
Demand Queries with Preprocessing∗

Uriel Feige† and Shlomo Jozeph‡

May 1, 2014

Abstract

Given a set of items and a submodular set-function f that determines the value

of every subset of items, a demand query assigns prices to the items, and the de-

sired answer is a set S of items that maximizes the pro�t, namely, the value of S
minus its price. The use of demand queries is well motivated in the context of com-

binatorial auctions. However, answering a demand query (even approximately) is

NP-hard. We consider the question of whether exponential time preprocessing of f
prior to receiving the demand query can help in later answering demand queries in

polynomial time. We design a preprocessing algorithm that leads to approximation

ratios that are NP-hard to achieve without preprocessing. We also prove that there

are limitations to the approximation ratios achievable after preprocessing, unless

NP ⊂ P/poly.

1 Introduction

Given a universe U of n items, a valuation function is a set-function f that assigns

nonnegative integer values to every subset of items, and satis�es the following three

properties:

• Normalization: f(∅) = 0.

• Monotonicity: for every two sets S ⊆ T ⊆ U , f(S) ≤ f(T).

• M -bounded: there is some �xed constant c independent of n such that f(U) (the
value assigned to the whole universe, which we denote byM) satis�es logM ≤
nc. Hence every single value of the function f can be represented by a number

of bits that is polynomial in n.

Valuation functions are used in order to represent the internal preferences of bidders

in combinatorial auctions, where the items of U are for sale. The maximum welfare

∗To appear in ICALP 2014
†Department of Computer Science and Applied Mathematics, the Weizmann Institute, Rehovot, Israel.

uriel.feige@weizmann.ac.il
‡Department of Computer Science and Applied Mathematics, the Weizmann Institute, Rehovot, Israel.

shlomo.jozeph@weizmann.ac.il

1

allocation problem associated with a combinatorial auction is the following: given the

valuation functions of the bidders (fi for bidder i), one needs to give each bidder i one
bundleBi ⊆ U of items (a bundle is simply a set, which may also be empty), and these

bundles need to be disjoint (Bi

∩
Bj = ∅ for i ̸= j). The objective is to do so while

maximizing
∑

i fi(Bi), which is referred to as the welfare of the allocation.
Ideally, one would like to compute the maximum welfare allocation in time poly-

nomial in n. However, there are two obstacles to overcome.

• The communication bottleneck. An explicit representation of a valuation func-

tion (as a table) might take space 2n logM , and hence bidders might not be able

to communicate their valuation functions to the seller.

• The computation bottleneck. Even if valuation functions have succinct repre-

sentations of polynomial size (for example, the case of single minded bidders

where f is determined by a single bundle SB, with f(S) = 1 if SB ⊆ S, and
f(S) = 0 otherwise), the problem of computing the maximum welfare alloca-

tion is NP-hard, and also at least as hard to approximate as the notorious set

packing problem.

Remark 1 Another dif�culty associated with combinatorial auctions is how to provide

incentives to the bidders to reveal their true valuation function to the seller, but this

game-theoretic aspect is beyond the scope of our current work.

One way of handling the communication bottleneck is by allowing the seller to

ask the bidder queries regarding the nature of his valuation function f . One wishes

to design a polynomial time allocation algorithm in which the seller makes only poly-

nomially many queries to each bidder. One natural class of queries is that of value

queries: the query is a bundle S and the reply is its value f(S). The class of queries
that is the focus of this work is called demand queries (see [15] for several types of

queries commonly used). For demand queries, one assumes that the utilities for bid-

ders can be separated into two components: the value of the bundle received, and the

payment that the bidder pays. Namely, if the bidder received bundle B and pays for it

a price P , then the utility derived by bidder is f(B)− P . A demand query is a vector

p̄ of nonnegative integer prices to items (p̄(j) for item j) and its answer is the most

preferable bundle for the bidder under these prices, namely, a bundle S that maximizes

f(S)−
∑

j∈S p̄(j), together with the value f(S). The ability to answer demand queries

appears to be a natural requirement from a bidder, as without this ability, if the bidder

comes to a market in which the items have prices, he himself would not know what

he prefers to buy. Moreover, the assumption that bidders can answer demand queries

turns out to be very bene�cial for algorithms that approximate the maximum welfare

problem. (Demand queries implement a separation oracle for the dual of the con�gura-

tion LP, and solving this con�guration LP is a �rst step in many of the approximation

algorithms for maximum welfare.)

Despite their attractiveness, demand queries are problematic in the sense that even

if a succinct representation of a valuation function is given (which allows ef�cient

replies to value queries), answering demand queries is in general NP-hard (and also

hard to approximate). This NP-hardness allows for the situation that for certain classes

2

of valuation functions (such as submodular functions, to be de�ned shortly), the ap-

proximation ratio achieved for the maximum welfare problem if demand queries are

allowed is strictly better (unless P=NP) than without demand queries (but with suc-

cinct representations of the valuation functions). See Section 1.1.

In the current work, we investigate a certain approach for reconciling the NP-

hardness of demand queries with the desirability of being able to answer them. A valu-

ation function with a succinct representation would in general have more than one such

representation. Could it be that NP-hardness of answering demand queries is a conse-

quence of the choice of representation, but under a different representation answering

demand queries is easy? We model this question using the notion of preprocessing.

We envision the following situation. First, an arbitrary valuation function f is

given. One is allowed to preprocess f for arbitrary amount of time, even more than

exponential. The outcome of this preprocessing phase is a polynomial size advice string

A(f). Thereafter, upon being given a vector p̄ of prices as a demand query, the demand

query is answered in polynomial time based only on p̄,A(f), and at most polynomially

many value queries. (Typically, the original representation of f is succinct and allows

ef�cient replies to value queries. In these cases this succinct representation can be

made part ofA(f). However, some functions (in fact, almost all functions) do not have

a succinct representation, and for them we assume access to a value oracle that can

answer value queries.) The focus of our work is that of approximate answers to demand

queries. The quality of the answering algorithm is measured by the approximation

ratio: the ratio between f(S)−
∑

j∈S pj and f(T)−
∑

j∈T pj , where S is the optimal

solution and T is the solution returned by the algorithm.

Our results focus on the well studied class of submodular valuation functions (see

Section 1.2 for de�nitions). Though this is considered to be a relatively simple class,

answering demand queries is very dif�cult even for this class. The following proposi-

tion is well known.

Proposition 2 For every ϵ > 0, given a succinct representation of a submodular valu-

ation function (without preprocessing) and a demand query, returning an answer with

approximation ratio at most n1−ϵ is NP-hard.

Our main result shows that preprocessing helps.

Theorem 3 For every submodular valuation function f (even with no succinct repre-

sentation), there is a polynomial size advice string A(f), such that given any demand

query p̄, the answer can be approximated in polynomial time within a ratio ofO(n3/4),
based only on p̄, A(f) and value queries.

However, there is a limit to the effectiveness of preprocessing.

Theorem 4 For some δ > 0, there are submodular valuation functions with succinct

representations, for which regardless of the polynomial size advice string given, de-

mand queries cannot be approximated within a ratio better than Ω(nδ) in polynomial

time, unless NP has polynomial size circuits (namely, unless NP ⊂ P/poly).

We also consider in our work a natural subclasses of submodular functions (that we

refer to as NH, negative hyperedges, see section 3) and show that for this class demand

3

queries can be approximately answered (after preprocessing) within a ratio of O(n1/2).
An even more restricted but very natural setting is that of MWIS (maximum weight

independent set) demand queries, which is addressed in Section 2. The negative results

of Theorem 4 apply already to a further restriction that we refer to as MIS (maximum

independent set) demand queries.

1.1 Related Work

Submodular set-functions is a well studied class of functions and surveying all the lit-

erature about it is beyond the scope of this paper. We just mention a few facts that help

put our work in perspective. There have been studies of trying to approximately learn

(in the sense of approximately answering future value queries) submodular functions

by making polynomially many value queries to the function (which is a weaker notion

than preprocessing). Approximation ratios of Θ̃(
√
n) are achievable [11]. Our The-

orem 4 constructs submodular functions that have succinct representations that allow

one to ef�ciently answer value queries exactly, and still they have no succinct repre-

sentation that allows one to even approximately answer demand queries (unless NP ⊂
P/poly). We remark that the ability to answer value queries is very powerful in the

context of submodular functions. For example, it allows one to ef�ciently �nd the min-

imum value of the function [4], and to approximate the maximum within a factor of 1/2
if the function is nonnegative [3].

There is much work on the maximum welfare problem, and we mention some of it.

The focus on submodular valuation functions was initiated by [15]. The con�guration

LP and demand queries were introduced by [5]. With only value queries, the maximum

welfare problem with submodular valuation functions can be approximated within a

ratio of 1 − 1/e [6], and doing better is NP-hard, given succinct representations of the

valuation functions [13]. However, with demand queries an approximation ratio better

than 1− 1/e is achievable [10].
Preprocessing is a natural and well studied notion in several different contexts,

some of which are beyond the scope of our paper (e.g., quickly answering database

queries, quickly breaking cryptographic schemes). The direction most relevant to the

current work is that of preprocessing of NP-hard problems. This direction received

much attention in the context of coding theory [2] and lattice problems [9, 14]. In our

negative results (Theorem 4) we build on earlier work of the authors [8] that consid-

ered preprocessing for constraint satisfaction problems, and introduced the notion of

universal factor graphs as a method for establishing limitations on what preprocessing

can achieve.

1.2 Preliminaries

Submodular set-functions can be de�ned in several equivalent ways. We shall use the

following de�nition.

De�nition 5 A set-function f : 2[n] → R is submodular if it has decreasing marginal

values, that is, for x /∈ A ⊇ B, f (A
∪
{x})− f (A) ≤ f (B

∪
{x})− f (B).

4

Submodular functions need not be monotone. However, from now on we shall

always assume that functions are normalized, namely, f (∅) = 0. Let us mention

some easily veri�able properties of submodular functions. Every linear function is

submodular. The sum of two submodular functions (and hence also the difference

between a submodular function and a linear function) is submodular. Submodular

functions are subadditive: for a submodular function f and pairwise disjoint {Si},
f (

∪
Si) ≤

∑
f (Si).

The submodular functions considered in our work will typically either be a sub-

modular valuation function (thus being integer valued, monotone, and M -bounded)

or the difference between a submodular valuation function and a nonnegative integer

linear function (the price vector). In the latter case, the resulting submodular function

will still be M -bounded, but not necessarily monotone. A rounding down aspect used

in Section 4 might result in functions having noninteger values, but these values have

simple representations.

De�nition 6 Given a submodular function f : 2U → R, an optimal set with respect to

f is a set S ⊆ U that maximizes f (S).

De�nition 7 Given a set-function f : 2U → R, the hypergraph representation of f is

the unique function wf : 2U → R such that for every A ⊆ U ,

f (A) =
∑
B⊆A

wf (B)

Note that an explicit formula forwf (A) iswf (A) = f(A)−
∑

B⊂A wf (B) (where
⊂ denotes strict containment). This allows one to determine wf by an inductive pro-

cess, starting with wf (∅) = f(∅) = 0 and progressing to larger sets.

De�nition 8 The linear part Lf of a set function f is de�ned as

Lf (A) =
∑

{x}⊆A

wf ({x})

The high order part Hf of a set function f is de�ned as

Hf (A) = f(A)− Lf (A)

The linear part of f is completely determined by the value of the hypergraph repre-

sentation on individual items, and hence on vertices of the corresponding hypergraph,

whereas the high order part is determined by the value of the hypergraph representation

on larger sets of items, and hence on hyperedges of the corresponding hypergraph.

A submodular valuation function f can be decomposed into its linear part Lf and

into its high order part Hf , with f = Lf +Hf . A demand query is a vector p̄ of non-

negative integer prices for the items, with the interpretation that the price of a bundle

is the sum of the prices of the items that it contains. Hence p̄ is a representation of a

linear set-function p̄(S) =
∑

i∈S p(i). The desired answer for the demand query is

thus an optimal set with respect to a new function g = f − p̄. Observe that g differs

5

from f only in its linear part. Hence equivalently, we may write g = Hf + (Lf − p̄).
Let us denote (the vector of coef�cients of the linear function) Lf − p̄ by q̄. Observe
that we may assume that the vector q̄ is nonnegative. This can be explained as fol-

lows. g is a submodular function, and submodular functions have decreasing marginal

costs. When trying to maximize the value of g we can always ignore any item x with

g ({x}) ≤ 0, because that item cannot possibly add positive value if included in the

solution. Hence without loss of generality we may assume that such an item would not

be part of the answer to the demand query. Hence all coordinates in which q̄ is negative
can be rounded up to 0 without affecting the answer to the demand query.

As a consequence of the above discussion, the preprocessing done by our algo-

rithms will depend only on Hf and not on Lf . Then, given a demand query p̄, we
translate it as above to the corresponding q̄ = Lf − p̄ (rounded up to 0), and attempt to

�nd the set S maximizing g(S) = Hf (S) + q̄(S). Under this view, it is convenient to
think of q̄ rather than p̄ as the query, and then Lf can effectively be ignored. Moreover,

since Hf is not necessarily monotone, our positive results regarding preprocessing do

not require f to be monotone � they hold with no change even if f is not monotone.

2 Approximately Answering MWIS Demand Queries

Given a graph G(V,E) with n vertices, a maximum weight independent set (MWIS)

query is an n dimensional vector q̄ of nonnegative integers, where for every 1 ≤ i ≤ n
entry q̄(i) is interpreted as the weight given to vertex i. Given G and q̄, the goal is to
output a maximum weight independent set with respect to these weights. The special

case in which q̄ ∈ {0, 1}n is referred to as a maximum independent set (MIS) query.

MWIS queries can easily be seen to be a special case of demand queries with respect

to submodular valuation function. Let W be an upper bound on the possible weight

a vertex might be assigned in a query q̄. Then G can be thought of as a hypergraph

representation of the submodular valuation function fG, with wf (e) = −W for every

edge e ∈ E, and wf (i) = nW for every vertex i ∈ V . Then the MWIS query q̄ is

equivalent to a demand query p̄ with p̄(i) = nW − q̄(i) for every i ∈ V , because the

optimal answer to the demand query will never be a set of vertices that induces any

edges (due to their large negative weight). In particular, taking q̄ to be the all 1 vector

shows that the problem of �nding a maximum independent set in G can be formulated

as a demand query. This observation coupled with the known Ω(n1−ϵ) NP-hardness
of approximation results for the maximum independent set problem [12, 16] proves

Proposition 2.

As a simple introduction to our proof of Theorem 3, we show how preprocessing

G helps in improving the approximation ratio for the special case of MWIS queries.

Preprocessing. Given a graph G = (V,E), consider the following collection of sets

de�ned inductively. Let Jj =
∪j

i=1 Ii (J0 = ∅), where Ii (for i ≥ 1) is a maximum

independent set in Gi = (V \ Ji−1, Ei) (where Ei denotes the the set of those edges

induced by V \ Ji−1). The sets Ii are referred to as the advice sets.

Answering a MWIS query. Given a query vector q̄ assigning nonnegative weights

to the vertices, return the advice set with highest sum of vertex weights. Namely, the

6

advice set Ii that maximizes
∑

j∈Ii
q̄(j).

Theorem 9 The answer to the query is a
√
2n approximation to the maximum weight

independent set in the weighted graph G′ = (V,E, q̄).

Proof. The following claim shows that the coloring de�ned by the sets {Ii} has the

property that any independent set of G is colored by at most
√
2n colors.

Proposition 10 Given an independent set I , |{i|Ii
∩
I ̸= ∅}| <

√
2n.

Proof. Suppose otherwise. Let sj =
∣∣∣I \∪j−1

i=1 Ii

∣∣∣. Let j1, · · · , j√2n be the last
√
2n indices for which Iji

∩
I ̸= ∅, given in reverse order (that is, advice set Iji

was generated in the preprocessing phase after advice set Iji+1). Hence sj1 ≥ 1, and
sji < sji+1 . Induction establishes that sji ≥ i. Due to the maximality of Ii, si ≤ |Ii|
(otherwise, Ii is not the maximum independent set inG after removing

∪j−1
i=1 Ii). Since

Ij1 , · · · , Ij√2n
are disjoint, and |Iji | ≥ i, the union of the advice sets would contain

more than n vertices, which is a contradiction. �

Let I be a maximum weight independent set in G′. I is also an independent set in

G. From the claim, I intersects at most
√
2n of the Ii's. Hence for some j the weight

of I ′ = I
∩
Ij is at least

1√
2n

of the weight of I . This advice set Ij is an independent

set and contains I ′, so its weight must be at least the weight of I ′. Thus, the Ii of
highest weight is a

√
2n approximation to the weight of I . �

3 Negative Hyperedges Set-functions

De�nition 11 A set-function f : 2U → R is said to be a negative hyperedges (NH)

function if its hypergraph representation satis�es wf (S) ≤ 0 whenever |S| > 1.

Observe that every NH set-function is necessarily submodular. However, a sub-

modular set function need not be NH. For example, the function f(S) = 1 for all

nonempty S is submodular, and its hypergraph representation is wf (S) = (−1)|S|+1.

As an intermediate step towards proving Theorem 3 and strictly generalizing the

notion of MWIS queries considered in Section 2, we consider demand queries with

respect to NH functions. We �rst de�ne our building block for the preprocessing stage.

De�nition 12 Given a submodular function f : 2U → R, the greedy optimal sets for

f is a collection of sets {Si}, de�ned inductively: S1 is the optimal set with respect to

f , and Si+1 is the optimal set with respect to f among those sets in U \
∪i

j=1 Sj .

Preprocessing. Given an NH valuation function f : 2U → N that is M -bounded and

a nonnegative integer k, de�ne the functions fk (A) = 2k |A| + Hf (A). Namely, fk
maintains the high order part of f , and makes the linear part equal to 2k for every item.

Denote the greedy optimal sets for fk by
{
Sk
i

}
. These sets, for all integer k in the

range 0 ≤ k ≤ logM , will be referred to as the advice sets.

7

Answering a demand query. Recall from Section 1.2, that the demand query can be

thought of as a nonnegative integer vector q̄, and the goal is to �nd an optimal set with

respect to Hf + q̄. Let ỹ = argmaxx {qx} be the highest valued item in U according

to q̄. Let Tk =
{
x ∈ U |2k ≤ qx < 2k+1

}
.

Answer with the highest valued set according to Hf + q̄ from
{
{ỹ} , Tk

∩
Sk
i

}
,

where Sk
i ranges over all advice sets.

Theorem 13 The answer to the query is an O(
√
n) approximation to the optimal set.

Proof. To prove this theorem, we will use the following two lemmas.

Lemma 14 For |U | = n, let g : 2U → R be a submodular function such that

g ({x}) = c > 0 for all x ∈ U , and let {Si} be the greedy optimal sets for g. Then, for

every A ⊂ U with g (A) > 0 there is an i such that g (A
∩

Si) ≥ g(A)2

2cn .

Proof. Subadditivity of g implies that g (A) ≤
∑

g (A ∩ Si). Suppose for the sake

of contradiction that g (A
∩
Si) < g(A)2

2cn for all i. Then there must be at least 2cn
g(A)

greedy sets. Let sj = g
(
A \

∪j−1
i=1 Si

)
. Note that sj − sj+1 < g(A)2

2cn (otherwise,

g (A
∩

Sj) ≥ g(A)2

2cn by the subadditivity of g). Observe further that g (Sj) ≥ sj

(otherwise, Sj is not the optimal after removing
∪j−1

i=1 Si). Since g gives a value of at

most c to each element, |Sj | ≥ g(Sj)
c ≥ sj

c .

Using these facts, we lower bound the number of items in
⊎2cn/g(A)

i=1 Si. Observe

that |S1| ≥ s1
c = g(A)

c . Since sj−sj+1 < g(A)2

2cn , we have that sj ≥ g (A)
(
1− (j−1)g(A)

2cn

)
,

and |Sj | > g(A)
c

(
1− (j−1)g(A)

2cn

)
. The sum of the 2cn

g(A) terms is thus larger than

n = |U |, a contradiction. �

Lemma 15 Given an NH function g : 2U → N, let g̃ be the function obtained from g
by keeping the high order part of g, and rounding down each value in the linear part

to the closest power of 2. Then maxS⊆U [g̃(S)] ≥ 1
4 maxT⊆U [g(T)].

Proof. Let T be the optimal set for g. Select S ⊆ T by including each item of T in

S independently with probability 1/2. We show that in expectation (all expectations

taken over choice of S), E[g̃(S)] ≥ 1
4 [g(T)], and hence there must be an S satisfying

the lemma.

Observe that E[Lg̃(S)] ≥ 1
2E[Lg(S)] =

1
4Lg(T), where the inequality is because

rounding down loses at most a factor of 2, and the equality is because each item is

included with probability 1/2. Observe also that E[Hg(S)] ≥ 1
4Hg(T), because every

hyperedge (of size at least 2) in the hyperedge representation of g is negative, and is

included into S (if included in T) with probability at most 1/4. Hence E[g̃(S)] =

E[Lg̃(S)] + E[Hg̃(S)] = E[Lg̃(S)] + E[Hg(S)] ≥ 1
4 (Lg(T) +Hg(T)) =

g(T)
4 �

A consequence of Lemma 15 is that given a query q̄, we may round down each

entry of q̄ to the nearest power of 2, and lose at most a factor of 4 in the value of the

8

optimal set. Hence we assume from now on that all entries in q̄ are powers of 2. In

particular, we can update the de�nition of Tk to Tk =
{
x ∈ U |qx = 2k

}
.

We use f̃ to denote Hf + q̄. Recall that ỹ is the highest valued item. Let w̃ = qỹ .

If w̃ is a 4
√
n approximation for the value of the optimal set for f̃ , then by returning

{ỹ} the theorem is proved.

Otherwise, let A ⊆ U be the optimal set for f̃ , with f̃ (A) ≥ 4w̃
√
n. Let r be

such that w̃ = 2r. Hence, r ≥ k for any non-empty Tk. Using the subadditivity of

f̃ , there is a k ≤ r such that f̃ (A
∩

Tk) ≥ f̃ (A) /2(r−k)/2+2 (otherwise, f̃ (A) ≤∑
k≤r f̃ (A

∩
Tk) < f̃ (A)

∑
k≤r 2

(k−r)/2−2 < f̃ (A)). For this k Lemma 14 guaran-

tees an i such that f̃
(
A
∩
Tk

∩
Sk
i

)
≥ f̃ (A

∩
Tk)

2
/2k+1n ≥ f̃ (A)

2
/2r+5n. Since

Sk
i is maximal, using the decreasing marginal cost de�nition for submodular functions,

f̃
(
Tk

∩
Sk
i

)
≥ f̃

(
A
∩
Tk

∩
Sk
i

)
≥ f̃ (A)

2
/2r+5n ≥ f̃ (A) /8

√
n. �

4 Approximately Answering Submodular DemandQueries

In this section we prove Theorem 3. The proof of Theorem 13 does not apply to

some submodular valuation functions, because Lemma 15 need not hold. Consider

for example a submodular function g with g(A) = |A| + 2 for every nonempty A.
Its maximum value is n + 2. The rounded down version of it rounds down the linear

part from 3 to 2, giving g̃(A) = |A| + 2 − |A| = 2, and the maximum drops to 2.

Our solution is to work at a �ner scale than powers of 2. A factor of 2 is broken to

n1/4 intermediate scales, and this will cost another factor of n1/4 (beyond n1/2) in the

approximation ratio.

Preprocessing. Given a submodular valuation function f : 2U → N that is M -

bounded and a nonnegative integer k, de�ne the functions fk (A) =
(
1 + n−1/4

)k |A|+
Hf (A). Namely, fk makes the linear part equal to

(
1 + n−1/4

)k
for every item.

Denote the greedy optimal sets for fk by
{
Sk
i

}
. These sets, for all nonnegative

integer k satisfying
(
1 + n−1/4

)k ≤ M , will be referred to as the advice sets.

Answering a demand query. Given a query vector q̄, let ỹ = argmaxx {qx} be the

highest valued item in U according to q̄.

Let Tk =
{
x ∈ U |

(
1 + n−1/4

)k ≤ qx <
(
1 + n−1/4

)k+1
}
.

Answer with the highest valued set according toHf + q̄ from
{
{ỹ} , Tk

∩
Sk
i

}
.

We now prove Theorem 3 by showing that the answer to the query is an O
(
n3/4

)
approximation to the optimal set with respect toHf + q̄.

Proof. De�ne f̃1 (C) =
∑

{x}⊆C ρ (qx), where ρ(0) = 0 and ρ(z) rounds positive

integer z down to the nearest power of 1+n−1/4. Let f̃ = f̃1+Hf and w̃ = wf̃ ({ỹ}).
If {ỹ} is a 8n3/4 approximation to Hf + q̄, we are done. Otherwise, there is a set A
such that f (A) ≥ 8n3/4w̃.

Proposition 16 If f (A) ≥ 2n3/4w̃, then f̃ (A) ≥ f (A) /2.

9

Proof. Note that Hf (A) ≤ 0, otherwise f is not submodular. Let α be such that

Hf (A) = − (1− α)Lf (A). Then f (A) = αLf (A). Lf (A) ≤ nw̃, so α ≥ 2n−1/4.(
1 + n−1/4

)
f̃1 (A) ≥ Lf (A), so f̃ (A) >

(
1− n−1/4

)
Lf (A) − (1− α)Lf (A) ≥

(1− α/2)Lf (A)− (1− α)Lf (A) = f (A) /2. �

Since f̃ ≤ f , we only lose a factor 2 when approximating f̃ instead of f .
Let A be the set of maximum value. f̃ (A) ≥ 4w̃n3/4. Recall that

Tk =
{
x ∈ S|wf̃ ({x}) =

(
1 + n−1/4

)k}
. Let r be such that

(
1 + n−1/4

)
r = w̃.

r ≥ k for any non-empty Tk.

Using subadditivity, f̃ (A
∩

Tk) ≥ 1
4n

−1/4f̃ (A)
(
1 + n−1/4

)(k−r)/2
for some k

(otherwise, f̃ (A) ≤
∑

k≤r f̃ (A
∩
Tk) < 1

4n
−1/4f̃ (A)

∑
k≤r

(
1 + n−1/4

)(k−r)/2
<

1
2n

−1/4f̃ (A)
∑

k≤r

(
1 + n−1/4

)(k−r)
< f̃ (A)). The value of A

∩
Tk approximates

the value ofAwithin 4n1/4
(
1 + n−1/4

)
(k−r)/2. Using Lemma 14, f̃

(
A
∩
Tk

∩
Sk
i

)
≥

f̃ (A
∩
Tk)

2 (
1 + n−1/4

)−k
/2n ≥ f̃ (A)

2 (
1 + n−1/4

)−r/32n3/2 ≥ f̃ (A) /8n3/4 for

some i. Therefore, the value of A
∩

Tk

∩
Sk
i is a 8n3/4 approximation to the value of

A. Since Sk
i is maximal, the marginal value of every item is non-negative (otherwise,

the set without this item has higher value). Using the decreasing marginal value de�-

nition for submodular functions, every item has non-negative marginal value for every

subset of Sk
i . Hence, f̃

(
Tk

∩
Sk
i

)
≥ f̃

(
A
∩
Tk

∩
Sk
i

)
. This proves that the answer to

the query is a set of higher or equal value to a set that is an O
(
n3/4

)
approximation to

the optimal set with respect toHf + q̄. �

5 Hardness for Approximately AnsweringMISQueries

In this section we revisit the setting of MIS queries introduced in Section 2. Given

an input graph G(V,E), one is allowed to preprocess this graph for arbitrary time and

record a polynomial size advice string A(G). Thereafter a subset U ⊂ V is given

as a query, and one is required to approximate the maximum independent set in the

subgraph induced on U , and do so in polynomial time. We shall show that for some

δ > 0, even after preprocessing, MIS queries cannot be approximately answered within

a ratio better than Ω(nδ), unless NP ⊂ P/poly. Given that MIS queries are a special

case of demand queries with respect to a submodular function, this will thus prove

Theorem 4.

We shall use Theorem 17, taken from [8]. Recall the problem max-3SAT: given a

3CNF formula with n variables and m clauses (each containing three literals), �nd an

assignment that satis�es the maximum number of clauses. A factor graph is a template

for a 3CNF formula that speci�es the variables in each clause, but leaves the polarities

of the variables unspeci�ed. A family of factor graphs includes for each suf�ciently

large value of n one template. (The need to consider an in�nite family is a complexity

theory technicality. The reader may �x one n of interest and think of just one factor

graph in this case.) Given a factor graph, a 3SAT query is an assignment of polarities to

10

the occurrences of variables in the template, and one is asked to solve the resulting max-

3SAT instance in polynomial time. Preprocessing the factor graph before receiving the

query is allowed.

Theorem 17 For some ρ < 1, there is a family of factor graphs such that even after

preprocessing, one cannot distinguish between satis�able 3SAT queries, and those that

are at most ρ-satis�able, unless NP ⊂ P/poly.

The value of ρ in Theorem 17 can be taken to be roughly 77/80. A factor graph

from the family of Theorem 17 is referred to as a universal factor graph (UFG). Propo-

sition 18 is a �rst step towards proving Theorem 4.

Proposition 18 For some ρ < 1, even after preprocessing, MIS queries cannot be

answered with an approximation ratio better than 1/ρ, unless NP ⊂ P/poly.

Proof. Given a UFG F that is a template for 3CNF formulas with n variables and

m clauses, use the following variation on the FGLSS reduction [7] to obtain a graph

G(V,E) on 8m vertices. Every clause v ∈ F is associated with a cluster of eight

vertices v1, · · · , v8 ∈ V, one for each possible assignment to the three variables in the

clause. There is an edge in E between two vertices iff their corresponding assignments

disagree on some variable.

A 3SAT query to F can be cast as a MIS query to G. Setting the polarities to

a clause v of F is equivalent to discarding the unique member of v's cluster in G
that corresponds to an assignment not satisfying the clause, and keeping the remaining

vertices of the cluster. The MIS query is the set U of vertices that remains. The

size of the maximum independent set in the subgraph U(G) induced on U is exactly

the maximum number of satis�able clauses in the 3SAT query. The proposition now

follows from Theorem 17. �

Before we continue, we review the notion of derandomized graph products [1]. For

a desired value of ϵ, we say that a d-regular graph is an ϵ-expander if the eigenvalues
d = λ1 ≥ λ2 ≥ . . . ≥ λn of its adjacency matrix satisfy max[|λ2|, |λn|] ≤ ϵλ1. It is

known that for every ϵ > 0 there is suf�ciently large d (one would need d > Ω(1/ϵ2)),
such that there are ϵ-expanders of size n for all suf�ciently large n. Moreover, it is

known how to construct such ϵ-expanders.
Given a graph G(V,E) its derandomized graph product DGk = (U,EU) uses an

arbitrary auxiliary d-regular ϵ-expander F (V,EF) de�ned on the same set of vertices

V (and a set EF edges unrelated to E). U consists of all walks with k − 1 steps in

F (hence |U | = |V |dk−1), and there is an edge in DGk between (v1, · · · , vk) and
(u1, · · · , uk) iff there are i, j such that (vi, uj) ∈ E. Let α(G) denote the size of the
maximum independent set in graph G. The following theorem is from [1].

Theorem 19 For derandomized graph products as de�ned above and using an ϵ-expander

with ϵ < α(G)
|V | :

α(G)dk−1

(
α(G)

|V |
− ϵ

)k−1

≤ α(DGk) ≤ α(G)dk−1

(
α(G)

|V |
+ ϵ

)k−1

11

In order to use Theorem 19 it will be convenient for us to use a special class of

expanders. Given a graph F = (V,E) onm vertices and a positive integer k, de�ne the
graph Fk = (V × k,Ek) as follows: every vertex of F is replaced by an independent

set of size k, and every edge of F is replaced by a complete bipartite graph between

the corresponding independent sets.

Proposition 20 If F is an ϵ-expander, then so is Fk for every k.

Proof. The adjacency matrix of Fk is a tensor product of two matrices: the adjacency

matrix of F , and a k by k all 1 matrix (whose eigenvalues are k and 0 with multiplicity

k − 1). The eigenvalues of the tensor are all products of the eigenvalues of its factors.
�

We can now prove Theorem 4.

Proof. Let G(V,E) be a graph with 8m vertices, the outcome of Proposition 18.

Recall that its vertices are arranged in m clusters of size 8. Pick ϵ suf�ciently small

(e.g., ϵ = 1−ρ
20 for ρ as in Proposition 18). Let F be an arbitrary d-regular ϵ-expander

on m vertices. F8 is an 8d-regular graph on 8m vertices. Match vertices of G with

those in F8, with each cluster of G mapped to a cluster of F8. For k = Θ(logm),
consider the derandomized graph product DGk with respect to F8. The number of its

vertices is polynomial inm.

Given a MIS query U to G(V,E) for which one wants to distinguish between the

case that the optimal answer is m and the case that it is at most ρm, transform it into

a MIS query U ′ to DGk, where a vertex of DGk belongs to U ′ iff the k vertices of

that walk that it corresponds to are all in U . Observe that the set of vertices in U ′ is

precisely what one would get by taking a k-fold derandomized graph product of the

subgraph U(G) with respect to F7 rather than F8. Proposition 20 implies that F7 is

an ϵ-expander. Theorem 19 (and some straightforward calculations that are omitted)

implies that the ratio between them versus ρm cases has been ampli�ed to some poly-

nomial N δ , where N is the total number of vertices inDGk, and δ > 0. �

Acknowledgements

Work supported in part by the Israel Science Foundation (grant No. 621/12) and by the

I-CORE Program of the Planning and Budgeting Committee and The Israel Science

Foundation (grant No. 4/11). We thank an anonymous ICALP reviewer for detailed

comments.

References

[1] Alon, N., Feige, U., Wigderson, A., Zuckerman, D.: Derandomized graph prod-

ucts. Computational Complexity 5(1), 60�75 (1995)

[2] Bruck, J., Naor, M.: The hardness of decoding linear codes with preprocessing.

Information Theory, IEEE Transactions on 36(2), 381 �385 (1990)

12

[3] Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-

approximation for unconstrained submodular maximization. In: FOCS. pp. 649�

658 (2012)

[4] Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3),

185�192 (1985)

[5] Dobzinski, S., Nisan, N., Schapira, M.: Approximation algorithms for combina-

torial auctions with complement-free bidders. In: STOC. pp. 610�618 (2005)

[6] Dobzinski, S., Schapira, M.: An improved approximation algorithm for combi-

natorial auctions with submodular bidders. In: SODA. pp. 1064�1073 (2006)

[7] Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs

and the hardness of approximating cliques. J. ACM 43(2), 268�292 (1996)

[8] Feige, U., Jozeph, S.: Universal factor graphs. In: ICALP. pp. 339�350 (2012)

[9] Feige, U., Micciancio, D.: The inapproximability of lattice and coding problems

with preprocessing. J. Comput. Syst. Sci. 69(1), 45�67 (2004)

[10] Feige, U., Vondrák, J.: The submodular welfare problem with demand queries.

Theory of Computing 6(1), 247�290 (2010)

[11] Goemans, M.X., Harvey, N.J.A., Iwata, S., Mirrokni, V.S.: Approximating sub-

modular functions everywhere. In: SODA. pp. 535�544 (2009)

[12] H	astad, J.: Clique is hard to approximate withinn n1−ϵ. Acta Mathematica

182(1), 105�142 (1999)

[13] Khot, S., Lipton, R.J., Markakis, E., Mehta, A.: Inapproximability results for

combinatorial auctions with submodular utility functions. Algorithmica 52(1), 3�

18 (2008)

[14] Khot, S., Popat, P., Vishnoi, N.K.: 2log
1−ϵ n hardness for the closest vector prob-

lem with preprocessing. In: STOC. pp. 277�288 (2012)

[15] Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing

marginal utilities. Games and Economic Behavior 55(2), 270�296 (2006)

[16] Zuckerman, D.: Linear degree extractors and the inapproximability of max clique

and chromatic number. In: STOC. pp. 681�690 (2006)

13

