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Abstract

Given a set of alternatives and a single player, we introduce the notion of a responsive lottery.
These mechanisms receive as input from the player a reported utility function, specifying a value for
each one of the alternatives, and use a lottery to produce as output a probability distribution over
the alternatives. Thereafter, exactly one alternative wins (is given to the player) with the respective
probability. Assuming that the player is not indifferent to which of the alternatives wins, a lottery
rule is called truthful dominant if reporting his true utility function (up to affine transformations) is
the unique report that maximizes the expected payoff for the player. We design truthful dominant
responsive lotteries. We also discuss their relations with scoring rules and with VCG mechanisms.

1 Introduction

We consider a setting where there are n alternatives A1, . . . , An and a single player. We assume that
the player has a cardinal utility function over the alternatives, in the sense of Von-Neumann and
Morgenstern. Namely, the player has a utility vector U = (u1, . . . , un), with utility value ui associated
with the respective alternative Ai, and this utility vector determines the preference of the player over
different lotteries. Formally, given two lotteries, one that associates probabilities pi with the respective
alternative Ai, and the other associates probabilities qi with the respective alternative Ai, the player
prefers the former lottery if

∑
piui >

∑
qiui, the latter lottery if

∑
piui <

∑
qiui, and is indifferent

over the choice of lotteries if
∑

piui =
∑

qiui. Recall that Von-Neumann and Morgenstern show that
if all that the player knows is his preferences over every conceivable pair of lotteries, and that these
preferences are consistent in the sense that they satisfy a certain set of axioms (these axioms are natural,
though there is a well known debate whether they actually reflect human behavior), then this in fact
defines a utility function that is unique up to positive affine transformations (shift by a scalar and
multiplication by a positive scalar – game theory literature often calls these linear transformations).
We shall assume throughout that the player is not indifferent to the alternatives, namely, that there
are at least two alternatives Ai and Aj with ui ̸= uj . As utility functions are defined only up to affine
transformations, we shall often represent utility functions in one of two canonical forms: either as unit
range, meaning that mini ui = 0 and maxi ui = 1, or as unit sum, meaning that mini ui = 0 and∑

i ui = 1.
We introduce here a concept that we call a responsive lottery.

Definition 1 Given a set of alternatives A1, . . . , An and a single player, a responsive lottery is a
mechanism that operates as follows:
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1. The player provides a report X = (x1, . . . , xn), where X ∈ Rn.

2. Using a function f from Rn to Rn, which is called the lottery rule, one computes a probability
vector f(X) = P = (p1, . . . , pn), with pi ≥ 0 and

∑
i pi = 1.

3. A lottery is held and alternative Ai wins with probability pi.

The lottery is responsive in the sense that the corresponding probabilities are not given in advance,
but rather determined in response to the report of the player. The notion of an alternative winning
the lottery should be aligned with what the utility function of the player refers to. For example, if
the alternatives are the choice of seat in a certain flight (say, a window seat, an aisle seat, or a middle
seat) and the utility function refers to the value the player associates with sitting in such a seat, then
following the lottery the player should be seated in a seat corresponding to the winning alternative.

Given a responsive lottery and a utility vector U for the player, we say that the report X of the
player is honest if X = U . Note that since utility functions are defined only up to affine transformations,
we assume here that both X and U are given in the same canonical form (say, unit-sum). We say that
the report X of the player is rational if X is such that f(X)U =

∑
piui is maximized. Namely, the

player chooses a report that maximizes his expected payoff.

Definition 2 A lottery rule for a responsive lottery is truthful dominant if it has the property that for
every utility function of the player, the honest report is rational, and every rational report is honest (or
equivalently, given the first condition, the second condition is that the rational report is unique).

The truthful dominance property can be seen to combine three properties.

1. Rational invertibility. For every report X there is at most one utility function U for which X is a
rational report.

2. Rational uniqueness. For every utility function U , there is a unique rational report X.

3. Incentive compatibility. For every utility function U , the report X = U is rational.

Observe that rational invertibility and rational uniqueness are properties of the range of the lottery
rule. Given a lottery rule f that is rational invertible, obtaining a truthful dominant lottery out of it
involves only appending in front of it an appropriate permutation mapping π, that maps a report X to
the report Y = π(X) such that Z = f(Y ) maximize ZX. By rational invertibility, this now implies that
given a utility function U , the unique rational report is X = U . This idea is similar to the revelation
principle in mechanism design (see [5], for example). Note on the other hand that given a lottery rule
that is incentive compatible, there does not seem to be a straightforward way to turn it into a truthful
dominant rule. For example, the lottery rule that assigns pi = 1 for the index i for which xi is largest
is incentive compatible, but there are many rational reports that give out no information beyond which
is the preferred alternative for the player. Truthful dominance requires much more – that the rational
report reveals the whole utility function.

A responsive lottery with a truthful dominant lottery rule may be viewed as a mechanism for
elicitation of the utility function of the player. Recall that the work of Von-Neumann and Morgenstern
already implies that utility functions can be inferred by observing preferences over lotteries. However,
the procedure implicit in [7] involves a (potentially infinite) sequence of comparisons between pairs of
lotteries (or a comparison among infinitely many lotteries, which is not feasible in practice). The mere
fact that lottery comparisons are performed more than once is problematic for elicitation of utility
functions. If the winning alternative is not actually given to the player after each lottery, the player
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might not have incentives to report the truth. And if the winning alternative is given to the player after
each lottery (assuming that this can be practically done), then the issue of complementarities among the
alternatives might distort the original utility function of the player. We circumvent these difficulties by
having only a single lottery. The aspect of this lottery that allows the elicitation of the utility function
(if the player is rational) is its responsive nature. In a sense, the player is choosing among infinitely
many lotteries. The rational invertibility property implies that the choice of the player allows one to
infer his utility function (assuming that the player is rational). The incentive compatibility property
makes it easy for the rational player to choose one lottery out of the infinite set of lotteries.

We assume infinite precision in the values of the utility function, in the reports and in the proba-
bilities assigned by the lottery rule to the alternatives. Namely, they are real numbers. Employing our
lottery rules with finite precision will obviously introduce rounding errors. We ignore this issue in this
paper.

1.1 Related work

This manuscript refers only to utility functions as defined by Von-Neumann and Morgenstern [7]. It
may be interesting to extend this work (if possible) to other notions of utility function (for the need for
other notions, see for example [5] or [4]), but this is beyond the scope of the current work.

As far as we know, our notion of truthful dominant responsive lotteries is new. However, it is related
to some other mechanisms for eliciting information from players. Most often, unlike our responsive
lotteries, these mechanisms involve incentives in the form of transfer of money. Strictly proper scoring
rules provide a mechanism for eliciting the belief of a player regarding the probabilities of future events.
This is done by giving monetary rewards that depend on the predictions of the player, and on the
actual realization of the future events. The relation between scoring rules and responsive lotteries will
be discussed more extensively in Section 4. VCG mechanisms are a method for eliciting the true value
that a bidder has for items that are sold in an auction. The incentives are built into the monetary
payments that the bidder makes if he wins the item. The relation between VCG mechanisms and
responsive lotteries will be discussed in Section A.2.

1.2 Our results

We view the introduction of the concept of truthful dominant responsive lotteries as one of the contri-
butions of this work. Our main results are as follows:

1. We present a geometric approach for designing truthful dominant responsive lotteries, and use it
to design what we call the spherical lottery rule. This lottery rule is continuous – a small change
in the reports results in a small change in the probabilities of the alternatives. See Section 2

2. For three alternatives we present an algebraic approach for designing truthful dominant lottery
rules. These rules are continuous. See Section 3.

3. We present methodologies for transforming any truthful dominant lottery rule over three alterna-
tives to a truthful dominant lottery rule over n > 3 alternatives. The resulting lottery rule is not
continuous. See Section 3.1.

4. We show a transformation from bounded proper scoring rules for n events to truthful dominant
lottery rules for n alternatives. The resulting voting rule is not continuous. The transformation
does not apply if the scoring rule is unbounded (such as the logarithmic score). See Section 4.
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5. We show how the VCG mechanism (which involves money and multiple agents) can be used to
design truthful dominant lottery rules (that involves only one player and no money). Also here,
the resulting lottery rules are not continuous. See Section A.2 in the appendix.

6. We show a transformation from truthful dominant lottery rules for n + 2 alternatives to proper
scoring rules for n events. By way of example, we use this transformation to derive a well known
proper scoring rule, the quadratic score. We also show a transformation from truthful dominant
lottery rules for n+1 alternatives to proper scoring rules for n events. Combining this with item (5)
implies a methodology for deriving strictly proper scoring rules from the VCG mechanism. See
Sections A.1, B.2 and B.3 in the appendix.

1.3 Some remarks

In our lotteries exactly one alternative wins. Our lottery mechanisms do not assume that if no alternative
wins then the player gets 0 utility. If we wish to encompass situations in which valid outcomes include
the possibility that no alternative wins, or that more than one alternative wins, the lottery mechanism
needs to add these possible outcomes as additional alternatives.

The way of providing incentives to the player is by the choice of the winning alternative. There is
no transfer of money involved in our mechanisms. Money can be introduced into our mechanisms by
specifying alternatives that involve receiving or paying money.

The incentives in a truthful dominant lottery rule only refer to reporting the exact true utility
function. In our mechanisms, there will also be some correlation between how close a report is to the
true utility function and the expected value of the report. However, we make no formal claims regarding
the nature of this correlation, and do not exclude the possibility that among two different reports, the
one “further away” from the true utility function (according to some metric to be chosen by the reader)
results in higher expected payoffs.

Some of the lottery rules that we design are continuous – a small change in the reports results
in a small change in the probabilities of the alternatives. We view continuity as a desirable property
for lottery rules, if one wishes them to be used in practice. Discontinuity of the lottery rule might
have negative psychological effects on players who are not sure about their utility functions. They
might spend too much time deliberating among reports that are almost identical but that lead to very
different probability vectors. We note that for all our lottery rules, even the discontinuous ones, the value
of their expected payoff is continuous (even though the probability vector might not be continuous),
provided that the reports are honest.

An important aspect of a lottery mechanism is its economic efficiency. Namely, we want the winning
alternative to be the one that is actually preferred by the player. For more than two alternatives, there
are no economically efficient lottery rules that are truthful dominant. However, we remark that there
are truthful dominant lottery rules that achieve almost perfect economic efficiency, though we do not
advocate using them (see Section 5).

Our lottery rules provide ex-ante incentives to reveal the true utility function. However, this does
not exclude the possibility that the player will experience ex-post regret. This issue too will be discussed
in Section 5.

1.4 Ordinal utilities

Though our work is concerned with cardinal utilities, it may be instructive to consider first the case of
ordinal utilities. In this case a responsive lottery is truthful dominant if the unique optimal report for
the player is to report the alternatives in his order of preference (and specify ties, if there are any).
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If n = 1, the problem is not interesting. The winning alternative is determined regardless of what
the voter reports. If n = 2, the voter may report his preferred alternative, and the winning alternative
is the reported alternative. If n ≥ 3, there is no deterministic lottery with the rational uniqueness
property. There are n! different ranking orders (in fact more, if one allows ties), and only n possible
winners. For any deterministic mechanism with n ≥ 3, there are different orders that result in the same
winner. Even if with respect to both orders reporting the truth gives the best payoff to the player, there
is no incentive to the player in distinguishing between these two orders in the report.

This motivates considering randomized mechanisms (lotteries). Given a report that ranks the al-

ternatives from 1 to n, we may let the jth alternative win with probability 2(n−j)
(n−1)(n−2) (or any other

probability distribution that decreases with rank). If the player possesses a complete order over the
alternatives, then the dominant strategy for the player is to report his true ranking.

Note however what happens if the player views two of the alternatives as being equivalent (a tie).
Then asking the player to report a total order (with no ties) forces the player not to be truthful.
Hence we should allow the player to report a tie among some alternatives. It is natural in this case to
redistribute the probability of winning equally among the tied alternatives. Note however that by now
we lost both the rational uniqueness property and the rational invertibility property. In case of a tie in
the ranking, reporting a tie is not the unique best strategy. Reporting an arbitrary order among the
tied alternatives gives the same expected payoff to the player as reporting a tie. This illustrates part of
the challenges in designing truthful dominant mechanisms.

In this work we shall be interested not only in learning ordinal utilities, but cardinal utilities. Hence
we wish to learn more than just the ranking, but we also have greater control of the rewards. The player
can be incentivized not only by the choice of order among winning alternatives (which alternatives
have higher probability of winning then others), but also by the choice of the actual values of these
probabilities.

2 A geometric view of truthful dominant lottery rules

We present here a geometric view of truthful dominant lottery rules. We use it to design what we call
the spherical lottery rule (which shares some common principles with the spherical scoring rule). More
generally, the approach presented here leads to a geometric characterization of a wide class of truthful
dominant lottery rules.

We shall use the following notation. The number of alternatives is n, the utility vector of the player
is U = (u1, . . . , un), the report vector is X = (x1, . . . , xn), and the probability vector is P = (p1, . . . , pn),
taken from an infinite set P of feasible probability vectors (P is the range of f for the lottery rule).
Observe that all vectors P ∈ P are nonnegative and lie on the hyperplane

∑
pi = 1. Let 1̄ = 1√

n
(1, . . . , 1)

denote the unit vector in the direction of the n-dimensional all 1 vector. Given an arbitrary vector Y ,
it can be decomposed into Y = αY 1̄ + βY Y

⊥, where Y ⊥ is a unit vector orthogonal to 1̄, αY = ⟨Y, 1̄⟩
and βY = ⟨Y, Y ⊥⟩. We assume w.l.o.g. that the sign of Y ⊥ is chosen so that βY ≥ 0. Observe that for
all P ∈ P we have that αP = 1√

n
. Given a utility function U = αU 1̄ + βUU

⊥ and a probability vector

P = 1√
n
1̄+βPP

⊥ for the responsive lottery, the payoff to the player is ⟨U,P ⟩ = αU/
√
n+βUβP ⟨U⊥, P⊥⟩.

The rational report X for the player is the one for which P = f(X) maximizes ⟨U,P ⟩, and hence the
maximum expected payoff attainable by the player is maxP∈P{⟨U,P ⟩}. Observe that the optimal choice
of P ∈ P is the one maximizing βP ⟨U⊥, P⊥⟩ (since βU is positive). The optimal P is preserved under
positive affine transformations to U , because these transformations only change αU and βU (without
flipping its sign) but not U⊥.

We now describe a methodology for deriving truthful dominant lottery rules. (Presumably this
methodology characterizes all continuous truthful dominant rules. Proving this appears to be an exercise
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in formalities that does not add interesting insights, and hence will not be pursued here.) A compact
convex bodyK will be called nice if (1) for every point z on its boundary ∂K there is a unique hyperplane
H such that H ∩K = z, and (2) for every two points on ∂K, the line joining them lies entirely within
K. For example, balls, ellipsoids and eggs are nice convex bodies, whereas polyhedrons are not. For
nice convex bodies, for every vector v, there is a unique value t(v) such that the closed halfspace
H(v) = {x|⟨x, v⟩ ≤ t} (whose defining hyperplane is orthogonal to v) contains K and ∂H ∩ ∂K ̸= ∅.
Moreover, ∂H and ∂K interset in exactly one point.

Consider the (n − 1)-dimensional subspace of Rn defined by the hyperplane
∑

pi = 1. Within its
nonnegative orthant (satisfying pi ≥ 0 for every i) consider an arbitrary nice convex body K. Let P
(the set of feasible probability vectors for a responsive lottery) be precisely ∂K. Given a report X,
consider the halfspace H(X⊥) as described above, and choose P = f(X) to be the unique point z ∈ ∂K
intersecting ∂H(X⊥). This maximizes the projection of P on X⊥, and hence maximizes ⟨P,X⟩. For
this choice of lottery rule f , given a utility vector U , reporting X = U maximizes the expected payoff.
Moreover, for any report X ̸= U , the probability vector P = f(X) will be one that is strictly inferior
to f(U) in terms of the expected payoff.

It is natural to require (though not necessary) that the nice convex bodyK has geometric symmetries
that reflect the intention that a-priori, all alternatives are treated symmetrically. In particular, in this
case the center of mass of K will be at 1√

n
1̄. Of all convex bodies, the most symmetric one is the ball,

and its boundary is a sphere. Our spherical lottery rule uses a sphere centered at 1√
n
1̄. To maximize the

the variability in expected payoffs, this sphere has maximum possible radius. This radius is governed by
the need to stay in the nonnegative orthant. A closest point P on the boundary of this orthant to the
center of the sphere is (0, 1/(n− 1), . . . , 1/(n− 1)) for which P⊥ = (−1/n, 1/n(n− 1), . . . , 1/n(n− 1)).
Hence the radius of the sphere is 1/

√
n(n− 1) (implying among other things that no entry in P is

larger than 2/n). Observe that using the spherical lottery rule, given a report X = αX 1̄ + βXX⊥, the
probability vector P is derived simply by projecting X⊥ on the sphere (along the line connecting X⊥

to the center of the sphere). We can assume that X⊥ ̸= 0, by the assumption that the player is not
indifferent. Hence

f(X) =
1√
n
1̄ +

1√
n(n− 1)

X⊥ = (
1

n
, . . . ,

1

n
) +

1√
n(n− 1)

X⊥

One readily observes that P (= f(X)) is an affine transformation of the report X. Hence the
spherical lottery rule can be viewed as a normalization of the utility vector U with αU = 1/

√
n and

βU = 1/
√

n(n− 1), and following this normalization one simply takes P = U .

Theorem 3 The spherical lottery rule described above is truthful dominant.

The proof of Theorem 3 is implicit in the discussion preceding it. But let us sketch here yet another
proof. Observe that for the spherical lottery rule, all vectors in P have the same norm 1/

√
n− 1. Hence

the inner product ⟨U,P ⟩ is maximized by the vector in P that minimizes the angle with U . This vector
is precisely the projection of U on the sphere, and f(X) is this projection if and only X is a positive
affine transformation of U .

3 Three alternatives

In this section we design truthful dominant responsive lottery mechanisms for three alternatives. We
assume that the utility function of the player is normalized to be unit range 0 = u1 ≤ u2 ≤ u3 = 1, and
so are his reports.
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If all reports are identical, then we set pi = 1/3 for every alternative. If the reports are not identical,
let the reports (after normalization) be 0 = x1 ≤ x2 ≤ x3 = 1. For simplicity of notation, let x = x2.

Theorem 4 Any responsive lottery over three alternatives satisfying all the following conditions is
truthful dominant.

1. pi ≥ 0 for i ∈ {1, 2, 3}.

2.
∑

pi = 1.

3. p1 ≤ p2 ≤ p3, with p1(x) = p2(x) iff x = 0 and p2(x) = p3(x) iff x = 1.

4. p2 is strictly increasing in x and p1 and p3 are strictly decreasing in x.

5. The derivatives satisfy xp′2(x) + p′3(x) = 0 for every 0 ≤ x ≤ 1.

Proof. Conditions 1 and 2 are satisfied by every responsive lottery. Condition 3 ensures that in the
optimal reports, the alternatives are ranked in their true order of preference (satisfy the ordinal aspect
of the utility function). Specifically, u1 ≤ u2 ≤ u3, with u1 = u2 iff x1 = x2 and u2 = u3 iff x2 = x3.
Note that we assume that the player is not indifferent, and hence u1 < u3. After normalization to unit
range, we have 0 = u1 ≤ u2 ≤ u3 = 1. For simplicity of notation, let u = u2. We need to prove that the
optimal report x is x = u.

The payoff to the voter is v = u1p1(x)+u2p2(x)+u3p3(x) = up2(x)+p3(x). The derivative of v with
respect to x is up′2(x)+p′3(x) which equals 0 if x = u, by Condition 5, and only if x = u, by Condition 4
that implies that the derivatives are nonzero. This is the unique extremum for v. Condition 4 implies
that this is a maximum rather than a minimum. �

We remark that replacing condition 5 in Theorem 4 by the weaker condition that −p′3(x)/p
′
2(x) is

strictly increasing in x, from 0 to 1, will result in a rational invertible mechanism, though not necessarily
incentive compatible.

Theorem 4 allows for many truthful dominant mechanisms. It is natural to limit the possible
choices by normalizing the rewards such that there is some report for which p1 = 0. It is easy to see
that in conjunction with Theorem 4 this amounts to postulating that when x = 1 we have p1 = 0
and p2 = p3 = 1/2. By way of example, we present two mechanisms that satisfy Theorem 4 and this
additional requirement. They are named after the largest degree in the polynomials that are involved.

• The 3-alternative quadratic lottery rule: p1 =
1−2x+x2

6 , p2 =
1+2x
6 , p3 =

4−x2

6 .

• The 3-alternative cubic lottery rule: p1 =
1−3x2+2x3

8 , p2 =
1+3x2

8 , p3 =
6−2x3

8 .

3.1 Extension to more than three alternatives

Here we present two approaches for extending truthful dominant responsive lotteries over three alter-
natives to truthful dominant responsive lotteries with n > 3 alternatives.

The first of these approaches is as follows. Given the report of the player, pick uniformly at random
three alternatives. If all three have the same reported utility, let each one of them win with probability
1/3. Otherwise, normalize the part of the report of the player that refers to these three alternatives so
that it becomes unit sum, and apply a 3-alternative truthful dominant responsive lottery on these three
alternatives. It is not hard to see that this gives a truthful dominant responsive lottery.

In the appendix (Section B.1) we present another approach in more detail. When there are n + 2
alternatives A0, . . . , An+1 and the reports are 0 = x0 ≤ x1 ≤ . . . ≤ xn ≤ xn+1 = 1, it will give the
((n+ 2)-alternative) quadratic lottery rule:
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•
p0 =

n−
∑n

i=1 2xi +
∑n

i=1(xi)
2

n2 + 3n+ 2

•
pi =

n+ 2xi
n2 + 3n+ 2

for 1 ≤ i ≤ n

•
pn+1 =

2n+ 2−
∑n

i=1(xi)
2

n2 + 3n+ 2

4 Comparison with scoring rules

Our notion of truthful dominant lottery rules can be seen to be related to a notion known as strictly
proper scoring rules for categorical variables. (For information on scoring rules, see for example [6]
and [9].) Unlike our lottery rules, scoring rules involve transfer of money. In their basic form, scoring
rules assume that the utility derived from money is linear in the amount of money, though this assump-
tion can be avoided (for bounded scoring rules) by replacing transfer of a given amount of money by a
lottery over a larger amount [1].

Let us provide a dictionary that we will use for both settings, that we call lottery rules and scoring
rules respectively. To make the connection between lottery rules and scoring rules more apparent, it is
convenient to normalize the utility function (and report) of the player to be unit sum.

n - number of mutually exclusive alternatives (for lottery rules) or mutually exclusive events (for
scoring rules). Eventually, exactly one alternative will win/ one event will happen.

yi - true utility of alternative i (for lottery rules) or true probability of event i happening (for scoring
rules).

xi - reported utility of alternative i (for lottery rules) or predicted probability of event i (for scoring
rules).

Ri(x1, . . . , xn) - probability of alternative i winning (for lottery rules) or reward to predictor (score
of predictor) if event i happens (for scoring rules).∑

i yiRi(x1, . . . , xn) - expected reward to player (for lottery rules) or to predictor (for scoring rule).
A dominant truthful lottery rule is one in which (unless the voter is indifferent) the unique report

maximizing the expected reward is xi = yi. A strictly proper scoring rule is one in which the unique
prediction maximizing the expected reward is xi = yi.

Note the similarity in the formula for expected reward for lottery rules and scoring rules. However,
there are some noticeable differences between the two scenarios. (1) For lottery rules, there are no
requirements when the voter is indifferent (all utilities are equal). For scoring rules, we wish the
predictor to express true predictions even if all probabilities are equal. (2) For lottery rules, reports
that differ by a positive affine transformation are equivalent. For scoring rules, this is not the case. (3)
For lottery rules, the rewards (probabilities) are nonnegative and sum up to 1. For scoring rules, there
is no such restriction. In fact, there is no strictly proper scoring rule in which rewards always sum up
to exactly 1, since it must be the case that the unique maximum for sum of rewards is attained when
all predictions are 1/n.

Because of the above differences, there is no immediate equivalence between lottery rules and scoring
rules. However, there are certain algebraic transformations between these two concepts. See Section A.1
in the appendix for more details. Moreover, there are geometric characterizations of scoring rules in a
spirit similar to that of our geometric approach of Section 2. See [3]. In particular, our spherical lottery
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rule is based on a high dimensional sphere, and so is the spherical scoring rule (though these are two
different spheres).

5 Convex combinations

In general, given one truthful dominant mechanism, one can generate others by the method of taking
convex combinations. We say that a mechanism is a convex combination of two mechanisms M1 and M2

if there is some probability 0 < q < 1 such that with probability q the mechanism employs M1 and with
probability 1− q it employs M2. Equivalently, given the reports, the probability of a given alternative
to win is the convex combination (with weights q and 1 − q) of the respective probabilities in M1 and
M2. The following proposition is self evident.

Proposition 5 A convex combination of a truthful dominant responsive lottery with an incentive com-
patible responsive lottery is truthful dominant.

As an example for the use of Proposition 5, the following responsive lottery is truthful dominant.
Choose the alterative with highest reported value as a winner with probability q, and with the remaining
probability employ the spherical lottery rule. Observe that as q approaches 1, this voting rule converges
to optimal economic efficiency, but at the cost of weakening the incentives for the player to distinguish
in his report between the less desirable alternatives.

As another example, consider the issue of ex-post regret involved in responsive lotteries. Even though
reporting the true utility function is optimal for the player ex-ante, the player may suffer ex-post regret
after the lottery is held. For the 3-player quadratic lottery rule, given any report other than (0, 1, 1) the
least desirable alternative might win the lottery, and then the player may regret not having reported
(0, 1, 1) which would have avoided this possibility. To prevent this ex-post regret, one may take a convex
combination of the quadratic rule with the uniform rule (each alternative equally likely to win), which
ensures that regardless of the report of the player, the least desirable alternative has some probability of
winning. This decrease in ex-post regret comes at the cost of economic efficiency (among other things).

The availability of several (infinitely many) mechanisms that are truthful dominant allows one to
introduce some additional objective function, and select the mechanism that optimizes this additional
property. For example, among all truthful dominant mechanisms one may want to select the mechanism
minimizing the maximum probability with which the least desirable alternative wins. (This probability
is 1/6 for the 3-player quadratic lottery rule.) However, for this particular objective function, there is
no truthful dominant mechanism that minimizes it. For every truthful dominant mechanism, the value
of this objective function is strictly positive. But then it can be lowered by taking a convex combination
with an incentive compatible mechanism. This relates to the fact that the notion of truthful dominant
mechanisms is defined using strict inequalities, and its closure is the incentive compatible mechanisms.

6 Applications

The notion of truthful dominant responsive lotteries is a mathematical construct that may have practical
applications. We believe that in choosing a truthful dominant lottery rule for a practical application, one
would need to strike a careful balance among several considerations (such as ex-post regret, economic
efficiency and the strength of the incentives, see Section 5), and this will be possible only if the number
of alternatives is fairly small (four alternatives appears to be a good number). Also, we believe that a
carefully designed user interface may help the players understand the concept of responsive lotteries and
the effect of the choice of report on the expected reward. For example, one may imagine an interface
which includes sliding bar controls for each alternative, and a screen showing a pie chart for the relative
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probability of each alternative winning. As the player moves the sliding bars to indicate to which extent
he values each alternative, the pie chart changes dynamically. Having such a user interface in mind is
one of the reasons why we wish lottery rules to be continuous (and among our lottery rules for more
than three alternative, only the spherical one is continuous).

Though the purpose of this manuscript is mainly to develop the mathematical theory of truthful
dominant responsive lotteries, we briefly and informally discuss some potential applications. A formal
treatment of these and other potential applications will hopefully be undertaken elsewhere. In all cases
below we assume that the winning alternative can actually be given to the player after the lottery is
held (or at least, that the player believes that this is what will happen).

Experimental psychology. If one wishes to gain a quantitative understanding of preferences of
people over a set of alternatives, one may in principle use truthful dominant responsive lotteries. For
example, a psychophysical experiment may study the relative sensation of pleasure or pain associated
with various temperatures, and the alternatives may be those of putting one’s hand in containers of
water of various (possibly unpleasant but not harmful) temperatures. One may not want to repeat such
an experiment many times with the same subject, due to effects of adaptation, and responsive lotteries
may serve as a way of eliciting more information in fewer experiments. As always in experimental
settings, caution is needed in performing experiments and in interpreting the results (which at best
indicate what were the true preferences of the subject under the conditions of the experiment).

Market research. A company may use responsive lotteries to gain understanding of the preferences
of its potential costumers. For example, an airline company may offer some passengers on a flight a
responsive lottery over the choice of seat (say, a window seat, an aisle seat, or a middle seat) so as to
get a sense of what the true preferences of costumers are.

Multiple-agent mechanism design. In many settings one is interested in designing a mechanism
in which agents report their utilities, and then some global decision is taken so as to optimize some
objective function that depends on the true utilities of the agents. The difficulty is often in incentivizing
the agents to reveal their true utilities. Mechanisms based on statistical approaches often take a small
sample of agents, ask them for their utility function, and use this output so as to reach a global decision
that effects the agents not in the sample. In such a setting (and assuming no externalities), the agents
in the sample have no incentive to not tell the truth, and hence are sometimes assumed to be truthful.
See for example [2] for the use of a statistical approach in the design of combinatorial auctions. If
this statistical approach is combined with truthful dominant responsive lotteries then there is more
justification in assuming that the agents in the sample are truthful. Let us provide a hypothetical
example.

Suppose a company wants to reward each one of its employees with a $100 gift certificate to some
store chain. There are two store chains that are being considered (say one specializes in electronics,
one in sports). However, (almost) all gift certificates should be to the same store chain, as then the
company gets a big discount from the store chain. How can the company decide among the store chains?
One option is to sample at random a small number of employees and offer each one of them a truthful
dominant responsive lottery over four alternatives, where two of them are the gift certificates to the
two chains, and the other two alternatives are $50 and $100 in cash (for calibration). Each employee in
the sample actually does get the alternative that wins the respective lottery. All remaining employees
get gift certificates to just one store chain, and this store chain is determined based on the information
elicited by the responsive lotteries (and on the objective of the company, which may be for example to
maximize welfare). Arguably, employees in the sample will actually reveal their true references. If the
total number of employees is large, then with high probability this mechanism leads to almost optimal
economic efficiency: the sample size may be chosen to be large enough to be representative, yet small
enough to make the marginal inefficiencies small (inefficiencies resulting from giving sampled employees
more expensive rewards, and from occasionally giving sampled employees less favorable rewards, due to
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the random nature of responsive lotteries).
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A Main appendix

A.1 Transformation between lottery rules and scoring rules

We first design scoring rules based on lottery rules (in which utilities and reports are normalized to be
unit sum).

Given n events and predicted probabilities xi, one may attempt to associate an alternative with
each event, and use the probabilities of the corresponding lottery rule as rewards for the scoring rule.
However, this fails due to differences 1 and 2 listed above. Hence we shall design scoring rules for n
alternatives based on lottery rules for n + 1 alternatives. To the scoring rule, add the alternative A0

with y0 = x0 = 0. Given reports x1 ≤ . . . ≤ xn for the scoring rule, append to them the report x0 = 0
and then use the lottery rule. Let y1 ≤ . . . ≤ yn be the true probabilities. The properties of the lottery
rule easily imply that it is optimal for the predictor to set xn ≥ xi for all i. Thereafter, since we add
A0, the lottery rule implies that to maximize

∑n
i=0 yiRi(x1, . . . , xn) =

∑n
i=1 yiRi(x1, . . . , xn) one needs

to have xi/xn = yi/yn for every i. The requirement that
∑n

i=1 xi = 1 then implies that the unique
optimal prediction is indeed the true probabilities.
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In Section B.2 in the appendix we show how one can derive an n-alternative scoring rule from an
(n+2)-alternative lottery rule with utilities in unit range form. We use this approach to derive the well
known quadratic scoring rule.

We now show how to design lottery rules (in unit sum representation) based on scoring rules. We
assume here that the rewards in the scoring rule are bounded. Some strictly proper scoring rules (such
as the logarithmic score) are not bounded: if xi = 0 and event i does happen, the reward might be −∞.
However, some other strictly proper scoring rules (such as the quadratic score, and the spherical score)
are bounded.

Consider an arbitrary strictly proper scoring rule with nonnegative rewards for which for any report
of predicted probabilities, the sum of all rewards is at most 1. Every strictly proper scoring rule with
bounded rewards can be transformed into such a scoring rule by adding a large enough constant to all
scores so that they are nonnegative, and thereafter multiplying all scores by a properly chosen constant
so that they sum up to at most 1. Now we can use the rewards of the scoring rule (which are nonnegative
and sum up to at most 1) as the probabilities of each of the alternatives winning in the lottery rule.
This almost works, except for the fact that the probabilities might sum up to less than 1, and then with
some remaining probability no alternative wins. This is not allowed in lottery rules. (To see why this
is not allowed, think of the case that one of the original alternative was itself the null alternative, and
the player reported nonzero utility for it.) Hence we need to decide which alternative wins with the
remaining probability. Here are two options that do not work:

1. A random alternative is chosen with uniform probability. This can easily be seen to fail, by
considering the quadratic scoring rule. After scaling this rule gives pi = (2xi+1−

∑
j(x

j)2)/(n+

1) ≥ 0 with
∑

pi = (n+ 2− n
∑

(xj)
2)/(n+ 1) ≤ 1. Updating pi to pi − (1−

∑
pj)/n we get the

linear functions (2xi + 1− 1/n)/(n+ 1). This is not even incentive compatible. Regardless of the
true utility function of the player, the report maximizing the expected payoff for linear rules is to
report only the best alternative (xn = 1 and xi = 0 for all i ̸= n).

2. A random alternative is chosen with probability proportional to the reward that the scoring rule
gives for it. This is equivalent of scaling all the pi by the same multiplicative factor so that
they all sum up to 1. This can easily be seen to fail for the spherical scoring rule, which gives
pi = xi/

√∑
(xj)2. After this scaling we just get pi = xi which again is linear and hence not

incentive compatible.

Given that the above options do not work, we present an approach that does work. Given the
reported utilities, we first give every alternative except for the one with smallest report (breaking ties
arbitrarily, and redistributing probabilities at the end if needed) probability 1/n of winning. Only on the
remaining 1/n probability, we make the probability of winning be the normalized value of the rewards of
the scoring rule. If the sum of rewards of the scoring rule is less than 1, with the remaining probability
we let the lowest alternative win. Since y1 = 0, this does not change the expected payoff. Also, this
cannot make the probability of winning the least desirable alternative higher than the probability of
winning any other alternative. Hence we do inherit from the scoring rule the property that to maximize∑n

i=1 yiRi(x1, . . . , xn), one needs to have xi = yi.
We note that the approach described above of creating lottery rules out of scoring rules gives lottery

rules whose only discontinuity is when the utility of an alternative becomes equal to that of the least
favorable alternative.

For scoring rules with unbounded rewards (as in the logarithmic score, that would give pi = log xi),
the transformation above does not apply, and it is not clear whether there is a simply way of deriving
lottery rules out of them.
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A.2 Lottery rules from VCG

The VCG mechanism (see for example [5] or [8], and references therein) uses money to elicit the true
utility function of bidders. It is always incentive compatible, and when there is the right kind of
competition for items, being truthful may become the unique optimal strategy. Here we show how VCG
mechanisms can be used in order to derive truthful dominant lottery rules (without money).

Given a utility function 0 = u1 ≤ u2 ≤ . . . un = 1 for the player, let the reports be 0 = x1 ≤
. . . xn = 1. (To simply notation, we assume here that the order among xi is the same as the order
among ui. The justification for this assumption will become apparent soon.) Let π be some arbitrary
probability distribution with full support in the range [0, 1]. For simplicity, one may think of π as
the uniform probability distribution. Every such π will result in a lottery rule (that depends on π).
Choose y1, . . . yn independently at random, each from the probability distribution π. Think of the yi
values as the reported bids of a second bidder in a VCG mechanism. The winning alternative is the one
maximizing the sum xi+ yi. (We assume for simplicity that ties will not occur, as indeed is the case for
uniform π.) In addition, the player pays maxj yj − yi. Being truthful is the unique optimal strategy for
the player if the payment is in units that correspond to the units of his utility function. Those units are
un, which by our simplifying assumption (to be justified soon) are the same as xn. This payment can
be simulated by transferring maxj yj −yi from the probability that alternative n wins to the probability
that alternative 1 wins.

However, we need to maintain the property that the probability that alternative 1 wins is lowest
among all alternatives, and the probability that alternative n wins is highest. To achieve this, we play
the VCG game only with probability 1/(n+ 1). In addition, let each of the alternatives 2 ≤ i ≤ n− 1
win with probability 1/(n + 1), and let alternative n with probability 2/(n + 1). Now we can indeed
shift probability from alternative n to alternative 1 while maintaining the above property.

In summary, the truthful dominant responsive lottery is as follows.

1. Obtain the report 0 = x1 ≤ . . . xn = 1.

2. With probability (n−1)/(n+1): each of the alternatives 2, . . . , n wins with conditional probability
1/(n− 1) (or true probability 1/(n+ 1)).

3. With probability 2/(n + 1): play the VCG mechanism with random yj and let i be the index
maximizing xi + yi, and let the largest yj value be ŷ.

(a) With conditional probability 1/2 (true probability 1/(n+ 1)), let alternative i win.

(b) With conditional probability 1/2 (true probability 1/(n + 1)), let alternative 1 win with
conditional probability ŷ − yi, and alternative n win with probability 1 + yi − ŷ.

Remark. In Section 4 we have seen that truthful dominant lottery rules can be used in order to
derive strictly proper scoring rules. This implies that our approach can also be used in order to derive
scoring rules from VCG mechanisms. See Section B.3 in the appendix for a short discussion on this.

B Secondary appendix

B.1 From three alternatives to more

We present here an approach for using 3-alternative truthful dominant lottery rules to derive n-
alternative truthful dominant lottery rules with n > 3.
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Choose values 0 < q2 ≤ q3 ≤ . . . ≤ qn. (The requirement that qn ≥ qn−1 may be relaxed as the
example below shows.) Choose an arbitrary truthful dominant three alternative lottery rule M3, and
let m denote the maximum probability with which the third alternative wins in M3.

Given a unit range report 0 = x1 ≤ . . . ≤ xn = 1 of the player for the n-alternatives mechanism,
for every 1 < i < n consider M3 with alternatives A1, Ai, An and reports 0, xi, 1. Let pi1, p

i
i, p

i
n be the

probabilities assigned by M3 to the three alternatives in this case. Scale these probabilities by q2
m(n−3) ,

thus obtaining qi1, q
i
i, q

i
n.

The tentative probability assigned to alternative Ai is pi, where p1 =
∑n−1

i=2 qi1, pi = qi + qii for
1 < i < n, and pn = qn +

∑n−1
i=2 qin. To get the actual probabilities, scale by 1/(

∑
pi).

Note that the scaling of pi1 ensures that p1 ≤ p2. It is not hard to see that it is optimal for the
player to report the true ordinal preference over alternatives, and that given that the player does so,
reporting the true xi is optimal, a property inherited from M3.

As an example, let us apply the second approach together with the quadratic lottery rule when
n = 4. We choose q2 = q3 = 1/6 and q4 = −1/3 (the minimum value that will ensure p4 ≥ p3). After
normalization we get that given a report 0 = x1 ≤ x2 = x ≤ x3 = y ≤ x4 = 1 we have the 4-alternative
quadratic lottery rule:

• p1 =
2−2x−2y+x2+y2

12 , p2 =
2+2x
12 , p3 =

2+2y
12 , p4 =

6−x2−y2

12 .

Note that the 4-alternative quadratic lottery rule is not continuous in the following sense: as x2
approaches 0 (and x3 does not), p2 does not converge to p1. Likewise, as x3 approaches 1 (and x2 does
not), p3 need not converge to p4.

More generally, when there are n+ 2 alternatives A0, . . . , An+1 we obtain the ((n+ 2)-alternative)
quadratic lottery rule referred to in Section 3.1.

B.2 Deriving the quadratic scoring rule from the quadratic lottery rule

Here we show how one can derive an n-alternative scoring rule from an (n+ 2)-alternative lottery rule
with utilities in unit range form. Add two auxiliary alternatives A0 and An+1 with reported utilities 0
and 1 respectively. Note that adding the auxiliary alternatives ensures that the player is not indifferent,
and that the xi values are now treated on an absolute scale rather than a relative one. Now the lottery
rule for n+2 alternatives gives a scoring rule for the n events. Note that the lottery rule also has some
probability of Rn+1(x1, . . . , xn) of alternative An+1 winning. For the expected score to reflect this, add
Rn+1(x1, . . . , xn) to the reward of the predictor.

As an example, let us design a scoring rule for n events based on the quadratic scoring rule. Given
predicted probabilities 0 ≤ x1 ≤ . . . ≤ xn with

∑
xi = 1, we need to add two alternatives A0 and

An+1, assume reports x0 = 0 and xn+1 = 1 and employ the quadratic scoring rule on n+2 alternatives.

We then see that the reward for event i happening is
2xi+3n+2−

∑n
j=1(xj)

2

n2+3n+2
. Note that by scaling all

rewards by the constant (n2 + 3n+ 2) and then subtracting the constant (3n+ 3) the rewards become
2xi − 1−

∑n
j=1(xj)

2. This is a well known scoring rule, called the Brier score or Quadratic score.

B.3 Deriving scoring rules from VCG mechanisms

The n-alternative lottery rule of Section A.2 derived from the VCG mechanism naturally gives a scoring
rule for alternatives 2, . . . , n − 1. The reward for event i happening is the expected probability for
alternative i winning, plus the expected probability of alternative n winning. Computing these expec-
tations might not be easy (they depend both on the predictions xi and the probability distribution
π). This computational difficulty may be overcome if we allow probabilistic scoring rules in which the
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reward is not a deterministic function of the event that happens, but rather a probabilistic function,
and the predictor wishes to maximize the expected reward (this is consistent with the philosophy of
scoring rules). In this case, do the following. Let k be the event that actually happened. Draw variables
y1, . . . yn at random. Let j be the index maximizing xj + yj , and let ŷ be the largest of the yi values.
Give a reward of 1 + yj − ŷ. In addition, if either j = k or j = n then give an additional reward of 1.
Linearity of expectation shows that the expected reward for this probabilistic reward function given
that k happened is exactly equal to the reward of the VCG based mechanism.
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