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Abstract

The following problem was introduced by Marcin Krzywkowski as a generalization
of a problem of Todd Ebert. After initially coordinating a strategy, n players each
occupy a different vertex of a graph. Either blue or red hats are placed randomly and
independently on their heads. Each player sees the colors of the hats of players in
neighboring vertices and no other hats (and hence, in particular, the player does not
see the color of his own hat). Simultaneously, each player either tries to guess the color
of his own hat or passes. The players win if at least one player guesses correctly and no
player guesses wrong. The value of the game is the winning probability of the strategy
that maximizes this probability. Previously, the value of such games was derived for
certain families of graphs, including complete graphs of carefully chosen sizes, trees,
and the 4-cycle.

In this manuscript we conjecture that on every graph there is an optimal strategy
in which all players who do not belong to the maximum clique always pass. We provide
several results that support this conjecture, and determine among other things the value
of the hat game for any bipartite graph and any planar graph that contains a triangle.

Keywords: Hat problem, clique, conjecture.
AMS Subject Classification: 05C35, 05C57, 05C69, 91A43.

1 Introduction

The following hat problem was formulated by Todd Ebert [4], and has since been studied
in several papers, as well as becoming a popular mathematics puzzle question. There are
n players who may coordinate a strategy before the game begins. Each player gets a
hat whose color is selected randomly and independently to be blue with probability 1/2
and red otherwise. Each player can see the colors of all other hats but not of his own.
Simultaneously, each player may guess a color or pass. The players win if at least one
player guesses correctly the color of his own hat, and no player guesses wrong. The goal is
to find a strategy that maximizes the probability of winning. This maximum probability is
called the value of the game.

If the game was different and only one pre-specified player would need to guess, then
the value of the game would be 1/2. In fact, even if all players need to guess the colors of
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their hat simultaneously, they still win with probability 1/2. One strategy achieving this is
for each player to guess blue if he sees an even number of blue hats, and red otherwise. The
players all guess correctly if and only if the number of blue hats is odd. The twist offered
by Ebert’s game is that players are allowed to pass. If n = 2, this does not increase their
winning probability. (This can be verified by an easy case analysis.) However, whenever
n ≥ 3 the right to pass makes a big difference. For example, when n = 3 the following
strategy (played by all players) wins with probability 3/4. If the two hats that the player
sees have the same color, the player announces the other color. Otherwise he passes. The
players lose only if all three hats are of the same color. It can be shown that as n increases
the value of Ebert’s game approaches 1.

Marcin Krzywkowski [7] introduced the following variant of the hat problem. The players
are placed on vertices of a graph, and a player can only see the colors of hats of his neighbors.
The requirement for winning remains the same. (Variations of a similar nature to other hat
games are studied in [2].) If the graph is a complete graph, this is exactly Ebert’s original
problem. In [7] it is shown that if the graph is a tree, the value of the corresponding game
is 1/2. In [8] the same result is shown when the graph is C4 (a cycle on four vertices).

1.1 Our results

Given a graph G, the value of the hat game on graph G will be denoted by h(G).
For a graph G, let ω(G) denote the size of the maximum clique (complete graph) in G.

Let Kn denote the complete graph on n vertices. We conjecture that the value of the hat
game on a graph G is completely determined by the size of the largest clique in G.

Conjecture 1 For every graph, h(G) = h(Kω(G)).

The inequality h(G) ≥ h(Kω(G)) is straightforward. The following strategy for G has
success probability at least h(Kω(G)). Let K be a maximum clique in G. Players not in K
always pass. Those players in K ignore those players not in K, and simply play the optimal
strategy for K.

Hence the real content of Conjecture 1 is in the inequality h(G) ≤ h(Kω(G)). This
is consistent with the results obtained by Krzywkowski on trees and C4. In both cases
ω(G) = 2, h(K2) = 1/2, and the value for the corresponding hat games are indeed 1/2. In
this manuscript we provide additional results consistent with our conjecture.

For certain values of ω(G), we are able to prove the conjecture.

Theorem 2 Conjecture 1 is true whenever ω(G) + 1 is a power of 2.

Our attempt to prove the conjecture for other values of ω(G) has not succeeded so
far. However, we have identified certain families of graphs for which the conjecture is true.
Let χ(G) denote the chromatic number of a graph G (the number of colors that suffice to
color its vertices so that the endpoints of every edge receive different colors). Observe that
χ(G) ≥ ω(G) for every graph.

Theorem 3 Conjecture 1 is true whenever χ(G) = ω(G). More generally, Conjecture 1 is
true whenever h(Kχ(G)) = h(Kω(G)).
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Among other things, Theorem 3 implies that for all bipartite graphs the value of the
hat game is 1/2. This both generalizes and provides an alternative proof to the results of
Krzywkowski (since both trees and C4 are bipartite). The second part of Theorem 3 implies
(among other things) that for all planar graphs that contain a triangle, the value of the hat
game is 3/4.

1.2 Notation

We refer to the hat colors as 0 or 1 rather than blue or red. A hat configuration is a
placement of hats of random colors on the heads of players. When there are n players, a
configuration is naturally represented as a string in {0, 1}n. Every player can observe only
that part of the configuration that corresponds to the colors of the hats of his neighbors. A
strategy for a single player is a function from the vector of colors observable to the player
to {0, 1, pass}. A strategy for the players is a collection of strategies, one for each player.

1.3 Organization of the paper

In Section 2 we review the known results regarding the hat game on complete graphs. In
Section 3 we develop techniques that prove Theorem 2. The same techniques can be used
in order to show that given a graph G, computing the value of h(G) is NP-hard. This is
shown in Section 4. In Section 5 we prove Theorem 3. In Section 6 we show that the value
of the hat game on a union of two disjoint graphs is no higher than the value on one of the
graphs. This is a result one would expect to have if Conjecture 1 is true. Section 7 provides
a discussion of some of the implications of Conjecture 1. Not knowing whether Conjecture 1
is true, these implications are presented as conjectures, and may serve as intermediate steps
towards proving (or refuting) Conjecture 1.

2 Complete graphs

Here we review known results (see e.g. [9]) regarding the hat game on complete graphs. Our
terminology might be somewhat different than that used in previous work.

Let Kn denote the complete graph (clique) on n vertices. Let Hn denote the hypercube
graph of dimension n (with 2n vertices labelled by binary strings on length n, with two
vertices connected by an edge if the Hamming distance of their corresponding labels is 1).
The space of all hat configurations for Kn is naturally represented by the hypercube Hn.
An edge in Hn along dimension i connects two configurations that differ only in the color
of the hat of player i. Hence if player i guesses in one of the configurations, he does so also
in the other configuration, and his guess is correct in exactly one of the two configurations.

A dominating set in a graph is a set D of vertices such that every vertex not in D has
a neighbor in D. Let γ(G) denote the size of the minimum size dominating set in G.

Proposition 4 The value of the hat game in a complete graph Kn is exactly

h(Kn) = 1− γ(Hn)
2n
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Proof. Fix an arbitrary strategy S for the players in Kn. Given a configuration in which
the players win, there must be a neighboring configuration in Hn on which some player
guesses wrong. Hence the union of configurations on which some player guesses wrong
and those on which no player guesses must form a dominating set in Hn. If follows that
h(Kn) ≤ 1− γ(Hn)

2n .
Given an arbitrary dominating set D in Hn, the following strategy wins on all configu-

rations not in the dominating set. Each player, upon seeing the hats of the other players,
checks whether he himself having a hat of color 0 would make the configuration a member
of D. If so, he guesses 1. Else, he checks whether he himself having a hat of color 1 would
make the configuration a member of D. If so, he guesses 0. If none of these two cases hold,
the player passes. It can easily be seen that this strategy fails only if the configuration is
in D. It follows that h(Kn) ≥ 1− γ(Hn)

2n . ¥

It is well known that if (and only if) n+1 is a power of 2, then γ(Hn) = 2n/(n+1). The
codewords of the Hamming code serve as a corresponding dominating set (and divisibility
requirements prove the only if direction). Hence we have the following corollary.

Corollary 5 If n+1 is a power of 2, then h(Kn) = n/(n+1). In particular, h(K1) = 1/2,
h(K3) = 3/4, and H(K7) = 7/8.

For general values of n, the exact value of γ(Hn) appears not to be known. The asymp-
totic behavior of γ(Hn) was studied in [6] where it was shown to behave like (1+o(1))2n/n.
For small values of n the value of γ(Hn) can be deduced from a combination of degree
constraints and integrality constraints. Clearly, if a graph G of n vertices has maximum
degree d, then γ(G) ≥ n/(d + 1). It follows that γ(Hn) ≥ 2n/(n + 1). This together with
integrality constraints implies that γ(H2) ≥ d4/3e = 2, and that γ(H4) ≥ d16/5e = 4.
Using also h(K2) ≥ h(K1) and h(K4) ≥ h(K3) we see that h(K2) = 1/2 and h(K4) = 3/4.
Moreover, the fact that 2n/(n + 1) is integer only when n is a power of 2 implies that
Corollary 5 captures all values of n for which h(Kn) = n/(n + 1). When n + 1 is not a
power of 2, then necessarily h(Kn) < n/(n + 1).

3 An upper bound

Here we present a simple upper bound on h(G).
Given a graph G with n vertices, consider the set C(G) of all 2n hat configurations. A

strategy S for the players partitions C(G) into three sets, the set WS(G) on which S leads
the players to win, the set LS(G) on which S leads the players to lose because some player
guesses wrong, and the set NS(G) on which no player using S makes a guess. We now
compare the relative sizes of WS(G) and LS(G). For this, we construct a bipartite graph
B with WS(G) as the left hand side vertices and LS(G) as the right hand side vertices. We
have an edge (u, v) between a vertex u ∈ WS(G) and a vertex v ∈ LS(G) if and only if the
configurations of u and v differ only in the color of one hat (say, the hat of player i), and
the respective player (player i) guesses a color in both configurations. Note that to player
i both configurations look identical as he does not see the color of his own hat. Hence if
he guesses in one of the configurations he makes the same guess in the other. His guess is
correct in exactly one of the configurations.
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Proposition 6 In the bipartite graph B, every vertex of WS(G) has degree at least 1.

Proof. For every vertex u ∈ WS(G), there is some player (say player i) that guesses
correctly. Let v be the configuration that differs from u only in the color of hat i. Then i
guesses also in v and guesses wrong, and so v ∈ LS(G) and the edge (u, v) exists. ¥

Proposition 7 In the bipartite graph B, every vertex of LS(G) has degree at most ω(G).

Proof. Let v be a vertex in LS(G). Let T be the set of players that guess wrong in the
hat configuration that corresponds to v. (We consider only players who guessed wrong in
v, because a configuration u that differs from v only in the color of the hat of a player who
guessed correctly in v cannot belong to WS(G).) Now let T ′ ⊂ T be the set of players i in
T such that the configuration u that differs from v only in the color of the hat of player
i belongs to WS(G). We claim that the vertices of G that correspond to the players of T ′

must form a clique in G. Suppose otherwise. Then there are two players in T ′, say i and j,
that do not see each other in G. Hence if the color of the hat of i is flipped, player j is not
aware of this and continues to guess wrong as in configuration v. ¥

Let m denote the number of edges in B. Counting edges once from the WS(G) side
and once from the LS(G) side, the two previous propositions imply that |WS(G)| ≤ m ≤
ω(G)|LS(G)|. Hence we have proved the following theorem.

Theorem 8 For every graph G,

h(G) ≤ ω(G)
1 + ω(G)

Proof. Follows from the following chain of inequalities:

|C(G)| ≥ |WS(G)|+ |LS(G)| ≥ |WS(G)|+ |WS(G)|
ω(G)

=
(1 + ω(G))|WS(G)|

ω(G)

¥

Theorem 8 implies Theorem 2 which we restate here as a corollary.

Corollary 9 If ω(G) + 1 is a power of 2, then

h(G) =
ω(G)

1 + ω(G)

Proof. When ω(G) + 1 is a power of 2, the inequality h(G) ≥ ω(G)/(1 + ω(G)) follows
from Corollary 5 (using also Proposition 12). The inequality h(G) ≤ ω(G)/(1 + ω(G)) is
Theorem 8. ¥
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4 Remarks on computational complexity

Given a graph, how difficult is it to determine h(G)? If G does not contain a triangle then
we have seen that 1/2 ≤ h(G) < 2/3, implying a 3/4 approximation. If G does contain a
triangle then we have seen that 3/4 ≤ h(G) < 1, again implying a 3/4 approximation. Since
checking whether G contains a triangle can be done in polynomial time it follows that one
can approximate h(G) within a ratio of 3/4. Presumably, also better approximation ratios
are possible.

We now discuss the difficulty of approximating 1− h(G), which also implies that com-
puting h(G) exactly is NP-hard. Let ω2(G) denote the integer t such that t + 1 is a power
of 2 and t ≤ ω(G) ≤ 2t. Then we have the following approximate characterization of h(G).

Proposition 10 For every graph,

1
1 + ω(G)

≤ 1− h(G) ≤ 1
1 + ω2(G)

Proof. Since G contains a clique of size t = ω2(G) we have that h(G) ≥ h(Kt). But since
t + 1 is a power of 2, we have by Corollary 5 that h(Kt) = 1 − 1/(t + 1). It follows that
1− h(G) ≤ 1/(t + 1) = 1/(1 + ω2(G)).

By Theorem 8 we have that h(G) ≤ 1−1/(1+ω(G)), implying 1−h(G) ≥ 1/(1+ω(G)).
¥

Proposition 10 implies that the value h(G) (and hence 1 − h(G)) determines the value
of ω(G) up to a factor of 2. However, it is known that it is NP-hard to approximate the
maximum clique size with ratios of n1−ε [5, 11]. Hence we can easily deduce the following
corollary.

Corollary 11 For every ε > 0, given a graph G on n vertices as input, it is NP-hard to
approximate 1− h(G) within a ratio of n1−ε.

5 Graph transformations

In this section we prove Theorem 3, among other things.
We say that a graph G is a subgraph of G′ if it can be obtained from G′ by using only

the operations of removing edges and removing vertices. The following proposition, which
was already used in previous parts of our paper and in earlier work [7], is presented for
completeness.

Proposition 12 If G is a subgraph of G′, then h(G) ≤ h(G′).

To prove Proposition 12, it suffices to show that any strategy for G can also be imple-
mented in G′ with exactly the same success probability. Showing this is straightforward
(players corresponding to vertices not in G always pass, information over edges not in G is
ignored), and we spare the reader of a formal proof.

Sometimes we shall use the contra-positive of Proposition 12. Namely, if G′ is a super-
graph of G, then h(G′) ≥ h(G).
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We now reach a key observation. Given a graph G and a vertex v, let N(v) denote the
set of neighbors of v. We say that a vertex v is neighborhood-dominated in G if there is
some other vertex u in G with N(v) ⊆ N(u). Let us denote by G − v the subgraph of G
obtained by removing v and all edges incident with v.

Lemma 13 Let v be a neighborhood-dominated vertex in G. Then h(G− v) = h(G).

Proof. The inequality h(G− v) ≤ h(G) follows from Proposition 12. Hence it remains to
prove h(G− v) ≥ h(v).

Let S denote an optimal strategy for G, achieving h(G). Let u be a vertex that
neighborhood-dominates v. Partition all possible hat configurations into two classes: the
class C= in which the hats of u and v have the same color, and the class C6= in which the
hats of u and v have different colors. Note that h(G) is the average of the success prob-
ability obtained by S over these two classes, and hence on one of these classes S succeeds
with probability at least h(G). We present the proof for the case this happens for the class
C=. (The class C6= is treated in a similar way, after renaming blue as red and red as blue
when one considers the color of the hat of vertex v. Moreover, the proof will imply that
in both classes the success probability of S must be exactly h(G), as otherwise we will get
h(G− v) > h(G), contradicting Proposition 12.)

Observe that in the class C=, the color of the hat of u uniquely determines the color
of the hat of v. Hence to specify an input for C=, it suffices to specify the colors of all
hats except for that of v. We show a strategy S′ for the hat game on G− v that succeeds
exactly on those inputs from the class C= that the strategy S for G succeeds on. This is
done as follows. Any vertex of G− v that is neither u nor an original neighbor of v uses in
S′ exactly the same strategy as in S. Any vertex w which was a neighbor of v in G does
the following. Being also a neighbor of u, vertex w observes the color of the hat of u and
deduces that had the graph been G and the input been taken from C=, the color of the
hat of v would have been the same. Now w plays according to S under this assumption.
Finally, it remains to describe how u plays. Since N(v) ⊂ N(u) in G, vertex u knows what
v would have seen had the game been played on G. Hence in addition to its own output,
u can produce v’s output. So u produces two outputs, one for v and one for u. If both of
them are to pass, then u passes. If one of them is to pass, and the other is a guess, then u
outputs the guess. It does not matter whether this guess was intended to be a guess by u
or by v, because in C= both colors are the same, and hence the guess is correct if and only
if it matches the color of u’s hat. Finally, if both outputs are guesses, u can output his own
guess. (Once u guesses, an additional guess by v cannot improve the success probability.)
¥

Lemma 13 easily implies the results of [7] for trees. Let T be an arbitrary tree with at
least three vertices. Then any leaf in this tree, say v, is neighborhood-dominated by some
other vertex of the tree. Hence h(T ) = h(T − v), by Lemma 13. Continuing in this fashion
one is eventually left with a tree on two vertices, proving that h(T ) = h(K2) = 1/2.

It does not take much work to extend the proof to arbitrary bipartite graphs. Let B
be a bipartite graph, with bipartization (U, V ). Add all the missing edges between U and
V to obtain a complete bipartite graph G. By Proposition 12 we have that h(B) ≤ h(G).
Now in G, every two vertices in the same side of the bipartization have the same set of
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neighbors, hence one of the vertices can be removed by Lemma 13. Continuing in this
way we again are left with a single edge, showing that h(B) ≤ h(G) = h(K2) = 1/2. As
h(B) ≥ H(K1) = 1/2, it follows that for every bipartite graph B (and trees are special
cases of bipartite graphs) h(B) = 1/2.

The following theorem implies Theorem 3.

Theorem 14 For every graph G, the inequality h(G) ≤ h(Kχ(G)) holds. In particular, if
ω(G) = χ(G), then h(G) = h(Kω(G)).

Proof. Given a graph G, partition it into χ(G) color classes (with no edges within a
color class). Add all missing edges between the color classes, thus obtaining a graph G′.
Proposition 12 implies that h(G) ≤ h(G′). Now all vertices within the same color class have
the same set of neighbors. Hence Lemma 13 can be used to remove all but one vertex from
each color class, remaining with Kω(G), and maintaining h(G′) = h(Kω(G)). ¥

A well known class of graphs for which ω(G) = χ(G) is that of perfect graphs (where the
equality ω(G) = χ(G) holds not only for the graph but also for all its subgraphs). Hence
Theorem 14 characterizes the value of the hat game for all perfect graphs. Bipartite graphs
are a special case of perfect graphs. In fact, by the strong perfect graph theorem [3], every
graph for which neither the graph nor its complement contains an induced odd cycle of
length at least 5 (an odd hole) is perfect.

Using the fact that h(Ki) is not strictly increasing in i, Theorem 14 can be used to
characterize the value of the hat game for additional classes of graphs.

Corollary 15 For every planar graph P that contains a triangle (in particular, for every
triangulated planar graph), h(P ) = 3/4.

Proof. Since P contains a triangle, h(P ) ≥ h(K3) = 3/4.
By the famous four color theorem, χ(P ) ≤ 4. Recall that in Section 2 we have seen that

h(K4) = 3/4. Hence h(P ) ≤ h(K4) = 3/4.
It follows that h(P ) = 3/4. ¥

In Section A in the appendix we provide an alternative approach for proving Theorem 14.

6 Unions of disjoint graphs

Given two disjoint graphs G1 and G2, let G1 + G2 denote the union of these two graphs
(the disconnected graph that results by placing the two graphs side by side, on disjoint sets
of vertices). It is natural to ask whether h(G1 + G2) = max{h(G1), h(G2)}. Conjecture 1 if
true would imply such a statement. Here we provide a direct proof of this statement.

Theorem 16 For every two graphs G1 and G2, their disjoint union satisfies:

h(G1 + G2) = max{h(G1), h(G2)}
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Proof. Clearly h(G1 + G2) ≥ max{h(G1), h(G2)}. It remains to show that h(G1 + G2) ≤
max{h(G1), h(G2)}.

Without loss of generality, assume that h(G1) ≥ h(G2), and let k denote the size of
the maximum clique in G1 + G2. An argument similar to Proposition 10 implies that
h(G1) ≥ k/(k + 2).

Now let us assume that there is some strategies S1 for G1 and S2 for G2 that on G1 +G2

succeed with higher probability than S1 succeeds on G1 alone. We shall show that in this
case the success probability on G1 +G2 is smaller than k/(k +2). This means that ignoring
G2 and replacing S1 by an optimal strategy for G1 is always at least as good as combining
S1 with S2. Namely, adding G2 to G1 does not increase the value of the hat game.

Let wi, `i, pi be the probabilities of winning, losing when somebody guesses wrong, and
everybody passing, when using strategy Si in graph Gi. Assume without loss of generality
that w1 ≥ w2. (The case w2 > w1 is treated in a similar way.) The probability of winning
in G1 + G2 is w1(1− `2) + p1w2. Observe that Section 3 implies that wi ≤ `ik (where k is
the maximum clique size). Hence replacing `2 by w2/k and rearranging, the probability of
winning is at most w1 + w2(p1 − w1/k). Observe that p1 = 1 − w1 − `1 ≤ 1 − w1 − w1/k.
So the probability of winning is at most w1 + w2(1 − w1(k + 2)/k). For G2 to contribute
anything, it must be the case that w1 < k/(k + 2). Hence we make this assumption.
This then implies that also w2 < k/(k + 2), because w2 ≤ w1. Hence the derivative of
w1 +w2(1−w1(k+2)/k) with respect to w1 is positive, implying that the expression attains
its maximum value when w1 does. But setting w1 to the maximum value of k/(k + 2) the
winning probability in G1 + G2 is also k/(k + 2), which is no improvement over what can
be attained for G1 alone. ¥

Another notion of a union of two graphs is when both graphs have the same set of
vertices, and the union is only in terms of the edges. Let us denote this union by G(V,E1 ∪
E2), where V is the set of vertices and E1 and E2 are the two sets of edges. To analyze the
range of possible values for h(G(V,E1∪E2)) as a function of h(G(V,E1)) and h(G(V, E2)), we
appeal to some well known results in Ramsey theory (see [10] for example). Proposition 10
implies that h(G) is approximately equal to 1 − 1/ω(G). If |V | = n, E1 is a random set
of edges and E2 is its complement, then with high probability both ω(G(V, E1)) ' 2 log2 n
and ω(G(V,E2)) ' 2 log2 n. On the other hand, G(V, E1 ∪ E2) is the complete graph and
hence ω(G(V,E1 ∪ E2)) = n. So this shows that taking the union of two sets of edges may
cause an exponential drop in 1− h(G) (from 1/2 log2 n to 1/n). The drop cannot be more
than exponential by standard results in Ramsey theory: if G(V, E1 ∪ E2) has a clique of
size k, then either G(V, E1) or G(V, E2) must have a clique of size at least (log2 k)/2.

We remark that the effect of taking unions of graphs was previously studied in other
contexts (see [1] for example), and influenced the choice of questions addressed in the current
section.

7 Conjectures

In this section we present some implications of Conjecture 1. These implications are stated
here as conjectures.

It is well known (and follows from Proposition 4) that for complete graphs, there is an
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optimal strategy for the players in which in every configuration, at least one player does
not pass. Conjecture 1 if true would imply that the same holds for every graph.

Conjecture 17 For every graph G, there is an optimal strategy for the players in which in
every configuration, at least one player does not pass.

Theorem 2 proves Conjecture 1 whenever ω(G) + 1 is a power of 2. Hence the first
value of ω(G) for which the conjecture is open is ω(G) = 2. We state this special case as a
separate conjecture.

Conjecture 18 The value of the hat game on a graph is larger than 1/2 if and only if the
graph has a triangle.

Let us discuss Conjecture 18 briefly. We have seen that it holds for bipartite graphs. It is
pretty easy to extend it to some non-bipartite graphs. Consider for example the hat game on
an odd cycle of length 3q, where q is odd and sufficiently large. If some player always passes
then one may fix the color of its hat to the color that maximizes the probability that the
remaining players win, and then remove this vertex from the cycle. This does not decrease
the winning probability. The remaining players may simply pretend that the removed player
is still in the cycle with a hat of the color to which it was fixed. (This argument appears in
previous work. See for example Theorem 4 in [8].) Thereafter the graph becomes bipartite,
and the winning probability is at most 1/2. It remains to deal with the case in which each
player has nonzero probability of guessing. But then each player guesses with probability
at least 1/4, and makes a wrong guess with probability at least 1/8. Consider now q players
each at distance at least 3 from each other. Since their neighborhoods are disjoint, it follows
that the events of them guessing wrong are independent. Hence the probability of none of
them guessing wrong is (7/8)q, which is smaller than 1/2 for large enough q.

As an intermediate step towards proving Conjecture 18, one may try to provide a short
proof (that hopefully can be generalized) that for the 5-cycle the value of the hat game
is 1/2. Determining the value of the hat game on the Petersen graph may serve as an
indication of whether Conjecture 18 is true.

Observe that Conjecture 18 is equivalent to the statement that any minimal graph for
which the hat game has value greater than 1/2 cannot have a vertex whose neighbors form
an independent set. Perhaps a statement like this can be proved using techniques similar
to the proof of Lemma 13.

Let us note that Conjecture 18, if true, implies that there is no graph for which the hat
game has value v for 1/2 < v < 3/4.
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A An alternative proof for chromatic number upper bound

For completeness, we present here another approach for proving Theorem 14. We shall
present it only for the case of bipartite graphs, but the generalization for r-partite graphs
(where r is the chromatic number) is straightforward.

Theorem 19 The value of the hat game in bipartite graphs is 1/2.

Proof. The value of the hat game on any graph is at least 1/2. Hence it remains to show
that the value is not more than 1/2.

Consider an arbitrary bipartite graph with sides L and R. For concreteness and without
loss of generality, let |L| = |R| = k. Hence altogether there are 22k possible hat configura-
tions. The colors of hats in L can be thought of as a random 0/1 string of length k. We say
that two strings are twins if one is the bitwise complement of the other. For example, the
strings 001101 and 110010 are twins. Clearly every string has exactly one twin. There are
2k possible strings for L. They form 2k−1 twins. The same holds for R. Now consider all
possible pairs of twins, one from L and one from R. There are 22(k−1) such pairs, and each
such pair induces four possible hat configurations (there are four possible ways of selecting
one string from each twin). These pairs form a complete partition of the hat configuration
space (each configuration appears in exactly one pair). We show that for every such pair,
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conditioned on the input configuration being one that is induced by the pair, the players win
with probability at most 1/2 (even if they are told which pair induces the configuration).
This of course implies that the value the game on bipartite graphs is at most 1/2 as well.

Consider an arbitrary pair of twins. Let (s, s̄) denote the twins for L and (t, t̄) the twins
for R. Assume for the sake of contradiction that the players win in three of the induced
configurations, and without loss of generality let these configurations be [s, t], [s, t̄] and
[s̄, t]. Then at least one player p guessed in [s, t] and assume without loss of generality that
p ∈ L. Then p also guesses in the configuration [s̄, t], because his view is identical in those
two configurations. But p’s guess is correct in exactly one of [s, t] and [s̄, t] because he has
different colored hats in these two configurations. This contradicts the assumption that the
players win on both these configurations. ¥

B Some examples

It is not true (and not claimed by Conjecture 1) that in every optimal strategy, all guessing
players form a clique. Consider for example two K4 that share a vertex v. The value of the
hat game is 3/4 (since the graph contains a triangle and is 4-colorable). Removing v, the
graph decomposes into two triangles. Each triangle has a strategy with success probability
3/4. We may let one triangle play if the color of v’s hat is 0, and the other triangle play if
the color of v’s hat is 1. Note that in this strategy v never guesses.

Call a strategy a no waste strategy if it enjoys the following three properties.

1. There are no wasted configurations: in every configuration, at least one player makes
a guess.

2. There are no wasted correct guesses: in every configuration in which more than one
player guesses, all guesses are wrong.

3. There are no wasted players: every player guesses in some configuration.

We show here an example of a no waste strategy in which the graph is not a clique.
The graph is the complete graph on four vertices, a, b, c, d, except for the edge (a, b)

that is missing. In the no waste strategy, whenever a player guesses he guesses 0.
Player a guesses when the hat colors for c, d are 1, 0.
Player b guesses when the hat colors for c, d are 1, 1.
Player c guesses when the hat colors for a, b are 1, 1.
Player d guesses when the hat colors for a, b are not 1, 1, and in addition the hat color

for c is 0.
The four players contribute 1/8 + 1/8 + 1/8 + 3/16 = 9/16 to the success probability.

There are two configurations in which two players guess wrong simultaneously: (1, 1, 1, 0)
(a and c guess wrong) and (1, 1, 1, 1) (b and c guess wrong).

The value of the hat game on the above graph is 3/4, because the graph contains a
triangle and is 3-colorable.
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