online algorithm achieving this is preemptive and randomized. That
algorithm can be made deterministic when a congestion bound of b ≥ 2 is given.

Related work: There are numerous versions of the disjoint path problem, depending
on whether graphs are directed or undirected (we consider undirected graphs), capacity
constraints are on edges or vertices (we assume that they are on vertices), requests arrive
as paths or as source-destination pairs and the algorithm may choose the path (for trees
this does not matter, and for general graphs we assume that requests are source-destination
pairs), algorithms are online or off-line (we consider the online case), algorithms are ran-
domized or deterministic (we allow randomization), whether preemption is allowed in online
settings (we allow preemption), and whether the underlying graph can be arbitrary or has
some special structure (we consider trees). For lack of space, we shall mention only those
results that we find most informative to our current setting.

Off-line setting: For small capacity bound b on edges, there is no polynomial time
constant approximation [3] (unless NP has quasi-polynomial time algorithms) for a general
network. In contrast, if the capacity bound is more than logarithmic then randomized
rounding of a linear programming relaxation gives a (1 + ε) approximation for maximizing
the number of paths [18], and this holds regardless of whether capacity constraints are
placed on edges or vertices.

On trees the maximum edge disjoint paths is solvable in polynomial time, and becomes
NP-hard when edges have a capacity bound b ≥ 2 [13]. We observe here that the maximum
paths problem in trees with vertex capacity bound b is solvable using dynamic programming
in time nb+O(1), and becomes NP-hard only when b grows as a function of n.

Online setting: When the capacity bound is b ≥ log n, the deterministic non-preemptive
algorithm of [6] is O(log n) competitive on a general network. This is the best possible even

2

among randomized algorithms, in the sense that there is a lower bound of Ω(log n) for non-
preemptive algorithms for any allowed congestion even for a line network. For the disjoint
paths problem (i.e. congestion is b = 1) on a general network, an Ω(nε) lower bound was
shown in [9] even for randomized preemptive algorithms. This lower bound is not known to
extend to the case where b ≥ 2. When the requests are paths rather than source-destination
pairs and the capacity constraint is b − 1, there is an Ω(n1/b/b) lower bound on the com-
petitive ratio of deterministic preemptive and randomized non-preemptive algorithms, and
an Ω(n1/(2b)/b) lower bound for randomized preemptive algorithms [2]. (Lower bounds for
the case when requests are paths involve requests that need not resemble shortest paths.)

For some specific networks such as trees, meshes and classes of planar graphs (see [7,
8, 14]) there are known non-preemptive algorithms with O(log n) competitive ratios for the
disjoint paths problem.

It still remains open whether a sub-logarithmic (randomized or deterministic) preemp-
tive algorithm exists for general networks when we allow high congestion. Our result shows
that this is possible for trees even when the congestion is low.

Overview of the paper: In section 2 we introduce some definitions and notation.
In section 3, which is the main section, we present a deterministic preemptive algorithm
with constant competitive ratio. However, this algorithm assumes that the vertices have
a capacity of 4 rather than 1. In section 4 we use randomization in order to remove the
assumption on capacity, and thus derive a randomized preemptive algorithm for the disjoint
paths problem. The extension of our results to the capacity b case is discussed in section
4.1.

Our techniques: The approach followed in Section 3 is to decompose the tree problem
to a sum of independent subproblems on line networks, and then on each subproblem to
use the algorithm from [1] that has a constant competitive ratio on the line. Namely,
in an online fashion our algorithm attempts to partition the requests into subsequences.
With each subsequence it associates one path (hence, a line network) in the tree, and the
subsequences have the property that all requests for the same subsequence intersect the
path that is associated with the subsequence, and do not intersect any request from any
other subsequence. Achieving a partition with the above property is in general impossible,
so our online algorithm will need to drop some of the requests, so as to be able to partition
the remaining sequence of requests into subsequences. Our analysis will show that the
approximation ratio does not suffer much because of these dropped requests. An additional
source of difficulty is that the line algorithm from [1] cannot be applied as is to a subsequence.
The reason for this is that the partition to subsequences is dynamic and is not known in
advance, and hence the path associated with a subsequence is also not fixed in advance.
We overcome this problem by partitioning each subsequence into two groups. In one group,
corresponding to the part of the path that is already fixed, we apply the line algorithm of [1].
In the other group, corresponding to the part of the path that may still grow dynamically,
we apply a new on-line algorithm which follows the behavior of the off-line algorithm for
the activity selection problem.

3

2 Preliminaries

We consider a network T which is a tree. By choosing an arbitrary vertex r we root the
tree. A call request is characterized by two distinct nodes, since the underlying network is
a tree a call request defines a single path. We denote the input sequence of call requests by
σ and will refer to the call requests as paths.

Without loss of generality we can assume that all call requests are from a leaf to a leaf.
This can be achieved by adding a new node for each internal node of T and connecting it
to its corresponding node.

The length of the path from the root r to a node v is the depth of v in T . We define
the least depth node of a path P on a rooted tree, denoted by ldn(P), as the node with
the least depth in P . A monotonic path P on a rooted tree, is a path with a sequence of
node depths which is monotonic. Any path P which is not monotonic is comprised of two
monotonic paths which intersect at ldn(P). Having fixed some arbitrary orientation, we
call them left(P) and right(P). We define the maximal depth node of a monotonic path P
on a rooted tree, denoted by mdn(P), as the node with the maximal depth in P . When the
context is clear we will sometimes use the notation v < w for two nodes v and w meaning
depth(v) < depth(w). The notation [v, w) will be used for the path connecting nodes v and
w, excluding w.

Let σ be a sequence of requested calls. The congestion created by a set of calls C ⊆ σ on
a node v is the number of paths in C which intersect v. The congestion created by a set of
calls C ⊆ σ on a subgraph H ⊆ T is the maximal congestion created by C on the nodes of
H. The maximal congestion created by an on-line algorithm A is the maximal congestion
created by A(σ) on T for all input sequences σ, where A(σ) ⊆ σ are the calls accepted by
A. Given a bound b on the maximal congestion, we say that an algorithm or a set of calls
is b-congested if the maximal congestion created by it on T is bounded by b.

The performance of a b-congested randomized on-line algorithm A, is measured in terms
of its competitive ratio, defined as follows. Let OPT σ ⊆ σ be a maximal size b-congested
subset. We say that randomized A is ρ-competitive if for all request sequences σ we have
E(|A(σ)|) ≥ 1

ρ |OPT σ|. During the analysis we will compare the performance of determin-
istic b-congested on-line algorithms on an input sequence σ to a maximal size 1-congested
subset (which is in fact a subset of disjoint calls). We denote such a selection byOPT (1)

σ ⊆ σ
and say that A is ρ-competitive against a 1-congested optimal selection if for all request se-
quences σ we have |A(σ)| ≥ 1

ρ |OPT
(1)
σ |.

While describing the on-line algorithm we will use the following terms. A call which
is discarded at its arrival time is a rejected call, a call which is discarded after it has been
accepted is a preempted call. Calls which are either rejected or preempted are discarded
calls.

Some of the objects we will discuss evolve as a function of the input requests. We will
use the notation O∗ for such an object O, to denote its final state.

3 A 4-congested deterministic algorithm

In this section we present a deterministic on-line algorithm whose maximal congestion does
not exceed 4. We will also show that it is 6 competitive against a 1-congested optimal

4

solution on the same request sequence.

Overview: The algorithm dynamically partitions the incoming calls into subsequences
σi for i = 1, . . . , k. The number of subsequences k, is not known in advance and increases
over time. This partitioning is described in subsection 3.1. An algorithm for processing the
calls in a single subsequence is given in subsection 3.2. The algorithm for combining the
selections made on each subsequence into a global selection is discussed in subsection 3.3.

3.1 Partitioning σ into subsequences and maintaining the stem structure

Definition 3.1 Let S ⊆ T be the subtree connecting the least depth nodes of the calls in
σ and r, where r is the root of T . A stem structure for σ is a partition of S into node
disjoint monotonic paths such that the maximal depth node in each path is a leaf of S. Each
path (with one exception) is half open, i.e., it contains its maximal depth node but does not
contain its least depth node. One path that contains the root r is closed, i.e., it contains
both its maximal depth node and least depth node.

Given a stem structure for σ we denote the closed path that contains r, by stem1. We
number the half open paths 2, . . . , k and refer to the i’th such path as stemi. The node
incident in stemi’s open edge which does not belong to stemi is called the root node of
stemi.

The stem structure has a tree hierarchy. Specifically, stem1 is the root stem and for all
other stems, a stem’s parent is the stem that contains its root node.

Using a stem structure we can partition the calls in σ into subsequences. The calls
whose least depth node lies in stemi are the calls in σi. Note that stemi is a monotonic
path that connects the least depth nodes of the calls in σi, thus providing a line network
structure.

We will use the procedure StemStructure described in figure 1 to create and maintain
a stem structure for σ and partition the calls accordingly in an online fashion.

Claim 3.2 Algorithm StemStructure maintains a stem structure for σ.

Proof: We prove by induction on the calls in σ. The base case is trivial since the stem
structure of an empty subsequence is r. For the inductive step we consider the arrival of
a new call P . By the inductive assumption the algorithm has maintained a stem structure
for the calls that have arrived so far. Let S be the tree connecting the least depth nodes of
these calls and r, and let S′ be the tree which also connects ldn(P). If ldn(P) lies on S, the
stem structure does not change. Otherwise let [ldn(P), v) be the path that connects ldn(P)
to S. If v = mdn(stemj) for some j then stemj ∪ [ldn(P), v) is a monotonic path and we
will extend stemj so that its maximal depth node will now be ldn(P) which is a leaf of S′.
If v is some inner node of S we will go to the else clause in the procedure and create a new
stem [ldn(P), v). This new stem covers S′ \ S, it is a monotonic path and its least depth
node is ldn(P) which is a leaf of S′ 2

In fact the procedure generates a sequence of stem structures as a function of σ. We
note that when further calls arrive the stem structure never “shrinks”. In particular, for
all i and for each arriving call, stemi before the arrival of the call is contained in stemi as

5

Procedure: StemStructure
Initialize: i ← 1, σ1 ← ∅, stem1 ← r
for each incoming call P ∈ σ

Starting at ldn(P) traverse the path to r until reaching a node v
belonging to stemj for some j
if stemj ∪ [ldn(P), v) is a monotonic path

σj ← σj ∪ P
stemj ← stemj ∪ [ldn(P), v)

else
σi+1 ← P
stemi+1 ← [ldn(P), v)
i ← i + 1

end if
end for

Figure 1: Algorithm for partitioning the calls and maintaining the stems

modified by the call. This implies that depth(mdn(stemi)) is a non decreasing sequence.
Furthermore, existing stems are never removed, only new stems may be added. A stem’s
root node is fixed and does not change once the stem has been created. The stem’s parent
and ancestor stems are fixed at the moment of its creation but descendent stems may be
created later on.

3.2 An algorithm for subsequence σi

In this subsection we consider the processing of the calls in a single subsequence σi competing
against a 1-congested optimal selection on these calls only.

In an off-line setting, by considering the intersection of the calls in σ∗i (the final state of
σi) with the appropriate stem, stem∗i (the final state of stemi) we can reduce the problem
to a line network.

Lemma 3.3 Let C ⊆ σ∗i, if all calls in C have a common (non-empty) intersection and
ldn(P) is of maximal depth in {ldn(Q)|Q ∈ C} then ldn(P) ∈ ⋂

Q∈C Q.

Proof: Whenever two paths P and Q intersect ldn(P ∩ Q) = max(ldn(P), ldn(Q)).
Since ldn(P) is maximal in {ldn(Q)|Q ∈ C}, all calls in C intersect ldn(P). 2

Corollary 3.4 A bound on the maximal congestion created by σi on stemi is also a bound
on the congestion created by the calls in σi anywhere on T .

We assume that we are given an algorithm Line for maximizing vertex disjoint paths
on a line network. Specifically, a 2-congested algorithm for maximizing edge disjoint paths
on a line was shown in [1]. It is 2 competitive against a 1-congested optimal selection.

The natural approach would be to reduce the tree problem to several line problems
and apply the line algorithm on each one separately using the corollary above. A difficulty

6

which arises in the on-line setting is that stem∗i is not known in advance. Specifically, even
after a call has been assigned to a subsequence its intersection with stem∗i is not always
known. This uncertainty rules out a straightforward reduction to an on-line algorithm for
a line network.

For example, the known algorithm for the line has the property that it preempts a
containing call in favor of the contained call. However, in reducing the tree to lines the
containment relationship may become uncertain when the calls intersect mdn(stemi). We
illustrate this difficulty in figure 2. Consider the calls P and Q, if mdn(right(Q)∩stem∗i) ≤
mdn(right(P)) then Q ∩ stem∗i ⊆ P ∩ stem∗i and P should be preempted. Otherwise it
should not be preempted.

Figure 2: An example illustrating the difficulty of determining containment relations of the
intersections of the calls with the stem in an online setting

To overcome this problem we make a further distinction between the calls. After a new
call P has been assigned to a subsequence σi and the stem structure has been updated, we
classify it as determined or undetermined depending on its relation to the stem structure. If
P ∩mdn(stemi) = ∅ we classify it as a determined call, otherwise it is an undetermined call.
We denote by D the set of determined calls and by U the set of undetermined calls. Note
that each call is classified only upon arrival (following the update of the stem structure).
We do not move calls from one set to the other. If P is classified as determined (i.e. P ∩
mdn(stemi) = ∅) then P ∩ (stem∗i \ stemi) = ∅. Hence, the intersection of each determined
call is determined upon arrival. In contrast, the intersection of each undetermined call with
its stem may change as further calls arrive.

3.2.1 Processing the determined calls

The procedure Determined described in figure 3 processes the determined calls by reducing
the problem to a line network. It is applied to a call in P ∈ σi ∩D after the stem structure
has been updated and P has been assigned to subsequence i.

Recall that Line is a 2-congested algorithm for maximizing edge disjoint paths on a line
[1]. It is 2 competitive against a 1-congested optimal selection. To use this algorithm we
reduce vertex disjointness to edge disjointness on a line by splitting each vertex into two
vertices connected by an edge.

Lemma 3.5 For all σ and i, the maximal congestion created by Determined(σi ∩D) on T
is 2.

7

Procedure: Determined
for each incoming call P ∈ σi ∩ D

Process P ∩ stemi with Line
Accept P if P ∩ stemi was accepted by Line
Preempt calls which were preempted by Line

end for

Figure 3: Algorithm for processing determined calls

Proof: First note that since the intersection of the determined calls with stem∗i is
known at the time of their arrival, Determined(σi ∩D)∩ stemi = Line((σi ∩D)∩ stem∗i).
Since, Line is a 2-congested algorithm the above equality implies a bound of 2 on the
maximal congestion created by Determined(σi ∩D) on stemi. By corollary 3.4 it is also a
bound on the congestion in T . 2

Lemma 3.6 For all σ and i, Determined is 2 competitive on σi ∩D against a 1-congested
optimal selection.

Proof: To see this consider the following,

|OPT
(1)
σi∩D| ≤ |OPT

(1)
(σi∩D)∩stemi | ≤ 2|Line((σi ∩ D) ∩ stemi)| = 2|Determined(σi ∩ D)|

The first inequality holds because all calls in σi intersect stemi. The second inequality is
the competitiveness of Line and the last equality follows because Determined accepts the
calls which were accepted by Line. 2

3.2.2 Processing the undetermined calls

The undetermined calls will be processed by an on-line algorithm UnDetermined which
follows the behavior of the optimal off-line algorithm for interval scheduling also called the
activity-selection problem (see [11] chapter 17). In the off-line setting, optimal maximization
of disjoint calls on a line can be achieved as follows. Sort the calls in ascending order by the
depth of their maximal depth nodes. Accept the first call, discard all calls which intersect
it and repeat for the remaining calls.

In the on-line setting the stem provides the line structure. The ordering of the calls
is limited to lower bounds given by the current mdn(stemi). When an undetermined call
P arrives, we can only say that mdn(P ∩ stem∗i) ≥ mdn(stemi). The on-line algorithm
resolves this uncertainty by relaxing the congestion limitation for calls whose intersection
with the final stem in still undetermined. We show that keeping three options is enough to
ensure the correct selection.

The algorithm keeps the accepted calls in two sets, the fixed and the unfixed calls. All
of the calls in unfixed intersect mdn(stemi) and none of the calls in fixed do. When
an undetermined call is accepted it is always added to unfixed, and by definition it in-
tersects mdn(stemi). As further calls arrive mdn(stemi) may change. Once, an unfixed
call no longer intersects mdn(stemi), such a call will either be moved to fixed or it will

8

be preempted. If a call is added to fixed it remains there and will not be preempted by
UnDetermined.

Procedure UnDetermined described in figure 4 is applied to a call in P ∈ σi ∩ U after
the stem structure and specifically stemi have been updated and P has been assigned to
subsequence i.

Procedure: UnDetermined
Initialize:
unfixed ← ∅
fixed ← ∅
for each incoming call P ∈ σi ∩ U
(following the update of the stem and assignment of P to σi)
(1) if P ∩ fixed 6= ∅ reject P
(2) elseif ∃Q ∈ unfixed, Q ∩mdn(stemi) = ∅

(note: this happens only if P extended stemi)
Let F ∈ unfixed such that depth(mdn(F ∩ stemi)) is minimal,
fixed ← fixed ∪ F
Preempt all calls in unfixed
unfixed ← P
(P intersects stemi only at mdn(stemi) and hence does not intersect F)

(3) elseif P ∪ unfixed creates a congestion of 4 on mdn(stemi)
Let Q1 ∈ unfixed ∪ P such that ldn(Q1) = mdn(stemi)
and let Q2, Q3 ∈ unfixed ∪ P such that
depth(mdn(Q2 ∩ left(Q1))), depth(mdn(Q3 ∩ right(Q1))) are minimal
(breaking ties arbitrarily)
unfixed ← {Q1, Q2, Q3} (possibly Q2 = Q3)
Discard the remaining call (or calls)

(4) else
unfixed ← unfixed ∪ P

end if
end for

Figure 4: Algorithm for processing undetermined calls

Lemma 3.7 For all σ and i, the maximal congestion created by UnDetermined(σi ∩ U)
on T is 3.

Proof: We claim that when a call is accepted it never creates a congestion of more than
3. First we note that any accepted call passed step (1), meaning it does not intersect calls in
fixed. If P is accepted in step (2), any call Q ∈ unfixed which intersects it is preempted.
If it is accepted in step (3), it intersects at most two other calls. If it is accepted in step (4)
it must have passed step (3) meaning it does not create a congestion greater than 3. 2

Lemma 3.8 If a call P ∈ unfixed is discarded in step (3) there is another call Q ∈
unfixed which is not discarded, such that mdn(Q ∩ stem∗i) ≤ mdn(P ∩ stem∗i).

9

Proof: Let Q1 be the call from step (3) such that ldn(Q1) = mdn(stemi). If mdn(Q1 ∩
stem∗i) ≤ mdn(P ∩ stem∗i) we are done. If mdn(Q1 ∩ stem∗i) > ldn(Q1) then assume
without loss of generality that the monotonic path Q1 ∩ stem∗i ⊆ left(Q1). Consider the
call Q2 from step (3) whose intersection with left(Q1) had a minimal maximal depth node.
Since mdn(P ∩stem∗i) < mdn(Q1∩stem∗i) assuming mdn(Q2∩stem∗i) > mdn(P ∩stem∗i)
is a contradiction to the minimality. 2

Lemma 3.9 Let F1, . . . , Fm be the calls in fixed added in that order. Let C be the set of
calls which arrived between Fj and Fj+1 for some j = 0, . . . , m− 1 and did not intersect Fj

(where F0 = ∅). Then ∀Q ∈ C we have mdn(Fj+1 ∩ stem∗i) ≤ mdn(Q ∩ stem∗i).

Proof: We consider two kinds of calls in C, when Fj+1 is added to fixed some of the
calls in C are in unfixed and the rest have been discarded.

We first consider the calls in unfixed. Since stemi ⊆ stem∗i for all calls Q ∈ σi then
mdn(Q ∩ stemi) ≤ mdn(Q ∩ stem∗i). When Fj+1 is added to fixed its intersection with
stem∗i is already determined. In particular mdn(Fj+1∩stemi) = mdn(Fj+1∩stem∗i). Thus
if Q is minimal in {mdn(Q∩stemi)|Q ∈ unfixed} it is also minimal in {mdn(Q∩stem∗i)|Q ∈
unfixed}.

The calls in C \ unfixed have all been discarded at step (3). By lemma 3.8 every time
we discard one of these calls there is a call in unfixed whose intersection with stem∗i has
a maximal depth node whose depth is not greater then the maximal depth node of the
discarded call. Thus the minimum of {mdn(Q∩ stem∗i)|Q ∈ unfixed} is a lower bound on
{mdn(Q ∩ stem∗i)|Q ∈ C \ unfixed}. 2

Lemma 3.10 Each call Q rejected by the algorithm UnDetermined intersects fixed (and
hence fixed∗).

Proof: First note that calls in fixed are never preempted. If Q is rejected in step (1) it
intersects some call in fixed. If a call is discarded in step (2) it intersects the call which is
added to fixed at that step. Let j = 0, . . . m− 1 and assume by contradiction that a call Q
which is rejected at step (3) lies between fixed calls Fj (if it exists) and Fj+1 and does not
intersect them. Q must have arrived after Fj (if it exists) since otherwise Fj would have
been determined and before Fj+1 or else Q would have been determined. If Q is disjoint
of Fj+1 in particular mdn(Fj+1 ∩ stem∗i) > mdn(Q ∩ stem∗i) which is a contradiction to
lemma 3.9. 2

Algorithm UnDetermined is very similar to the optimal algorithm for interval schedul-
ing in that it accepts at any stage a disjoint interval that ends first. For completeness we
prove that UnDetermined is also 1-competitive.

Lemma 3.11 For all σ and i, UnDetermined is 1-competitive on σi ∩ U against a 1-
congested optimal selection.

Proof: Let F1, . . . , Fm be the calls in fixed added in that order. We will show by
induction on j = 1, . . . , m that there exists an optimal solution for σ∗i which includes
{Fl}l≤j as the first j calls.

Induction base: Let OPT be some optimal solution, we will show that there is an
optimal solution whose first call is the first call the on-line algorithm added to fixed, F1. If

10

F1 /∈ OPT let Q1 be the call in OPT whose intersection with stem∗i has the least maximal
depth node.

We will show mdn(F1 ∩ stem∗i) ≤ mdn(Q1 ∩ stem∗i). Assume the opposite, then Q1

must have arrived before F1 was added to fixed because otherwise it would have been
determined. However this is a contradiction to lemma 3.9.

Let OPT ′ ← (OPT \ Q1) ∪ F1. Because mdn(F1 ∩ stem∗i) ≤ mdn(Q1 ∩ stem∗i), the
calls in OPT ′ are disjoint, and since OPT ′ has the same number of calls as OPT , it is also
optimal.

Induction step: Assume the last call added to fixed was Fj , Let σ∗i(j+1) denote the set
of all calls P ∈ σ∗i such that ldn(P) > mdn(Fj ∩ stem∗i). By induction assumption there
is an optimal solution OPT for σ∗i which includes

⋃{Fl}l≤j as its first j calls. We claim
that OPT(j+1) = OPT \ {Fl}l≤j is an optimal solution for σ∗i(j+1) since, if we could find a
solution OPT ′(j+1) to σ∗i(j+1) with more calls than OPT(j+1), OPT ′(j+1)

⋃{Fl}l≤j would yield
a solution to σ∗i with more calls than OPT .

We will show that there is an optimal solution for σ∗i(j+1) which includes, Fj+1 as its first
call. If Fj+1 /∈ OPT(j+1) let Qj+1 be the call in OPT(j+1) whose intersection with stem∗i

has the least maximal depth node.
We claim that mdn(Fj+1 ∩ stem∗i) ≤ mdn(Qj+1 ∩ stem∗i). Assume the opposite, again

note that Qj+1 must have arrived before Fj+1 was added to fixed because otherwise it
would have been determined. Qj+1 was not rejected in step (1) because ldn(Qj+1) >
mdn(Fj ∩ stem∗i) (recall that Qj+1 ∈ σ∗i(j+1)). Nevertheless Fj+1 is the call that was added
to fixed, which leads to a contradiction to lemma 3.9. This concludes the induction.

Now that we have an optimal solution whose first m calls are {Fl}l≤m all that remains
is to show that there are no more calls in this optimal solution. According to lemma 3.10
all the calls which were not accepted intersect a call in {Fl}l≤m Therefore, the algorithm
produces an optimal solution. 2

The following lemma will be used in the next subsection

Lemma 3.12 For all i the instance of UnDetermined processing σi ∩ U has a call Q ∈
unfixed such that ldn(Q) = mdn(stemi).

Proof: By induction on the calls in σi. For the base case we note that the first call
to arrive is accepted and its least depth node is the maximal depth node of the stem.
We proceed to the inductive step. By inductive assumption we have a call Q ∈ unfixed
such that ldn(Q) = mdn(stemi). Denote the incoming call by P and the revised stem
after its arrival by stem′i. If the incoming call P invokes step (2) at the end of it we
accept P and ldn(P) = mdn(stem′i). When we go to step (3) we keep a call Q1 such
that ldn(Q1) = mdn(stem′i). In step (4) P is accepted and no calls are preempted, if
stemi = stem′i then ldn(Q) = mdn(stem′i), otherwise the stem has changed because of P
and then ldn(P) = mdn(stem′i). 2

3.2.3 Processing the calls in σi

The procedure SubSeq (figure 5) is applied to a call P after it has been assigned to subse-
quence i and stemi has been updated.

11

Procedure: SubSeq
for each incoming call P ∈ σi

if (P ∩mdn(stemi) = ∅)
Process P with Determined

else
Process P with UnDetermined

end if
Accept P if it was accepted by the algorithm it was assigned to
Preempt calls which were preempted by that algorithm

end for

Figure 5: Algorithm for processing calls in σi

Lemma 3.13 For all σ and i, the maximal congestion created by SubSeq(σi) on T is 4.

Proof: According to Lemma 3.5 the maximal congestion created by Determined(σi∩D)
is 2 and following Lemma 3.7 the maximal congestion created by UnDetermined(σi ∩ U)
is 3. SubSeq accepts the union of the selections, achieving a selection with a maximal
congestion which is no greater than the sum of the maximal congestion created by each
selection. In fact this upper bound is never attained. By lemma 3.12 we know that there is
an undetermined call Q ∈ unfixed whose least depth node is the maximal depth node of
the stem. Hence, a congestion of 3 can be created by the undetermined calls only on nodes
whose depth is no smaller than the maximal depth node of the stem. On the other hand
all determined calls lie on nodes with a smaller depth. 2

Theorem 3.14 For all σ and i, SubSeq is 2 competitive on σi against a 1-congested optimal
solution.

Proof: For all σ and i,

|OPT
(1)
σi | = |OPT

(1)
(σi∩D)∪(σi∩U)

|
≤ |OPT

(1)
σi∩D|+ |OPT

(1)
σi∩U |

≤ 2|SubSeq(σi) ∩ D)|+ |SubSeq(σi) ∩ U| ≤ 2|SubSeq(σi)| .

Note that SubSeq processes determined and undetermined calls independently accepting the
union of the selections. Thus, SubSeq(σi)∩D = Determined(σi∩D) and SubSeq(σi)∩U =
UnDetermined(σi ∩ U) so, the second inequality follows from lemmas 3.6 and 3.11. 2

3.3 Combining the calls from subsequences

So far we have shown an algorithm for processing calls in each subsequence, accepting
the union of the selections made on each subsequence will result in a globally competitive
algorithm. However, since calls in distinct subsequences may intersect, locally bounding
the congestion created by σi on stemi does not ensure a global bound.

12

To attain the global bound we introduce the procedure Global. This procedure uses
procedure StemStructure to partition σ and maintain the stem structure. It then simulates
SubSeq on each subsequence σi. Global follows the decisions made by each instance of
SubSeq but preempts any calls which intersect more than one stem. Note that a call may
intersect two stems at the moment of its arrival, or it may come to intersect two stems after
it has been accepted, when a new stem is created. In both cases these calls are discarded
by Global, however the corresponding SubSeq algorithm is unaware of these changes and
continues to behave as if the calls are there.

An incoming request P is handled by Procedure Global described in figure 6.

Procedure: Global
for each incoming call P ∈ σ

Use procedure StemStructure to add P to a subsequence σi and update stemi

Simulate SubSeq on σi and accept / discard calls
which were accepted / discarded by SubSeq
Preempt any calls which intersect two stems (do not update simulations)

end for

Figure 6: Global algorithm

Theorem 3.15 For all σ, the maximal congestion created by Global(σ) on T is 4.

Proof: By claim 3.13 the congestion created by the calls in each subsequence is bounded
by 4. By discarding calls we may only reduce this congestion. Discarding calls that intersect
two stems ensures there is no intersection between calls in different subsequences. If two
calls P and Q from distinct subsequences intersect then the least depth node of one call,
say P is contained in the intersection. Thus Q intersects its own stem and ldn(P) which
belongs to another stem. 2

Lemma 3.16 For all i, if P ∈ σi such that ldn(P) = mdn(stemi) then P does not intersect
two stems.

Proof: Assume P intersects stemj for j 6= i. Since ldn(P) = mdn(stemi) its intersection
with stemj lies in the subtree rooted at ldn(P), but by properties of the stem structure we
know that mdn(stemi) is a leaf of S, the tree that connects the least depth nodes of the
calls in σ and r. 2

Lemma 3.17 Let k be the number of subsequences, then k ≤ |Global(σ) ∩ U|.

Proof: By lemma 3.12 for all i, UnDetermined has a call P ∈ unfixed such that
ldn(P) = mdn(stemi). This call is accepted by SubSeq and by lemma 3.16 it is not
preempted by Global. Thus, at least one call from each subsequence σi is accepted, since
there are k of these, Global accepts at least k undetermined calls. 2

13

Lemma 3.18 The procedure Global discards at most 3(k − 1) calls which were accepted
by the instances of SubSeq, of which at most 2(k − 1) are determined calls and k − 1 are
undetermined calls. Specifically,

k∑

i=1

|SubSeq(σi) ∩ D| ≤ |Global(σ) ∩ D|+ 2(k − 1)

and
k∑

i=1

|SubSeq(σi) ∩ U| ≤ |Global(σ) ∩ U|+ (k − 1).

Proof: For all i = 2, . . . , k, stemi has a root node vi. The set {vi}k
i=2 includes at most

k − 1 distinct vertices. We recall that a stem’s root node is fixed at the moment of its
creation and does not change.

Any call accepted by SubSeq running on σi, which is preempted by Global must intersect
some root node vj ∈ stemi such that stemi is the parent of stemj . The selection made by
SubSeq on σi may include at most two determined calls and one undetermined call that
intersect some root node vj ∈ stemi.

Thus the total amount of calls which are discarded is bounded by 3(k − 1) of which at
most 2(k − 1) are determined and k − 1 are undetermined. 2

Theorem 3.19 For all σ, Global is 6 competitive on σ against a 1-congested optimal se-
lection (recall that Global is 4-congested).

Proof: For all σ,

|OPT (1)
σ | = |OPT

(1)

∪k
i=1σi | ≤

k∑

i=1

|OPT
(1)
σi |

≤
k∑

i=1

2|SubSeq(σi) ∩ D|+ |SubSeq(σi) ∩ U|

≤ 2|Global(σ) ∩ D|+ 4(k − 1) + |Global(σ) ∩ U|+ (k − 1)
≤ 2|Global(σ) ∩ D|+ 6|Global(σ) ∩ U| ≤ 6|Global(σ)|.

The second inequality follows from the proof of claim 3.14. The third inequality is due
to lemma 3.18. The fourth follows from lemma 3.17 and the last is because σ = D∪U . 2

4 A constant competitive randomized algorithm for disjoint
paths

In this section we present a 1-congested, randomized 24-competitive algorithm. We show
that the calls accepted by Global can be assigned in an online manner into a small number
of1-congested sets. The randomized algorithm randomly chooses one of these sets and
simulates Global. It accepts only the calls which are assigned to the chosen set and discards
the rest.

14

Definition 4.1 Let A be an on-line algorithm and let C denote a set of calls which is
maintained by A. An on-line d-coloring of C is an on-line assignment χ : C 7→ {1, . . . , d}.
When a call P is added to C the on-line coloring assigns it to some color class χ(P) ∈
{1, . . . , d}. The assignment is made at the time of P ’s arrival and may not be changed.
The coloring is valid if for any two calls P 6= Q ∈ C, χ(P) = χ(Q) ⇒ P ∩Q = ∅.

Lemma 4.2 If an on-line algorithm maintains a set of calls C, such that after a call P
has been added to C, it intersects at most d − 1 other calls in C, then there exists a valid
on-line d-coloring for C.

Proof: We prove this by induction on the calls added to C. The base case is trivial
since C = ∅. By the inductive assumption up until P ’s arrival the calls in C have been
assigned to valid color classes {Cj}d

j=1. After P is accepted it intersect at most d− 1 other
calls in C so we can set χ(P) = min{j|P ∩ Cj = ∅} to get a valid coloring of C ∪ P . 2

Lemma 4.3 There exists a valid on-line 6-coloring for the calls maintained by Global.

Proof: We color the calls in D and in U independently.
If P ∈ σi was accepted as a determined call its intersection with stemi must have been

accepted by Line. Since Line is a 2-congested algorithm and never accepts a call which
contains another, P may intersect at most two other calls on stemi. One with a smaller
depth least depth node and one with a larger depth maximal depth node. By corollary 3.4
the same holds anywhere on T . Hence, P intersects at most two other calls in σi∩D. Since
P was not preempted by Global it does not intersect calls from other subsequences. Thus
lemma 4.2 can be applied to get an on-line 3-coloring for Global(σ) ∩ D.

If P was accepted as an undetermined call, following lemma 3.7 it intersects at most
two other calls in σi ∩ U . The calls in fixed are disjoint and in unfixed there are at most
three calls. Again, since P was not preempted by Global it does not intersect calls from
other subsequences. Thus, lemma 4.2 provides an on-line 3-coloring for Global(σ) ∩ U .

Using the above 3-colorings we assign Global(σ) ∩ D to color classes {1, 2, 3} and
Global(σ) ∩ U to color classes {4, 5, 6} to get a valid on-line 6-coloring for Global(σ). 2

Using the on-line coloring from lemma 4.3 we construct a randomized 1-congested,
algorithm Rand as described in figure 7.

Theorem 4.4 For all σ, the maximal congestion created by Rand(σ) on T is 1.

Proof: Rand only accepts calls from a single color, and each color class is comprised of
disjoint calls. 2

Theorem 4.5 Rand is a 24 competitive algorithm.

Proof: For all σ,

E(|Rand(σ)|) =
1
12

3∑

j=1

|(Global(σ) ∩ D) ∩ Cj |+ 1
4

6∑

j=4

|(Global(σ) ∩ U) ∩ Cj |

=
1
24

(2|Global(σ) ∩ D|+ 6|Global(σ) ∩ U|) ≥ 1
24
|OPT (1)

σ |

15

Procedure: Rand
Make a random selection i ∈ {1, . . . , 6} with probability
Pr[i] = 1

12 for i ∈ {1, 2, 3} and Pr[i] = 1
4 for i ∈ {4, 5, 6}

for each incoming call P ∈ σ
Simulate Global on P
if P is accepted by Global and χ(P) = i,

Accept P
else

Reject P
end if
Preempt calls which were preempted by Global

end for

Figure 7: Disjoint path algorithm

where Cj = {P |χ(P) = j}. The first equality is the expansion of the expectation. The
second equality holds since

⋃3
j=1 Cj = |Global(σ)∩D| and

⋃6
j=4 Cj = |Global(σ)∩U|. The

last inequality follows from the proof of theorem 3.19. 2

4.1 A constant competitive randomized algorithm for congestion b

In sections 3 and 4 we considered the vertex disjoint paths problem. In this section we
extend the setting and allow a bounded maximal congestion of b > 1. Following [1] we use
the general method of [5] for benefit problems. We also take advantage of its adaptation to
handle preemption as presented in [1].

The framework of [1, 5] considers an on-line benefit problem where the benefit is gained
by allocating items into b independent “bins”. The method there shows how to use a pre-
emptive deterministic (or randomized) ρ-competitive algorithm for a single bin to construct
a preemptive deterministic (or randomized) (ρ + 1)-competitive algorithm for b bins. The
method is based on applying b copies of the single bin algorithm where each request is
pipelined through the copies (in a fixed order) until it is accepted. A request is rejected if
no copy would accept it.

Claim 4.6 Any feasible solution to the vertex b-congested paths problem on a tree T can be
partitioned into no more than b independent feasible solutions for the vertex disjoint problem
on T .

Proof: Consider a set of paths C such that the maximal congestion created by C on
T is b. Order all the paths P ∈ C by non-decreasing order of ldn(P). We color the paths
inductively following the above depth order such that all paths in the same color class are
disjoint (and hence feasible solutions for the vertex disjoint problem). Given a path P all
the paths which intersect it and are already colored must intersect P at ldn(P). Since there
are at most b− 1 such paths there is a free color to choose for P . 2

16

Theorem 4.7 For all b > 1, There exists a b-congested, randomized, preemptive 25-
competitive algorithm for the maximal vertex b-congested paths problem on trees. For b ≥ 4
there is a deterministic constant competitive algorithm.

Proof: We start with the randomized algorithm. By claim 4.6 a feasible solution for
the b-congested problem can be partitioned into b independent feasible solutions of the
disjoint paths problem. Moreover, the union of b selections for the disjoint paths problem
is a feasible solution for the b-congested problem. Hence, the b-congested problem is an
instance of allocation of items into bins. Using the 24 competitive Rand as the algorithm
for a single bin we get a 25 competitive algorithm for b bins.

Next we show the deterministic algorithm. We note that by claim 4.6 the optimal b-
congested solution is at most b times the optimal solution for 1-congested solution. Hence
for b = 4 we immediately observe that Global is a deterministic 24 competitive algorithm.
For b which is divisible by 4 we can partition b into b/4 bins of size 4 and get a 25 competitive
algorithm as described above. If b is not divisible by 4 we round it down to a b which is
divisible by 4 and use it. By that we lose a factor of at most 2 since by 4.6 the optimal
x-congested solution is at least x/y of the optimal y-congested solution for any x ≤ y. 2

References

[1] R. Adler and Y. Azar. Beating the logarithmic lower bound: randomized preemptive
disjoint paths and call control algorithms. In Proc. of the 10th ACM-SIAM Symposium
on Discrete Algorithms, pages 1–10, 1999.

[2] N. Alon, U. Arad and Y. Azar. Independent sets in hypergraphs with applications
to routing via fixed paths. In Proc. 2nd Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX), pages 16-27, 1999.

[3] M. Andrews, J. Chuzhoy, S. Khanna, and L. Zhang. Hardness of the undirected edge-
disjoint paths problem with congestion. In Proceedings 46th Annual IEEE Symposium
on Foundations of Computer Science, pages 226–244, 2005.

[4] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line routing of virtual
circuits with applications to load balancing and machine scheduling. Journal of the
ACM, 44(3):486–504, 1997. Also in Proc. 25th ACM STOC, 1993, pp. 623-631.

[5] B. Awerbuch, Y. Azar, A. Fiat, S. Leonardi, and A. Rosen. On-line competitive algo-
rithms for call admission in optical networks. In Proc. 4th Annual European Symposium
on Algorithms, pages 431–444, 1996.

[6] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In
34th IEEE Symposium on Foundations of Computer Science, pages 32–40, 1993.

[7] B. Awerbuch, Y. Bartal, A. Fiat, and A. Rosén. Competitive non-preemptive call
control. In Proc. of 5th ACM-SIAM Symposium on Discrete Algorithms, pages 312–
320, 1994.

17

[8] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line admission control and
circuit routing for high performance computation and communication. In Proc. 35th
IEEE Symp. on Found. of Comp. Science, pages 412–423, 1994.

[9] Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems with
application to on-line circuit and optical routing. In Proc. 28th ACM Symp. on Theory
of Computing, pages 531–540, 1996.

[10] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

[11] T.T. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press,
1990.

[12] J. Garay, I. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line call control
algorithms. Journal of Algorithms, 23:180–194, 1997. Also in Proc. 2’nd Annual Israel
Conference on Theory of Computing and Systems, 1993.

[13] N. Garg, V.V. Vazirani, and M. Yannakakis. Primal-Dual Approximation Algorithms
for Integral Flow and Multicut in Trees. In ALGORITHMICA, 18:3–20, 1997.

[14] J. Kleinberg and E. Tardos. Disjoint paths in densely embedded graphs. In Proc. 36th
IEEE Symp. on Found. of Comp. Science, pages 52–61, 1995.

[15] S. Leonardi. On-line network routing. In A. Fiat and G. Woeginger, editors, Online
Algorithms - The State of the Art, chapter 11, pages 242–267. Springer, 1998.

[16] S. Leonardi, A. Marchetti-Spaccamela, A. Presciutti, and A. Rosén. On-line random-
ized call control revisited. In Proc. 9th ACM-SIAM Symp. on Discrete Algorithms,
pages 323–332, 1998.

[17] R. J. Lipton and A. Tomkins. Online interval scheduling. In Proc. of the 5th ACM-
SIAM Symposium on Discrete Algorithms, pages 302–311, 1994.

[18] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

18

