
Maximizing non-monotone submodular functions∗

Uriel Feige †

Dept. of Computer Science and Applied Mathematics
The Weizmann Institute

Rehovot, Israel
uriel.feige@weizmann.ac.il

Vahab S. Mirrokni ‡

Google Research
New York, NY

mirrokni@google.com

Jan Vondrák §

IBM Alamaden Research Center
San Jose, CA

jvondrak@us.ibm.com

December 5, 2009

Abstract

Submodular maximization generalizes many important problems including Max Cut in directed
and undirected graphs and hypergraphs, certain constraint satisfaction problems and maximum fa-
cility location problems. Unlike the problem of minimizing submodular functions, the problem of
maximizing submodular functions is NP-hard.

In this paper, we design the first constant-factor approximation algorithms for maximizing non-
negative (non-monotone) submodular functions. In particular, we give a deterministic local-search
1
3
-approximation and a randomized 2

5
-approximation algorithm for maximizing nonnegative submod-

ular functions. We also show that a uniformly random set gives a 1
4
-approximation. For symmetric

submodular functions, we show that a random set gives a 1
2
-approximation, which can be also achieved

by deterministic local search.
These algorithms work in the value oracle model where the submodular function is accessible

through a black box returning f(S) for a given set S. We show that in this model, 1
2
-approximation

for symmetric submodular functions is the best one can achieve with a subexponential number of
queries. For the case where the function is given explicitly (as a sum of nonnegative submodular
functions, each depending only on a constant number of elements), we prove that it is NP-hard to
achieve a (3

4
+ ε)-approximation in the general case (or a (5

6
+ ε)-approximation in the symmetric

case).

∗An extended abstract of this paper appeared in FOCS’07 [13].
†This work was done while the author was at Microsoft Research, Redmond, WA.
‡This work was done while the author was at Microsoft Research, Redmond, WA.
§This work was done while the author was at Microsoft Research and Princeton University.

1 Introduction

We consider the problem of maximizing a nonnegative submodular function. This means, given a sub-
modular function f : 2X → R+, we want to find a subset S ⊆ X maximizing f(S).

Definition 1.1. A function f : 2X → R is submodular if for any S, T ⊆ X,

f(S ∪ T) + f(S ∩ T) ≤ f(S) + f(T).

An alternative definition of submodularity is the property of decreasing marginal values: For any
A ⊆ B ⊆ X and x ∈ X \B, f(B ∪ {x})− f(B) ≤ f(A∪ {x})− f(A). This can be deduced from the first
definition by substituting S = A ∪ {x} and T = B; the reverse implication also holds.

We assume a value oracle access to the submodular function; i.e., for a given set S, an algorithm can
query an oracle to find its value f(S).

Background. Submodularity, a discrete analog of convexity, has played an essential role in combina-
torial optimization [33]. It appears in many important settings including cuts in graphs [19, 41, 16],
rank function of matroids [9, 17], set covering problems [11], and plant location problems [6, 7]. In many
settings such as set covering or matroid optimization, the relevant submodular functions are monotone,
meaning that f(S) ≤ f(T) whenever S ⊆ T . Here, we are more interested in the general case where f(S)
is not necessarily monotone. A canonical example of such a submodular function is f(S) =

∑
e∈δ(S) w(e),

where δ(S) is a cut in a graph (or hypergraph) induced by a set of vertices S and w(e) is the weight
of edge e. Cuts in undirected graphs and hypergraphs yield symmetric submodular functions, satisfying
f(S) = f(S̄) for all sets S. Symmetric submodular functions have been considered widely in the litera-
ture [15, 41]. It appears that symmetry allows better/simpler approximation results, and thus deserves
separate attention.

The problem of maximizing a submodular function is of central importance, with special cases includ-
ing Max Cut [19], Max Directed Cut [24], hypergraph cut problems, maximum facility location [1, 6, 7],
and certain restricted satisfiability problems [25, 10]. While the Min Cut problem in graphs is a classical
polynomial-time solvable problem, and more generally it has been shown that any submodular function
can be minimized in polynomial time [43, 16], maximization turns out to be more difficult and indeed all
the aforementioned special cases are NP-hard.

A related problem is Max-k-Cover, where the goal is to choose k sets whose union is as large as
possible. It is known that a greedy algorithm provides a (1 − 1/e)-approximation for Max-k-Cover and
this is optimal unless P = NP [11]. More generally, this problem can be viewed as maximization of a
monotone submodular function under a cardinality constraint, i.e. max{f(S) : |S| ≤ k}, assuming f
submodular and 0 ≤ f(S) ≤ f(T) whenever S ⊆ T . Again, the greedy algorithm provides a (1 − 1/e)-
approximation for this problem [37] and this is optimal in the oracle model [39]. More generally, a
(1 − 1/e)-approximation can be achieved for monotone submodular maximization under a knapsack
constraint [44]. For the problem of maximizing a monotone submodular function subject to a matroid
constraint, the greedy algorithm gives only a 1

2 -approximation [38]. Recently, this has been improved to
an optimal (1− 1/e)-approximation using the multilinear extension of a submodular function [47, 4].

In contrast, here we consider the unconstrained maximization of a submodular function which is
not necessarily monotone. We only assume that the function is nonnegative.1 Typical examples of
such a problem are Max Cut and Max Directed Cut. Here, the best approximation factors have been
achieved using semidefinite programming: 0.878 for Max Cut [19] and 0.874 for Max Di-Cut [10, 29]. The
approximation factor for Max Cut has been proved optimal, assuming the Unique Games Conjecture [27,
36]. Without the use of semidefinite programming, only 1

2 -approximation for Max Cut was known for a
long time. For Max Di-Cut, a combinatorial 1

2 -approximation was presented in [24]. Recently, Trevisan
gave an 0.53-approximation algorithm for Max Cut using a spectral partitioning method [46].

1For submodular functions without any restrictions, verifying whether the maximum of the function is greater than zero
is NP-hard and requires exponentially many queries in the value oracle model. Thus, no efficient approximation algorithm
can be found for general submodular maximization. For a general submodular function f with minimum value f0, we can
design an approximation algorithm to maximize a normalized submodular function g where g(S) = f(S)− f0.

1

Model Rnd. Set Non-adapt. Det. adaptive Rnd. adaptive Oracle hardness NP-hardness
Symmetric 1/2 1/2 1/2 1/2 1/2 5/6

Asymmetric 1/4 1/3 1/3 2/5 1/2 3/4

Figure 1: Summary of our results: see Our results below for details.

More generally, submodular maximization encompasses such problems as Max Cut in hypergraphs
and Max SAT with no mixed clauses (every clause contains only positive or only negative literals). Tight
results are known for Max Cut in k-uniform hypergraphs for any fixed k ≥ 4 [25, 22] where the optimal
approximation factor (1 − 2−k+1) is achieved by a random solution (and the same result holds for Max
(k − 1)-SAT with no mixed clauses [22, 23]). The lowest approximation factor (7

8) is achieved for k = 4;
for k < 4, better than random solutions can be found by semidefinite programming.

Submodular maximization also appears in maximizing the difference of a monotone submodular func-
tion and a linear function. An illustrative example of this type is the maximum facility location problem
in which we want to open a subset of facilities and maximize the total profit from clients minus the open-
ing cost of facilities. In a series of papers, approximation algorithms have been developed for a variant of
this problem which is a special case of maximizing nonnegative submodular functions [6, 7, 1]. The best
approximation factor known for this problem is 0.828 [1].

In the general case of non-monotone submodular functions, the maximization problem has been stud-
ied in the operations research community. Many efforts have been focused on designing heuristics for this
problem, including data-correcting search methods [20, 21, 26], accelatered greedy algorithms [40], and
polyhedral algorithms [31]. Prior to our work, to the best of our knowledge, no guaranteed approximation
factor was known for maximizing non-monotone submodular functions.

Our results. We design several constant-factor approximation algorithms for maximization of non-
negative submodular functions. We also prove negative results, in particular a query complexity result
matching our algorithmic result in the symmetric case.
Non-adaptive algorithms. A non-adaptive algorithm is allowed to generate a (possibly random)
sequence of polynomially many sets, query their values and then produce a solution. In this model,
we show that a 1

4 -approximation is achieved in expectation by a uniformly random set. For symmetric
submodular functions, this gives a 1

2 -approximation. This coincides with the approximation factors
obtained by random sets for Max Di-Cut and Max Cut. We prove that these factors cannot be improved,
assuming that the algorithm returns one of the queried sets. However, we also design a non-adaptive
algorithm which performs a polynomial-time computation on the obtained values and achieves a 1

3 -
approximation. In the symmetric case, we prove that the 1

2 -approximation is optimal even among adaptive
algorithms (see below).
Adaptive algorithms. An adaptive algorithm is allowed to perform a polynomial-time computation
including a polynomial number of queries to a value oracle. In this (most natural) model, we develop a
local-search 1

2 -approximation in the symmetric case and a 1
3 -approximation in the general case. Then we

improve this to a 2
5 -approximation using a randomized “smooth local search”. This is perhaps the most

noteworthy of our algorithms; it proceeds by locally optimizing a smoothed variant of f(S), obtained
by biased sampling depending on S. This auxiliary function is in fact equal to the multilinear extension
of f(S) [3, 4], evaluated on a special subset of [0, 1]X . The approach of locally optimizing a modified
function has been referred to as “non-oblivious local search” in the literature; e.g., see [2] for a non-
oblivious local-search 2

5 -approximation for the Max Di-Cut problem. Another (simpler) 2
5 -approximation

algorithm for Max Di-Cut appears in [24]. However, these algorithms do not generalize naturally to ours
and the re-appearance of the same approximation factor seems coincidental.
Hardness results. We show that it is impossible to improve the 1

2 -approximation algorithm for max-
imizing symmetric nonnegative submodular functions in the value oracle model. We prove that for any
fixed ε > 0, a (1

2 + ε)-approximation algorithm would require exponentially many queries. This settles
the status of symmetric submodular maximization in the value oracle model. Note that this query com-

2

plexity lower bound does not assume any computational restrictions. In contrast, in the special case of
Max Cut, polynomially many value queries suffice to infer all edge weights in the graph, and thereafter
an exponential time computation (involving no further queries) would actually produce the optimal cut.

For explicitly represented submodular functions, known inapproximability results for Max Cut in
graphs and hypergraphs provide an obvious limitation to the best possible approximation ratio. We
prove stronger limitations. For any fixed ε > 0, it is NP-hard to achieve an approximation factor of
(3

4 + ε) (or 5
6 + ε) in the general (or symmetric) case, respectively. These results are valid even when the

submodular function is given as a sum of polynomially many nonnegative submodular functions, each
depending only on a constant number of elements, which is the case for all the aforementioned problems.

Follow-up research. Following the conference version of this paper, several developments have been
made in the area of submodular maximization. In fact, some of them have been inspired by the results
and techniques in this paper. In particular, local-search constant-factor approximation algorithms have
been developed for maximizing a non-monotone submodular function subject to multiple knapsack (lin-
ear) constraints or multiple matroid constraints [30], and these algorithms have been further improved
in [32, 48]. For maximizing monotone submodular functions, optimal approximation algorithms have
been developed in the cases of a matroid constraint [47, 4], and multiple knapsack constraints [28].

The idea behind the information-theoretic lower bounds in this paper has been generalized to prove
hardness results for other problems, including social welfare maximization in combinatorial auctions
with submodular bidders [34], and non-monotone submodular maximization subject to matroid base
constraints [48]. A more general connection has been made between the approximability of submodular
maximization problems and properties of their multilinear relaxation [48], which can be also seen as
originating from this paper.

It has been also shown that submodular functions can be approximated point-wise within an Õ(
√
n)

factor using a polynomial number of value queries. This is optimal up to logarithmic factors [18]. Related
to this phenomenon are several Õ(

√
n)-approximation algorithms for submodular minimization under

various constraints [45, 18].

2 Non-adaptive algorithms

It is known that simply choosing a random cut is a good choice for Max Cut and Max Di-Cut, achieving
an approximation factor of 1/2 and 1/4 respectively. We show the natural role of submodularity here by
presenting the same approximation factors in the general case of submodular functions.

The Random Set Algorithm: RS.

• Return R = X(1/2), a uniformly random subset of X.

Theorem 2.1. Let f : 2X → R+ be a submodular function, OPT = maxS⊆X f(S) and let R denote a
uniformly random subset R = X(1/2). Then E[f(R)] ≥ 1

4OPT. In addition, if f is symmetric (f(S) =
f(X \ S) for every S ⊆ X), then E[f(R)] ≥ 1

2OPT.

Before proving this result, we show a useful probabilistic property of submodular functions (extending
the considerations of [12, 14]). This property will be essential in the analysis of our improved randomized
algorithm as well.

Lemma 2.2. Let g : 2X → R be submodular. Denote by A(p) a random subset of A where each element
appears with probability p. Then

E[g(A(p))] ≥ (1− p) g(∅) + p g(A).

Proof. By induction on the size of A: For A = ∅, the lemma is trivial. So assume A = A′ ∪ {x}, x /∈ A′.
Then A(p)∩A′ is a subset of A′ where each element appears with probability p; hence we denote it A′(p).

3

By submodularity, g(A(p))− g(A′(p)) ≥ g(A(p) ∪A′)− g(A′), and therefore

E[g(A(p))] ≥ E[g(A′(p)) + g(A(p) ∪A′)− g(A′)]
= E[g(A′(p))] + E[g(A(p) ∪A′)− g(A′)]
= E[g(A′(p))] + p (g(A)− g(A′)).

Applying the inductive hypothesis, E[g(A′(p))] ≥ (1 − p) g(∅) + p g(A′), we get the statement of the
lemma.

By a double application of Lemma 2.2, we obtain the following.

Lemma 2.3. Let f : 2X → R be submodular, A,B ⊆ X two (not necessarily disjoint) sets and A(p), B(q)
their independently sampled subsets, where each element of A appears in A(p) with probability p and each
element of B appears in B(q) with probability q. Then

E[f(A(p) ∪B(q))] ≥ (1− p)(1− q) f(∅) + p(1− q) f(A) + (1− p)q f(B) + pq f(A ∪B).

Proof. Condition on A(p) = R and define g(T) = f(R ∪ T). This is a submodular function as well and
Lemma 2.2 implies E[g(B(q))] ≥ (1−q) f(R)+q f(R∪B). Also, E[g(B(q))] = E[f(A(p)∪B(q)) | A(p) =
R], and by unconditioning: E[f(A(p) ∪ B(q))] ≥ E[(1 − q) f(A(p)) + q f(A(p) ∪ B)]. Finally, we apply
Lemma 2.2 once again: E[f(A(p))] ≥ (1−p) f(∅) +p f(A), and by applying the same to the submodular
function h(S) = f(S ∪B), E[f(A(p) ∪B)] ≥ (1− p) f(B) + p f(A ∪B). This implies the claim.

This lemma gives immediately the performance of Algorithm RS.

Proof. Denote the optimal set by S and its complement by S̄. We can write R = S(1/2)∪ S̄(1/2). Using
Lemma 2.3, we get

E[f(R)] ≥ 1
4
f(∅) +

1
4
f(S) +

1
4
f(S̄) +

1
4
f(X).

Every term is nonnegative and f(S) = OPT , so we get E[f(R)] ≥ 1
4OPT. In addition, if f is symmetric,

we also have f(S̄) = OPT and then E[f(R)] ≥ 1
2OPT.

As we show in Section 4.2, 1
4 -approximation is optimal for non-adaptive algorithms that are required

to return one of the queried sets. Here, we show that it is possible to design a 1
3 -approximation algorithm

which queries a polynomial number of sets non-adaptively and then returns a possibly different set after a
polynomial-time computation. The intuition behind the algorithm comes from the Max Di-Cut problem:
When does a random cut achieve only 1/4 of the optimum? This is if and only if the optimum contains
all the directed edges of the graph, i.e. the vertices can be partitioned into V = A ∪ B so that all edges
of the graph are directed from A to B. However, in this case it is easy to find the optimal solution,
by a local test on the in-degree and out-degree of each vertex. In the language of submodular function
maximization, this means that elements can be easily partitioned into those whose inclusion in S always
increases the value of f(S), and those which always decrease f(S). Our generalization of this local test
is the following.

Definition 2.4. Let R = X(1/2) denote a uniformly random subset of X. For each element x, define

ω(x) = E[f(R ∪ {x})− f(R \ {x})].

Note that these values can be estimated by random sampling, up to an error polynomially small
relative to maxR,x |f(R∪{x})− f(R \ {x})| ≤ OPT . This is sufficient for our purposes; in the following,
we assume that we have estimates ω̃(x) such that |ω(x)− ω̃(x)| ≤ OPT/n2.

4

The Non-Adaptive Algorithm: NA.

• Use random sampling to find ω̃(x) for each x ∈ X.

• Independently, sample a random set R = X(1/2).

• With prob. 8/9, return R.

• With prob. 1/9, return A = {x ∈ X : ω̃(x) > 0}.

Theorem 2.5. For any nonnegative submodular function, Algorithm NA achieves expected value at least
(1/3− o(1)) OPT .

Proof. Let A = {x ∈ X : ω̃(x) > 0} and B = X \ A = {x ∈ X : ω̃(x) ≤ 0}. Therefore we have
ω(x) ≥ −OPT/n2 for any x ∈ A and ω(x) ≤ OPT/n2 for any x ∈ B. We shall keep in mind that (A,B)
is a partition of all the elements, and so we have (A ∩ T) ∪ (B ∩ T) = T for any set T , etc.

Denote by C the optimal set, f(C) = OPT . Let f(A) = α, f(B ∩ C) = β and f(B ∪ C) = γ. By
submodularity, we have

α+ β = f(A) + f(B ∩ C) ≥ f(∅) + f(A ∪ (B ∩ C)) ≥ f(A ∪ C)

and
α+ β + γ ≥ f(A ∪ C) + f(B ∪ C) ≥ f(X) + f(C) ≥ OPT.

Therefore, either α, the value of A, is at least OPT/3, or else one of β and γ is at least OPT/3; we prove
that then E[f(R)] ≥ OPT/3 as well.

Let us start with β = f(B∩C). Instead of E[f(R)], we show that it is enough to estimate E[f(R∪(B∩
C))]. Recall that for any x ∈ B, we have ω(x) = E[f(R∪{x})−f(R\{x})] ≤ OPT/n2. Consequently, we
also have E[f(R∪{x})−f(R)] = 1

2ω(x) ≤ OPT/(2n2). Let us order the elements of B∩C = {b1, . . . , b`}
and write

f(R ∪ (B ∩ C)) = f(R) +
∑̀
j=1

(f(R ∪ {b1, . . . , bj})− f(R ∪ {b1, . . . , bj−1})).

By the property of decreasing marginal values, we get

f(R ∪ (B ∩ C)) ≤ f(R) +
∑̀
j=1

(f(R ∪ {bj})− f(R)) = f(R) +
∑

x∈B∩C
(f(R ∪ {x})− f(R))

and therefore

E[f(R ∪ (B ∩ C))] ≤ E[f(R)] +
∑

x∈B∩C
E[f(R ∪ {x})− f(R)]

≤ E[f(R)] + |B ∩ C|OPT
2n2

≤ E[f(R)] +
OPT

2n
.

So it is enough to lower-bound E[f(R ∪ (B ∩ C))]. We do this by defining a new submodular function,
g(R) = f(R∪(B∩C)), and applying Lemma 2.3 to E[g(R)] = E[g(C(1/2)∪C̄(1/2))]. The lemma implies
that

E[f(R ∪ (B ∩ C))] ≥ 1
4
g(∅) +

1
4
g(C) +

1
4
g(C̄) +

1
4
g(X)

≥ 1
4
g(∅) +

1
4
g(C) =

1
4
f(B ∩ C) +

1
4
f(C) =

β

4
+
OPT

4
.

Note that β ≥ OPT/3 implies E[f(R∪(B∩C))] ≥ OPT/3. Symmetrically, we show a similar analysis for
E[f(R∩(B∪C))]. Now we use the fact that for any x ∈ A, E[f(R)−f(R\{x})] = 1

2ω(x) ≥ −OPT/(2n2).

5

Let A \ C = {a1, a2, . . . , ak} and write

f(R) = f(R \ (A \ C)) +
k∑
j=1

(f(R \ {aj+1, . . . , ak})− f(R \ {aj , . . . , ak}))

≥ f(R \ (A \ C)) +
k∑
j=1

(f(R)− f(R \ {aj})

using the condition of decreasing marginal values. Note that R \ (A \ C) = R ∩ (B ∪ C). By taking the
expectation,

E[f(R)] ≥ E[f(R ∩ (B ∪ C))] +
k∑
j=1

E[f(R)− f(R \ {aj})]

= E[f(R ∩ (B ∪ C))]− |A \ C|OPT
2n2

≥ E[f(R ∩ (B ∪ C))]− OPT

2n
.

Again, we estimate E[f(R ∩ (B ∪ C))] = E[f(C(1/2) ∪ (B \ C)(1/2))] using Lemma 2.3. We get

E[f(R ∩ (B ∪ C))] ≥ 1
4
f(∅) +

1
4
f(C) +

1
4
f(B \ C) +

1
4
f(B ∪ C) ≥ OPT

4
+
γ

4
.

Now we combine our estimates for E[f(R)]:

E[f(R)] +
OPT

2n
≥ 1

2
E[f(R ∪ (B ∩ C))] +

1
2
E[f(R ∩ (B ∪ C))] ≥ OPT

4
+
β

8
+
γ

8
.

Finally, the expected value obtained by the algorithm is

8
9
E[f(R)] +

1
9
f(A) ≥ 2

9
OPT − 4

9n
OPT +

β

9
+
γ

9
+
α

9
≥
(

1
3
− 4

9n

)
OPT

since α+ β + γ ≥ OPT .

3 Adaptive algorithms

We turn to adaptive algorithms for the problem of maximizing a general nonnegative submodular function.
We propose several algorithms improving the 1

4 -approximation achieved by a random set.

3.1 Deterministic local search

Here, we present a deterministic 1
3 -approximation algorithm. Our deterministic algorithm is based on a

simple local-search technique. We try to increase the value of our solution S by either including a new
element in S or discarding one of the elements of S. We call S a local optimum if no such operation
increases the value of S. Local optima have the following property which was first observed in [5, 21].

Lemma 3.1. Given a submodular function f , if S is a local optimum of f , and I ⊆ S or I ⊇ S, then
f(I) ≤ f(S).

This property turns out to be very useful in comparing a local optimum to the global optimum.
However, it is known that finding a local optimum for the Max Cut problem is PLS-complete [42].
Therefore, we relax our local search and find an approximate local optimal solution.

Local Search Algorithm: LS.

1. Let S := {v} where f({v}) is the maximum over all singletons v ∈ X.

6

2. If there exists an element a ∈ X\S such that f(S ∪ {a}) > (1 + ε
n2)f(S), then let S := S ∪ {a},

and go back to Step 2.

3. If there exists an element a ∈ S such that f(S\{a}) > (1 + ε
n2)f(S), then let S := S\{a}, and go

back to Step 2.

4. Return the maximum of f(S) and f(X\S).

It is easy to see that if the algorithm terminates, the set S is a (1 + ε
n2)-approximate local optimum,

in the following sense.

Definition 3.2. Given f : 2X → R, a set S is called a (1+α)-approximate local optimum, if (1+α)f(S) ≥
f(S \ {v}) for any v ∈ S, and (1 + α)f(S) ≥ f(S ∪ {v}) for any v /∈ S.

We prove the following analogue of Lemma 3.1.

Lemma 3.3. If S is an (1 + α)-approximate local optimum for a submodular function f then for any
subset I such that I ⊆ S or I ⊇ S, we have f(I) ≤ (1 + nα)f(S).

Proof. Let I = T1 ⊆ T2 ⊆ . . . ⊆ Tk = S be a chain of sets where Ti\Ti−1 = {ai}. For each 2 ≤ i ≤ k,
we know that f(Ti)− f(Ti−1) ≥ f(S)− f(S \ {ai}) ≥ −αf(S) using the submodularity and approximate
local optimality of S. Summing up these inequalities, we get f(S) − f(I) ≥ −kαf(S). Thus f(I) ≤
(1 + kα)f(S) ≤ (1 + nα)f(S). This completes the proof for set I ⊆ S. The proof for I ⊇ S is very
similar.

Theorem 3.4. Algorithm LS is a
(

1
3 −

ε
n

)
-approximation algorithm for maximizing nonnegative submod-

ular functions, and a
(

1
2 −

ε
n

)
-approximation algorithm for maximizing nonnegative symmetric submod-

ular functions. The algorithm uses at most O(1
εn

3 log n) oracle calls.

Proof. Consider an optimal solution C and let α = ε
n2 . If the algorithm terminates, the set S obtained

at the end is a (1 + α)-approximate local optimum. By Lemma 3.3, f(S ∩ C) ≤ (1 + nα)f(S) and
f(S ∪ C) ≤ (1 + nα)f(S). Using submodularity, f(S ∪ C) + f(X\S) ≥ f(C\S) + f(X) ≥ f(C\S), and
f(S ∩ C) + f(C\S) ≥ f(C) + f(∅) ≥ f(C). Putting these inequalities together, we get

2(1 + nα)f(S) + f(X\S) ≥ f(S ∩ C) + f(S ∪ C) + f(X\S)
≥ f(S ∩ C) + f(C\S) ≥ f(C).

For α = ε
n2 , this implies that either f(S) ≥ (1

3 −
ε
n)OPT or f(X\S) ≥ (1

3 −
ε
n)OPT .

For symmetric submodular functions, we get

2(1 + nα)f(S) ≥ f(S ∩ C) + f(S ∪ C̄) = f(S ∩ C) + f(S̄ ∩ C) ≥ f(C)

and hence f(S) is a (1
2 −

ε
n)-approximation.

To bound the running time of the algorithm, let v be a singleton of maximum value f({v}). It is
simple to see that OPT ≤ nf({v}). After each iteration, the value of the function increases by a factor of
at least (1 + ε

n2). Therefore, if we iterate k times, then f(S) ≥ (1 + ε
n2)kf({v}) and yet f(S) ≤ nf({v}),

hence k = O(1
εn

2 log n). The number of queries is O(1
εn

3 log n).

Tight example. Consider a submodular function defined as a cut function in a directed graph D =
(V,A). The graph has 4 vertices, V = {a, b, c, d} and 4 arcs, A = {(a, b), (b, c), (c, b), (c, d)}. The cut
function f(S) denotes the number of arcs leaving S. The optimum solution is S∗ = {a, c} which gives
a cut of size f(S∗) = 3. However, the algorithm LS could terminate with the set S = {a, b} which is a
local optimum of value f(S) = 1 (switching any element keeps the objective value the same).

7

3.2 Randomized local search

Next, we present a randomized algorithm which improves the approximation ratio of 1/3 to 2/5. The
main idea behind this algorithm is to find a “smoothed” local optimum, where elements are sampled
randomly but with different probabilities, based on some underlying set A. The general approach of
local search, based on a function derived from the one we are interested in, has been referred to as
“non-oblivious local search” in the literature [2]. The auxiliary function we are trying to optimize is the
multilinear extension of f(S) (see [3, 4]):

F (x) =
∑
S⊆X

f(S)
∏
i∈S

xi
∏
j /∈S

(1− xj).

Definition 3.5. We say that a set is sampled with bias δ based on A, if elements in A are sampled inde-
pendently with probability p = 1+δ

2 and elements outside of A are sampled independently with probability
q = 1−δ

2 . We denote this random set by R(A, δ).

Observe that the expected value E[f(R(A, δ))] is equal to F (x) evaluated at a point x ∈ [0, 1]X whose
coordinates have only two distinct values, p and q. The set A describes exactly those coordinates whose
value is p. Our algorithm effectively performs a local search over such points.

The Smooth Local Search algorithm: SLS.

1. Fix parameters δ, δ′ ∈ [−1, 1]. Start with A = ∅. Let n = |X| denote the total number of elements.
In the following, use an estimate for OPT , for example from Algorithm LS.

2. For each element x, define

ωA,δ(x) = E[f(R(A, δ) ∪ {x})]−E[f(R(A, δ) \ {x})].

By repeated sampling, we compute ω̃A,δ(x), an estimate of ωA,δ(x) within ± 1
n2OPT w.h.p.

3. If there is x ∈ X \A such that ω̃A,δ(x) > 2
n2OPT , include x in A and go to Step 2.

4. If there is x ∈ A s.t. ω̃A,δ(x) < − 2
n2OPT , remove x from A and go to Step 2.

5. Return a random set R(A, δ′), for a suitably chosen δ′.

In effect, we find an approximate local optimum of a derived function Φ(A) = E[f(R(A, δ))]. Then
we return a set sampled according to R(A, δ′); possibly for δ′ 6= δ. One can run Algorithm SLS with
δ = δ′ and prove that the best approximation for such parameters is achieved by setting δ = δ′ =

√
5−1
2 ,

the golden ratio. Then, we get an approximation factor of 3−
√

5
2 − o(1) ' 0.38. However, our best result

is achieved by taking a combination of two choices as follows.

Theorem 3.6. Algorithm SLS runs in polynomial time. If we run SLS with δ = 1/3 and δ′ is chosen
randomly to be 1/3 with probability 0.9, or −1 with probability 0.1, the expected value of the solution is
at least (2

5 − o(1))OPT .

Proof. Let Φ(A) = E[f(R(A, δ))]. We set B = X\A. Recall that inR(A, δ), elements from A are sampled
with probability p = 1+δ

2 , while elements from B are sampled with probability q = 1−δ
2 . Consider Step

3 where an element x is added to A. Let A′ = A ∪ {x} and B′ = B \ {x}. The reason why x is added to
A is that ω̃A,δ(x) > 2

n2OPT ; i.e. ωA,δ(x) > 1
n2OPT . During this step, Φ(A) increases by

Φ(A′)− Φ(A) = E[f(A′(p) ∪B′(q))− f(A(p) ∪B(q))]
= (p− q) E[f(A(p) ∪B′(q) ∪ {x})− f(A(p) ∪B′(q))]
= δ E[f(R(A, δ) ∪ {x})− f(R(A, δ) \ {x})]

= δ ωA,δ(x) >
δ

n2
OPT.

8

Similarly, executing Step 4 increases Φ(A) by at least δ
n2OPT . Since the value of Φ(A) is always between

0 and OPT , the algorithm cannot iterate more than n2/δ times and thus it runs in polynomial time.
From now on, let A be the set at the end of the algorithm and B = X \A. We also use R = A(p)∪B(q)

to denote a random set from the distribution R(A, δ). We denote by C the optimal solution, while our
algorithm returns either R (for δ′ = δ) or B (for δ′ = −1). When the algorithm terminates, we have
ωA,δ(x) ≥ − 3

n2OPT for any x ∈ A, and ωA,δ(x) ≤ 3
n2OPT for any x ∈ B. Consequently, for any x ∈ B

we have E[f(R ∪ {x}) − f(R)] = Pr[x /∈ R]E[f(R ∪ {x}) − f(R \ {x})] = 2
3ωA,δ(x) ≤ 2

n2OPT , using
Pr[x /∈ R] = p = 2/3. By submodularity, we get

E[f(R ∪ (B ∩ C))] ≤ E[f(R)] +
∑

x∈B∩C
E[f(R ∪ {x})− f(R))]

≤ E[f(R)] + |B ∩ C| 2
n2
OPT

≤ E[f(R)] +
2
n
OPT.

Similarly, we can obtain E[f(R ∩ (B ∪ C))] ≤ E[f(R)] + 2
nOPT. This means that instead of R, we can

analyze R ∪ (B ∩ C) and R ∩ (B ∪ C). In order to estimate E[f(R ∪ (B ∩ C))] and E[f(R ∩ (B ∪ C))],
we use a further extension of Lemma 2.3 which can be proved by another iteration of the same proof:

(∗) E[f(A1(p1) ∪A2(p2) ∪A3(p3))] ≥
∑

I⊆{1,2,3}

∏
i∈I

pi
∏
i/∈I

(1− pi) f

(⋃
i∈I

Ai

)
.

First, we deal with R ∩ (B ∪ C) = (A ∩ C)(p) ∪ (B ∩ C)(q) ∪ (B \ C)(q). We plug in δ = 1/3, i.e.
p = 2/3 and q = 1/3. Then (*) yields

E[f(R ∩ (B ∪ C))] ≥ 8
27
f(A ∩ C) +

2
27
f(B ∪ C) +

2
27
f(B ∩ C) +

4
27
f(C) +

4
27
f(F) +

1
27
f(B)

where we denote F = (A∩C)∪ (B \C) and we discarded the terms f(∅) ≥ 0 and f(B \C) ≥ 0. Similarly,
we estimate E[f(R∪ (B∩C))], applying (*) to a submodular function h(R) = f(R∪ (B∩C)) and writing
E[f(R ∪ (B ∩ C))] = E[h(R)] = E[h((A ∩ C)(p) ∪ (A \ C)(p) ∪B(q))]:

E[f(R ∪ (B ∩ C))] ≥ 8
27
f(A ∪ C) +

2
27
f(B ∪ C) +

2
27
f(B ∩ C) +

4
27
f(C) +

4
27
f(F̄) +

1
27
f(B).

Here, F̄ = (A \C)∪ (B ∩C). We use E[f(R)] + 2
nOPT ≥

1
2 (E[f(R∩ (B ∪C))] + E[f(R∪ (B ∩C))]) and

combine the two estimates.

E[f(R)] +
2
n
OPT ≥ 4

27
f(A ∩ C) +

4
27
f(A ∪ C) +

2
27
f(B ∩ C) +

2
27
f(B ∪ C) +

4
27
f(C) +

2
27
f(F) +

2
27
f(F̄) +

1
27
f(B).

Now we add 3
27f(B) on both sides and apply submodularity: f(B)+f(F) ≥ f(B∪C)+f(B\C) ≥ f(B∪C)

and f(B) + f(F̄) ≥ f(B ∪ (A \ C)) + f(B ∩ C) ≥ f(B ∩ C). This leads to

E[f(R)] +
1
9
f(B) +

2
n
OPT ≥ 4

27
f(A ∩ C) +

4
27
f(A ∪ C) +

4
27
f(B ∩ C) +

4
27
f(B ∪ C) +

4
27
f(C)

and since f(A ∩ C) + f(B ∩ C) ≥ f(C) and f(A ∪ C) + f(B ∪ C) ≥ f(C), we get

E[f(R)] +
1
9
f(B) +

2
n
OPT ≥ 12

27
f(C) =

4
9
OPT.

This implies that 9
10E[f(R)] + 1

10f(B) ≥ (2
5 −

9
5n)OPT .

The analysis of this algorithm is tight, as can be seen from the following example.

9

Tight example. Consider V = {a, b, c, d} and a directed graph D = (V,A), consisting of 3 edges,
A = {(a, b), (b, c), (c, d)}. Let us define a submodular function f : 2V → R+ corresponding to directed
cuts in D, by defining f(S) as the number of edges going from S to V \ S.

Observe that A = {a, b} could be the set found by our algorithm. In fact, this is a local optimum of
E[f(R(A, δ))] for any value of δ, since we have E[f(R({a, b}, δ))] = 2pq+p2 = 1−q2 (where p = (1+δ)/2
and q = (1 − δ)/2). It can be verified that the value of E[f(R(A, δ))] for any A obtained by switching
one element is at most 1− q2.

Algorithm SLS returns either R(A, 1/3) of expected value 1− (1/3)2 = 8/9, with probability 0.9, or
B of value 0, with probability 0.1. Thus the expected value returned by SLS is 0.8, while the optimum
is f({a, c}) = 2.

This example can be circumvented if we define SLS to take the maximum of E[f(R(A, 1/3))] and
f(B) rather than a weighted average. However, it is not clear how to use this in the analysis.

3.3 Further directions

The SLS algorithm can be presented more generally as follows.

Algorithm SLS∗.

1. Find an approximate local maximum of E[f(R(A, δ))], for some δ ∈ [0, 1].

2. Return a random set from the distribution R(A, δ′) for some δ′ ∈ [−1, 1].

The algorithm SLS uses a fixed value of δ = 1/3 and two possible values of δ′ = 1/3 or δ′ = −1. More
generally, we can search for the best values of δ and δ′ for a given instance. Then the algorithm SLS∗

might have a chance to improve the approximation factor of 2/5. Considering our hardness results, the
best we can hope for would be a 1

2 -approximation in the general case. This might be possible with SLS∗;
however, we show that it is not enough to fix a value of δ in advance, as we do in our algorithms above.
Again, we construct submodular functions corresponding to directed cuts in graphs. Our examples are
all Maximum Directed-Cut instances.

Example 1. Consider a directed graph on V = {a, b, c, d} with 6 edges: (a, b) of weight p, (b, a) of
weight q, (b, c) of weight 1, (c, b) of weight 1, (c, d) of weight p and (d, c) of weight q.

It can be verified that A = {a, b} is a local optimum for E[f(R(A, δ))] such that p = (1 + δ)/2 and
q = (1− δ)/2. Moreover, for any (possibly different) probabilities p′ = (1 + δ′)/2 and q′ = (1− δ′)/2, we
have

E[f(R({a, b}, δ′))] = p′q′(w(a, b) + w(b, a) + w(c, d) + w(d, c))
+p′2w(b, c) + q′2w(c, b) = 2p′q′ + p′2 + q′2 = 1.

Thus Algorithm SLS∗ with a fixed choice of δ and a flexible choice of δ′ returns a set of expected value
1. The optimum solution here is f({a, c}) = 1 + 2p, so this yields an approximation factor 1/(1 + 2p).
Since p ≥ 1/2, the only value which gives a 1

2 -approximation is δ = 0 and p = q = 1/2. For this case, we
design a different counterexample.

Example 2. Consider a directed graph on V = {a, b, c, d} with 5 edges: (a, b) of weight 3
2p, (b, a) of

weight 3
2q, (b, c) of weight 1, (c, d) of weight 3

2p and (d, c) of weight 3
2q.

It can be seen that A = {a, b} is a local optimum for p ≤ 3/4. For a given p′, q′, p′+q′ = 1, Algorithm
SLS∗ returns

E[f(R({a, b}, δ′))] = p′q′(w(a, b) + w(b, a) + w(c, d) + w(d, c)) + p′2w(b, c) = 3p′q′ + p′2

which is maximized for p′ = 3/4, q′ = 1/4. Then, the algorithm achieves 9/8 while the optimum is
f({b, d}) = 1 + 3q = 5/2 for p = q = 1/2. Thus, for small δ and p, q close to 1/2, the approximation
factor is also bounded away from 1/2.

10

4 Inapproximability Results

In this section, we give hardness results for submodular maximization. Our results are of two flavors.
First, we consider submodular functions in the form of a sum of “building blocks” of constant size, more
precisely nonnegative submodular functions depending only on a constant number of elements. We refer
to this as succint representation. Note that all the special cases such as Max Cut are of this type.
For algorithms in this model, we prove complexity-theoretic inapproximability results, the strongest one
stating that in the general case, a (3

4 + ε)-approximation for any fixed ε > 0 would imply P = NP .
In the value oracle model, we show a much tighter result. Namely, any algorithm achieving a (1

2 + ε)-
approximation for a fixed ε > 0 would require an exponential number of queries to the value oracle. This
holds even in the case of symmetric submodular functions, i.e. our 1

2 -approximation algorithm is optimal
in this case.

4.1 NP-hardness results

Our reductions are based on H̊astad’s 3-bit and 4-bit PCP verifiers [25]. Some inapproximability results
can be obtained immediately from [25], by considering the known special cases of submodular maximiza-
tion, e.g. Max Cut in 4-uniform hypergraphs which is NP-hard to approximate within a factor better
than 7

8 .
We obtain stronger hardness results by reductions from systems of parity equations. The parity

function is not submodular, but we can obtain hardness results by a careful construction of a “submodular
gadget” for each equation.

Theorem 4.1. There is no polynomial-time (5
6 + ε)-approximation algorithm to maximize a nonnegative

symmetric submodular function in succint representation, unless P = NP .

Proof. Consider an instance of Max E4-Lin-2, a system E of m parity equations on 4 boolean variables
each. Let us define two elements for each variable, Ti and Fi, corresponding to variable xi being either
true or false. For each equation e on variables (xi, xj , xk, x`), we define a function ge(S). (This is our
“submodular gadget”.) Let S′ = S ∩{Ti, Fi, Tj , Fj , Tk, Fk, T`, F`}. We say that S′ is a valid quadruple, if
it defines a boolean assignment to xi, xj , xk, x`, i.e. contains exactly one element from each pair {Ti, Fi}.
The function value is determined by S′:

• If |S′| < 4, let ge(S) = |S′|. If |S′| > 4, let ge(S) = 8− |S′|.

• If S′ is a valid quadruple satisfying e, let ge(S) = 4 (a true quadruple).

• If S′ is a valid quadruple not satisfying e, let ge(S) = 8/3 (a false quadruple).

• If |S′| = 4 but S′ is not a valid quadruple, let ge(S) = 10/3 (an invalid quadruple).

It can be verified that this is a submodular function, using the structure of the parity constraint.
We define f(S) =

∑
e∈E ge(S). This is again a nonnegative submodular function. Observe that for each

equation, it is more profitable to choose an invalid assignment than a valid assignment which does not
satisfy the equation. Nevertheless, we claim that WLOG the maximum is obtained by selecting exactly
one of Ti, Fi for each variable: Consider a set S and call a variable undecided, if S contains both or neither
of Ti, Fi. For each equation with an undecided variable, we get value at most 10/3. Now, modify S into
S̃ by randomly selecting exactly one of Ti, Fi for each undecided variable. The new set S̃ induces a valid
assignment to all variables. For equations which had a valid assignment already in S, the value does not
change. Each equation which had an undecided varible is satisfied by S̃ with probability 1/2. Therefore,
the expected value for each such equation is 1

2 (8
3 +4) = 10

3 , at least as before, and E[f(S̃)] ≥ f(S). Hence
there must exist a set S̃ such that f(S̃) ≥ f(S) and S̃ induces a valid assignment.

Consequently, we have OPT = max f(S) = 8
3m+ 4

3#SAT where #SAT is the maximum number of
satisfiable equations. Since it is NP-hard to distinguish whether #SAT ≥ (1−ε)m or #SAT ≤ (1

2 +ε)m,
it is also NP-hard to distinguish between OPT ≥ (4− ε)m and OPT ≤ (10

3 + ε)m.

11

In the case of general nonnegative submodular functions, we improve the hardness threshold to 3/4.
This hardness result is slightly more involved. It requires certain properties of H̊astad’s 3-bit PCP verifier,
implying that Max E3-Lin-2 is NP-hard to approximate even for linear systems of a special structure.

Lemma 4.2. Fix any ε > 0 and consider systems of weighted linear equations (of total weight 1) over
boolean variables, partitioned into X and Y, so that each equation contains 1 variable xi ∈ X and 2
variables yj , yk ∈ Y. Define a matrix P ∈ [0, 1]Y×Y where Pjk is the weight of all equations where the
first variable from Y is yj and the second variable is yk. Then it is NP-hard to decide whether there is a
solution satisfying equations of weight at least 1− ε or whether any solution satisfies equations of weight
at most 1/2 + ε, even in the special case where P is positive semidefinite.

Proof. We show that the system of equations arising from H̊astad’s 3-bit PCP (see [25], pages 24-25)
satisfies the properties that we need. In his notation, the equations are generated by choosing f ∈ FU
and g1, g2 ∈ FW where U and W , U ⊂ W , are randomly chosen and FU ,FW are the spaces of all ±1
functions on {−1,+1}U and {−1,+1}W , respectively. An equation corresponds to a 3-bit test on f, g1, g2

and its weight is the probability that the verifier performs this particular test. One variable is associated
with f ∈ FU , indexing a bit in the Long Code of the first prover, and two variables are associated with
g1, g2 ∈ FW , indexing bits in the Long Code of the second prover. This defines a natural partition of
variables into X and Y.

The actual variables appearing in the equations are determined by the folding convention; for the
second prover, let us denote them by yj , yk where j = φ(g1), k = φ(g2). The particular function φ will
not matter to us, as long as it is the same for both g1 and g2 (which is the case in [25]). Pjk is the
probability that the selected variables corresponding to the second prover are yj and yk. Let PU,Wjk be
the same probability, conditioned on a particular choice of U,W . Since P is a positive linear combination
of PU,W , it suffices to prove that each PU,W is positive semidefinite. The way that g1, g2 are generated
(for given U,W) is that g1 : {−1,+1}W → {−1,+1} is uniformly random and g2(y) = g1(y)f(y|U)µ(y),
where f : {−1,+1}U → {−1,+1} uniformly random and µ : {−1,+1}W → {−1,+1} is a “random
noise”, where µ(x) = 1 with probability 1 − ε and −1 with probability ε. The value of ε will be very
small, certainly ε < 1/2.

Both g1 and g2 are distributed uniformly (but not independently) in FW . The probability of sampling
(g1, g2) is the same as the probability of sampling (g2, g1), hence PU,W is a symmetric matrix. It remains
to prove positive semidefiniteness. Let us choose an arbitrary function A : Y → R and analyze∑

j,k

PU,Wjk A(j)A(k) = Eg1,g2 [A(φ(g1))A(φ(g2))] = Eg1,f,µ[A(φ(g1))A(φ(g1fµ))]

where g1, f, µ are sampled as described above. If we prove that this quantity is always nonnegative, then
PU,W is positive semidefinite. Let B : FW → R, B = A ◦ φ; i.e., we want to prove E[B(g1)B(g1fµ)] ≥ 0.
We can expand B using its Fourier transform,

B(g) =
∑

α⊆{−1,+1}W

B̂(α)χα(g).

Here, χα(g) =
∏
x∈α g(x) are the Fourier basis functions. We obtain

E[B(g1)B(g1fµ)] =
∑

α,β⊆{−1,+1}W

E[B̂(α)χα(g1)B̂(β)χβ(g1fµ)]

=
∑

α,β⊆{−1,+1}W

B̂(α)B̂(β)
∏

x∈α∆β

Eg1 [g1(x)] · Ef [
∏
y∈β

f(y|U)]
∏
z∈β

Eµ[µ(z)].

The terms for α 6= β are zero, since then Eg1 [g1(x)] = 0 for each x ∈ α∆β. Therefore,

E[B(g1)B(g1fµ)] =
∑

β⊆{−1,+1}W

B̂2(β)Ef [
∏
y∈β

f(y|U)]
∏
z∈β

Eµ[µ(z)].

12

Now all the terms are nonnegative, since Eµ[µ(z)] = 1− 2ε > 0 for every z and Ef [
∏
y∈β f(y|U)] = 1 or

0, depending on whether every string in {−1,+1}U is the projection of an even number of strings in β (in
which case the product is 1) or not (in which case the expectation gives 0 by symmetry). To conclude,∑

j,k

PU,Wjk A(j)A(k) = E[B(g1)B(g1fµ)] ≥ 0

for any A : Y → R, which means that each PU,W and consequently also P is positive semidefinite.

Now we are ready to show the following.

Theorem 4.3. There is no polynomial-time (3
4 + ε)-approximation algorithm to maximize a nonnegative

submodular function in succint representation, unless P = NP .

Proof. We define a reduction from the system of linear equations provided by Lemma 4.2. For each
variable xi ∈ X , we have two elements Ti, Fi and for each variable yj ∈ Y, we have two elements T̃j , F̃j .
Denote the set of equations by E . Each equation e contains one variable from X and two variables from
Y. For each e ∈ E , we define a submodular function ge(S) tailored to this structure. Assume that
S ⊆ {Ti, Fi, T̃j , F̃j , T̃k, F̃k}, the elements corresponding to this equation; ge does not depend on other
than these 6 elements. We say that S is a valid triple, if it contains exactly one of each {Ti, Fi}.

• The value of each singleton Ti, Fi corresponding to a variable in X is 1.

• The value of each singleton T̃j , F̃j corresponding to a variable in Y is 1/2.

• For |S| < 3, ge(S) is the sum of its singletons, except ge({Ti, Fi}) = 1 (a weak pair).

• For |S| > 3, ge(S) = ge(S̄).

• If S is a valid triple satisfying e, let ge(S) = 2 (true triple).

• If S is a valid triple not satisfying e, let ge(S) = 1 (false triple).

• If S is an invalid triple containing exactly one of {Ti, Fi} then ge(S) = 2 (invalid triple of type I).

• If S is an invalid triple containing both/neither of {Ti, Fi} then ge(S) = 3/2 (invalid triple of type
II).

Verifying that ge is submodular is more tedious here; we omit the details. Let us move on to the
important properties of ge. A true triple gives value 2, while a false triple gives value 1. For invalid
assignments of value 3/2, we can argue as before that a random valid assignment achieves expected
value 3/2 as well, so we might as well choose a valid assignment. However, in this gadget we also have
invalid triples of value 2 (type I - we cannot avoid this due to submodularity.) Still, we prove that the
optimum is attained for a valid boolean assignment. The main argument is, roughly, that if there are
many invalid triples of type I, there must be also many equations where we get value only 1 (a weak pair
or its complement). For this, we use the positive semidefinite property from Lemma 4.2.

We define f(S) =
∑
e∈E w(e)ge(S) where w(e) is the weight of equation e. We claim that max f(S) =

1+maxwSAT , where wSAT is the weight of satisfied equations. First, for a given boolean assignment, the
corresponding set S selecting Ti or Fi for each variable achieves value f(S) = wSAT · 2 + (1−wSAT) · 1 =
1 + wSAT . The non-trivial part is proving that the optimum f(S) is attained for a set inducing a valid
boolean assignment.

Consider any set S and define V : E → {−1, 0,+1} where V (e) = +1 if S induces a satisfying
assignment to equation e, V (e) = −1 if S induces a non-satisfying assignment to e and V (e) = 0 if S
induces an invalid assignment to e. Also, define A : Y → {−1, 0,+1}, where A(j) = |S ∩ {T̃j , F̃j}| − 1,
i.e. A(j) = 0 if S induces a valid assignment to yj , and A(j) = ±1 if S contains both/neither of T̃j , F̃j .

13

Observe that for an equation e whose Y-variables are yj , yk, only one of V (e) and A(j)A(k) can be
nonzero. The gadget ge(S) is designed in such a way that

ge(S) ≤ 1
2

(3−A(j)A(k) + V (e)).

This can be checked case by case: for valid assignments, A(j)A(k) = 0 and we get value 2 or 1 depending
on V (e) = ±1. For invalid assignments, V (e) = 0; if at least one of the variables yj , yk has a valid
assignment, then A(j)A(k) = 0 and we can get at most 3/2 (an invalid triple of type II). If both yj , yk are
invalid and A(j)A(k) = 1, then we can get only 1 (a weak pair or its complement) and if A(j)A(k) = −1,
we can get 2 (an invalid triple of type I). The total value is

f(S) =
∑
e∈E

w(e)ge(S) ≤
∑

e=(xi,yj ,yk)

w(e) · 1
2

(3−A(j)A(k) + V (e)).

Now we use the positive semidefinite property of our linear system, which means that∑
e=(x,yj ,yk)

w(e)A(j)A(k) =
∑
j,k

PjkA(j)A(k) ≥ 0

for any function A. Hence, f(S) ≤ 1
2

∑
e∈E w(e)(3+V (e)). Let us modify S into a valid boolean assignment

by choosing randomly one of Ti, Fi for all variables such that S contains both/neither of Ti, Fi. Denote
the new set by S̃ and the equations containing any randomly chosen variable by R. We satisfy each
equation in R with probability 1/2, which gives expected value 3/2 for each such equation, while the
value for other equations remains unchanged.

E[f(S̃)] =
3
2

∑
e∈R

w(e) +
1
2

∑
e∈E\R

w(e)(3 + V (e)) =
1
2

∑
e∈E

w(e)(3 + V (e)) ≥ f(S).

This means that there is a set S̃ of optimal value, inducing a valid boolean assignment.

4.2 Value query complexity results

Finally, we prove that our 1
2 -approximation for symmetric submodular functions is optimal in the value

oracle model. First, we present a similar result for the “random set” model, which illustrates some of the
ideas needed for the more general result.

Proposition 4.4. For any δ > 0, there is ε > 0 such that for any (random) sequence of queries Q ⊆ 2X ,
|Q| ≤ 2εn, there is a nonnegative submodular function f such that (with high probability) for all queries
Q ∈ Q,

f(Q) ≤
(

1
4

+ δ

)
OPT.

Proof. Let ε = 1
32δ

2 and fix a sequence Q ⊆ 2X of 2εn queries. We prove the existence of f by the
probabilistic method. Consider functions corresponding to cuts in a complete bipartite directed graph
on (C,D), fC(S) = |S ∩C| · |S̄ ∩D|. We choose a uniformly random C ⊆ X and D = X \C. The idea is
that for any query, a typical C bisects both Q and its complement, which means that fC(Q) is roughly
1
4OPT . We call a query Q ∈ Q “successful”, if fC(Q) > (1

4 + δ)OPT . Our goal is to prove that with
high probability, C avoids any successful query.

We use Chernoff’s bound: For any set A ⊆ X of size a,

Pr[|A ∩ C| > 1
2

(1 + δ)|A|] = Pr[|A ∩ C| < 1
2

(1− δ)|A|] < e−δ
2a/2.

With probability at least 1 − 2e−2δ2n, the size of C is in [(1
2 − δ)n, (

1
2 + δ)n], so we can assume this

is the case. We have OPT ≥ (1
4 − δ2)n2 ≥ 1

4n
2/(1 + δ) (for small δ > 0). No query can achieve

14

fC(Q) > (1
4 +δ)OPT ≥ 1

16n
2 unless |Q| ∈ [1

16n,
15
16n], so we can assume this is the case for all queries. By

Chernoff’s bound, Pr[|Q∩C| > 1
2 (1+δ)|Q|] < e−δ

2n/32 and Pr[|Q̄∩D| > 1
2 (1+δ)|Q̄|] < e−δ

2n/32. If neither
of these events occurs, the query is not successful, since fC(Q) = |Q∩C| · |Q̄∩D| < 1

4 (1 + δ)2|Q| · |Q̄| ≤
1
16 (1 + δ)2n2 ≤ 1

4 (1 + δ)3OPT ≤ (1
4 + δ)OPT.

For now, fix a sequence of queries. By the union bound, we get that the probability that any query
is successful is at most 2εn2e−δ

2n/32 = 2(2
e)εn. Thus with high probability, there is no successful query

for C. Even for a random sequence, the probabilistic bound still holds by averaging over all possible
sequences of queries. We can fix any C for which the bound is valid, and then the claim of the lemma
holds for the submodular function fC .

This means that in the model where an algorithm only samples a sequence of polynomially many
sets and returns the one of maximal value, we cannot improve our 1

4 -approximation (Section 2). As we
show next, this example can be modified for the model of adaptive algorithms with value queries, to
show that our 1

2 -approximation for symmetric submodular functions is optimal, even among all adaptive
algorithms.

Theorem 4.5. For any ε > 0, there are instances of nonnegative symmetric submodular maximization,
such that there is no (adaptive, possibly randomized) algorithm using less than eε

2n/16 queries that always
finds a solution of expected value at least (1

2 + ε)OPT .

Proof. We construct a nonnegative symmetric submodular function on [n] = C ∪ D, |C| = |D| = n/2,
which has the following properties:

• f(S) depends only on k = |S ∩C| and ` = |S ∩D|. Henceforth, we write f(k, `) to denote the value
of any such set.

• When |k − `| ≤ εn, the function has the form

f(k, `) = (k + `)(n− k − `) = |S|(n− |S|),

i.e., the cut function of a complete graph. The value depends only on the size of S, and the
maximum attained by such sets is 1

4n
2.

• When |k − `| > εn, the function has the form

f(k, `) = k(n− 2`) + (n− 2k)`−O(εn2),

close to the cut function of a complete bipartite graph on (C,D) with edge weights 2. The maximum
in this range is OPT = 1

2n
2(1−O(ε)), attained for k = 1

2n and ` = 0 (or vice versa).

If we construct such a function, we can argue as follows. Consider any algorithm, for now deterministic.
(For a randomized algorithm, let us condition on its random bits.) Let the partition (C,D) be random and
unknown to the algorithm. The algorithm issues some queries Q to the value oracle. Call Q “unbalanced”,
if |Q∩C| differs from |Q∩D| by more than εn. For any query Q, the probability that Q is unbalanced is
at most e−ε

2n/8, by standard Chernoff bounds. Therefore, for any fixed sequence of eε
2n/16 queries, the

probability that any query is unbalanced is still at most eε
2n/16 · e−ε2n/8 = e−ε

2n/16. As long as queries
are balanced, the algorithm gets the same answer regardless of (C,D). Hence, it follows the same path
of computation and issues the same queries. With probability at least 1 − e−ε2n/16, all its queries will
be balanced and it will never find out any information about the partition (C,D). For a randomized
algorithm, we can now average over its random choices; still, with probability at least 1 − e−ε2n/16 the
algorithm will never query any unbalanced set.

Alternatively, consider a function g(S) which is defined by g(S) = |S|(n−|S|) for all sets S. We proved
that with high probability, the algorithm will never query a set where f(S) 6= g(S) and hence cannot
distinguish between the two instances. However, maxS f(S) = 1

2n
2(1 − O(ε)), while maxS g(S) = 1

4n
2.

This means that there is no (1
2 + ε)-approximation algorithm with a subexponential number of queries,

for any ε > 0.

15

It remains to construct the function f(k, `) and prove its submodularity. For convenience, assume
that εn is an integer. In the range where |k− `| ≤ εn, we already defined f(k, `) = (k+ `)(n− k− `). In
the range where |k − `| ≥ εn, let us define

f(k, `) = k(n− 2`) + (n− 2k)`+ ε2n2 − 2εn|k − `|.

The ε-terms are chosen so that f(k, `) is a smooth function on the boundary of the two regions. E.g., for
k − ` = εn, we get f(k, `) = (2k − εn)(n− 2k + εn) for both expressions. Moreover, the marginal values
also extend smoothly. Consider an element i ∈ C (for i ∈ D the situation is symmetric). The marginal
value of i added to a set S is f(S ∪ {i})− f(S) = f(k + 1, `)− f(k, `). We split into three cases:

• If k − ` < −εn, we have f(k + 1, `)− f(k, `) = (n− 2`) + (−2`) + 2εn = (1 + 2ε)n− 4`.

• If −εn ≤ k− ` < εn, we have f(k+ 1, `)− f(k, `) = (k+ 1 + `)(n− k− 1− `)− (k+ `)(n− k− `) =
(n− k − 1− `)− (k + 1 + `) = n− 2k − 2`− 2. In this range, this is between (1± 2ε)− 4`.

• If k − ` ≥ εn, we have f(k + 1, `)− f(k, `) = (n− 2`) + (−2`)− 2εn = (1− 2ε)n− 4`.

Now it is easy to see that the marginal value is decreasing in both k and `, in each range and also across
ranges.

5 Open questions

It remains an outstanding question to close the gap for non-monotone submodular maximization and find
a 1/2-approximation in the general case. We leave this as an open question for future research.

For non-adaptive algorithms, one remaining question is whether our algorithms can be derandomized
and implemented by querying only a predetermined collection of polynomially many sets.

Even considering our query complexity results, it is still conceivable that a better-than-1/2 approxi-
mation might be achieved in a model of computation requiring an explicit representation of f(S). Our
NP-hardness results in this case are still quite far away from 1/2. Considering the known approxima-
tion results for Max Cut, such an improvement would most likely require semidefinite programming.
Currently, we do not know how to implement such an approach.

Acknowledgment. We thank Maxim Sviridenko for pointing out related work.

References

[1] A. Ageev and M. Sviridenko. An 0.828 approximation algorithm for uncapacitated facility location
problem, Discrete Applied Mathematics 93:2–3 (1999), 149–156.

[2] P. Alimonti. Non-oblivious local search for MAX 2-CCSP with application to MAX DICUT, Proc. of
the 23rd International Workshop on Graph-theoretic Concepts in Computer Science (1997).

[3] G. Calinescu, C. Chekuri, M. Pál and J. Vondrák. Maximizing a submodular set function subject to
a matroid constraint, Proc. of 12th IPCO (2007), 182–196.

[4] G. Calinescu, C. Chekuri, M. Pál, J. Vondrák. Maximizing a submodular set function subject to a
matroid constraint, to appear in SIAM J. on Computing.

[5] V. Cherenin. Solving some combinatorial problems of optimal planning by the method of successive
calculations, Proc. of the Conference of Experiences and Perspectives of the Applications of Mathemat-
ical Methods and Electronic Computers in Planning (in Russian), Mimeograph, Novosibirsk (1962).

[6] G. Cornuejols, M. Fischer and G. Nemhauser. Location of bank accounts to optimize float: an analytic
study of exact and approximation algorithms, Management Science 23 (1977), 789–810.

16

[7] G. Cornuejols, M. Fischer and G. Nemhauser. On the uncapacitated location problem, Annals of
Discrete Math 1 (1977), 163–178.

[8] G. P. Cornuejols, G. L. Nemhauser and L. A. Wolsey. The uncapacitated facility location problem,
Discrete Location Theory (1990), 119–171.

[9] J. Edmonds. Matroids, submodular functions and certain polyhedra, Combinatorial Structures and
Their Applications (1970), 69–87.

[10] U. Feige and M. X. Goemans. Approximating the value of two-prover systems, with applications to
MAX-2SAT and MAX-DICUT, Proc. of the 3rd Israel Symposium on Theory and Computing Systems,
Tel Aviv (1995), 182–189.

[11] U. Feige. A threshold of lnn for approximating Set Cover, Journal of the ACM 45 (1998), 634–652.

[12] U. Feige. Maximizing social welfare when utility functions are subadditive, Proc. of 38th ACM STOC
(2006), 41–50.

[13] U. Feige, V. Mirrokni and J. Vondrák. Maximizing non-monotone submodular functions, Proc. of
48th IEEE FOCS (2007), 461–471.

[14] U. Feige and J. Vondrák. Approximation algorithms for combinatorial allocation problems: Improv-
ing the factor of 1− 1/e, Proc. of 47th IEEE FOCS (2006), 667–676.

[15] S. Fujishige. Canonical decompositions of symmetric submodular systems, Discrete Applied Mathe-
matics 5 (1983), 175–190.

[16] L. Fleischer, S. Fujishige and S. Iwata. A combinatorial, strongly polynomial-time algorithm for
minimizing submodular functions, Journal of the ACM 48:4 (2001), 761–777.

[17] A. Frank. Matroids and submodular functions, Annotated Biblographies in Combinatorial Optimiza-
tion (1997), 65–80.

[18] M. Goemans, N. Harvey, S. Iwata and V. Mirrokni. Approximating submodular functions everywhere,
Proc. of 20th ACM-SIAM SODA (2009), 535–544.

[19] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming, Journal of the ACM 42 (1995), 1115–1145.

[20] B. Goldengorin, G. Sierksma, G. Tijsssen and M. Tso. The data correcting algorithm for the mini-
mization of supermodular functions, Management Science, 45:11 (1999), 1539–1551.

[21] B. Goldengorin, G. Tijsssen and M. Tso. The maximization of submodular functions: Old and new
proofs for the correctness of the dichotomy algorithm, SOM Report, University of Groningen (1999).

[22] V. Guruswami. Inapproximability results for set splitting and satisfiability problems with no mixed
clauses, Algorithmica 38 (2004), 451–469.

[23] V. Guruswami and S. Khot. Hardness of Max 3-SAT with no mixed clauses, Proc. of 20th IEEE
Conference on Computational Complexity (2005), 154–162.

[24] E. Halperin and U. Zwick. Combinatorial approximation algorithms for the maximum directed cut
problem, Proc. of 12th ACM-SIAM SODA (2001), 1–7.

[25] J. H̊astad. Some optimal inapproximability results, Journal of the ACM 48 (2001), 798–869.

[26] V. R. Khachaturov. Mathematical methods of regional programming (in Russian), Nauka, Moscow,
1989.

17

[27] S. Khot, G. Kindler, E. Mossel and R. O’Donnell. Optimal inapproximability results for MAX-CUT
and other two-variable CSPs? Proc. of 45th IEEE FOCS (2004), 146–154.

[28] A. Kulik, H. Shachnai and T. Tamir. Maximizing submodular functions subject to multiple linear
constraints, Proc. of 20th ACM-SIAM SODA (2009).

[29] D. Livnat, M. Lewin and U. Zwick. Improved rounding techniques for the MAX 2-SAT and MAX
DI-CUT problems. Proc. of 9th IPCO (2002), 67–82.

[30] J. Lee, V. Mirrokni, V. Nagarajan and M. Sviridenko. Non-monotone submodular maximization
under matroid and knapsack constraints, Proc. of 41th ACM STOC (2009), 323-332.

[31] H. Lee, G. Nemhauser and Y. Wang. Maximizing a submodular function by integer programming:
Polyhedral results for the quadratic case, European Journal of Operational Research 94 (1996), 154–
166.

[32] J. Lee, M. Sviridenko and J. Vondrák. Submodular maximization over multiple matroids via gener-
alized exchange properties, Proc. of APPROX 2009, 244–257.

[33] L. Lovász. Submodular functions and convexity. A. Bachem et al., editors, Mathematical Program-
mming: The State of the Art, 235–257.

[34] V. Mirrokni, M. Schapira and J. Vondrák. Tight information-theoretic lower bounds for welfare
maximization in combinatorial auctions, Proc. of ACM Conference on Electronic Commerce, 2008,
70–77.

[35] M. Minoux. Accelerated greedy algorithms for maximizing submodular functions, J. Stoer, ed., Actes
Congress IFIP, Springer Verlag, Berlin (1977), 234–243.

[36] E. Mossel, R. O’Donnell and K. Oleszkiewicz. Noise stability of functions with low influences: in-
variance and optimality, Proc. of 46th IEEE FOCS (2005), 21–30.

[37] G. L. Nemhauser, L. A. Wolsey and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions I, Mathematical Programming 14 (1978), 265–294.

[38] M. L. Fisher, G. L. Nemhauser and L. A. Wolsey. An analysis of approximations for maximizing
submodular set functions II, Mathematical Programming Study 8 (1978), 73–87.

[39] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a submodular
set function, Math. Oper. Research, 3(3):177–188, 1978.

[40] T. Robertazzi and S. Schwartz. An accelated sequential algorithm for producing D-optimal designs,
SIAM Journal on Scientific and Statistical Computing 10 (1989), 341–359.

[41] M. Queyranne. A combinatorial algorithm for minimizing symmetric submodular functions, Proc. of
6th ACM-SIAM SODA (1995), 98–101.

[42] A. Schäfer and M. Yannakakis. Simple local search problems that are hard to solve, SIAM J. Comput.
20:1 (1991), 56–87.

[43] A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial
time, Journal of Combinatorial Theory, Series B 80 (2000), 346–355.

[44] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint,
Operations Research Letters 32 (2004), 41–43.

[45] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and lower
bounds, Proc. of 49th IEEE FOCS (2008), 697–706.

18

[46] L. Trevisan. Max Cut and the smallest eigenvalue, Proc. of 41th ACM STOC (2009), 263–272.

[47] J. Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model,
Proc. of 40th ACM STOC (2008), 67–74.

[48] J. Vondrák. Symmetry and approximability of submodular maximization problems, Proc. of 50th
IEEE FOCS (2009), 651–670.

19

