
Beyond the Worst-Case Analysis of Algorithms

Edited by

Tim Roughgarden





Contents

1 Introduction to Semi-Random Models U. Feige page 4

1.1 Introduction 4

1.2 Why study semi-random models? 8

1.3 Some representative work 12

1.4 Open problems 27



1

Introduction to Semi-Random Models
Uriel Feige

Abstract

This chapter introduces semi-random models, in which input instances are gener-

ated by a process that combines random components with adversarial components.

These models may bridge the gap between worst case assumptions on input in-

stances, that often are too pessimistic, and purely random “average case” assump-

tions, which might be too optimistic. We discuss several semi-random frameworks.

We present algorithmic paradigms that have been proved effective in handling semi-

random instances, and explain some principles used in their analysis. We also discuss

computational hardness results for the semi-random setting.

1.1 Introduction

In semi-random models, input instances are generated by a process that com-

bines random components with adversarial components. There are different ways by

which these components can be combined, and indeed, many different semi-random

models have been proposed. In this section we present several such models. In Sec-

tion 1.2 we explain considerations that motivate the introduction of semi-random

models. In Section 1.3 we survey some representative past work on semi-random

models. In Section 1.4 we list some open questions.

1.1.1 Examples of semi-random models

In distributional models (see Chapter 8 in this book) the input instance is generated

by a random process. In semi-random models, generation of input instances involves

both a random component and an adversarial (worst case) component. We present

here examples of semi-random models, and contrast them with related distributional

models that have no adversarial component. In all models considered in this chapter,

the algorithm that is faced with a computational problem (3SAT, 3-coloring, min
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bisection, maximum independent set, in our examples) gets to see only the resulting

input instance, but not the way by which it was generated.

In our first example, the adversary first chooses a tentative input instance, and

then the final input instance is generated by applying a small random perturbation

to the tentative input instance. Semi-random models of this nature are studied in

the area of smoothed analysis (see Part IV in this book).

3SAT.

Worst case. The input is an arbitrary 3CNF formula φ. A 3CNF formula is a

collection of clauses, where each clause contains three literals, where a

literal is a Boolean variable or a negation of a Boolean variable. A satisfying

assignment is a truth assignment to the Boolean variables such that in every

clause at least one literal is set to true. The goal is to determine whether

φ is satisfiable, namely, whether there is a satisfying assignment.

Distributional. Given positive integer parameters n (for the number of variables)

and m (the the number of clauses), one generates independently at random

m clauses, where each clause contains three variables chosen uniformly at

random from the
(
n
3

)
triples of variables, and the polarity of the variables in

each clause (determining whether the literal associated with the variable is

negated) is chosen uniformly at random. The goal is to determine whether

the resulting 3CNF formula φ is satisfiable.

Semi-random. Given integer parameters n and m and a parameter p (where

0 < p < 1), an adversary generates a 3CNF formula φ′ containing m

clauses of its choice. This completes the adversarial part of the construc-

tion. Thereafter, for each literal in φ′, its polarity is flipped independently

with probability p. The goal is to determine whether the resulting 3CNF

formula φ is satisfiable.

In our next example, a tentative input instance is first generated in a distribu-

tional manner, and thereafter an adversary is allowed to modify the tentative input

instance in some restricted way. Often, the forms of modification that are allowed

are meant to capture modifications under which the resulting final instance should

not be more difficult to solve than the original tentative instance. We refer to such

an adversary as a monotone adversary.

Minimum bisection.

Worst case. The input is an arbitrary graph G(V,E) with an even number n of

vertices. The goal is to output a set S ⊂ V of cardinality n
2 for which the

number |E(S, V \ S)| of cut edges is minimized.

Distributional. Given an even integer n and parameters 1
n ≤ p < q ≤ 1− 1

n one

generates a graph G(V,E) (with |V | = n) as follows. A subset S ⊂ V of

size n
2 is chosen at random. For every pair of vertices (u, v) with u ∈ S and



6 U. Feige

v ∈ V \S, the edge (u, v) is included in E independently with probability p.

For other pairs (u, v) of distinct vertices (either both vertices in S or both

not in S) the edge (u, v) is included in E independently with probability q.

The resulting graph G(V,E) is the input graph, and the goal is to output

the minimum bisection. The set S is referred to as the planted bisection. If

q − p is sufficiently large then with high probability the unique minimum

bisection is S.

Semi-random. Given n, p, q, first one generates a random input graph exactly as

explained above. This completes the random component of the construc-

tion. Thereafter, an adversary may observe the random graph and remove

from the cut (S, V \ S) arbitrary edges of its choice, and add elsewhere

(within S or within V \ S) arbitrary edges of its choice. The goal is to

output the minimum bisection in the resulting input graph. If S was the

minimum bisection in the random graph, it remains so in the semi-random

graph.

In the following example, one of the random steps in a distributional model is

replaced by an adversarial step. We refer here to such models as separable, as we

separate between the components generated at random and those generated by

the adversary. The semi-random model presented for 3SAT, in the special case in

which p = 1
2 , is one such separable model, as the choice of variables is completely

adversarial, whereas the choice of polarities is completely random. We now present

a separable model for 3-coloring.

3-coloring.

Worst case. The input is an arbitrary graph G(V,E). The goal is to legally 3-color

its vertices, if possible. A legal 3-coloring is a partition of V into three sets

of vertices, referred to as color classes, where the subgraph induced on each

color class is an independent set.

Distributional. Given parameters n and 0 < p < 1, first, a graph G(V,E′) is gen-

erated as an Erdos-Renyi Gn,p random graph (where there are n vertices,

and every edge is present independently with probability p). Thereafter,

every vertex independently at random is associated with one of the colors,

c1, c2 or c3. This association is referred to as the planted 3-coloring. All

monochromatic edges (edges whose endpoints are associated with the same

color) are removed. The resulting graph is the input graph G(V,E). The

goal is to output a legal 3-coloring. If p is sufficiently large (e.g., p ≥ 2 logn
n

suffices) then with high probability the planted 3-coloring is the unique

legal 3-coloring of G(V,E).

Semi-random. Given parameters n and 0 < p < 1, the input graph G(V,E)

is generated as follows. First, a graph G(V,E′) is generated as a Gn,p
random graph. This completes the random component of the construction.



Introduction to Semi-Random Models 7

Thereafter, an adversary observes the random graph and associates with

each vertex one of the three colors, c1, c2 or c3, with the only restriction

being that every color class is of size n
3 (rounded up or down to an integer

value). All monochromatic edges (with respect to this planted 3-coloring)

are removed. The goal is to output a legal 3-coloring for the resulting input

graphG(V,E). Here, even if p is fairly large (but not larger than 1
3 ),G(V,E)

may have legal 3-colorings that differ from the planted one.

Our final example (for this section) gives a semi-random model that is a variation

on a distributional planted model. In the underlying distributional planted model,

with high probability the planted solution is the unique optimal solution. In con-

trast, in the semi-random model the planted solution might be far from optimal.

The algorithmic goal in the semi-random setting is to find a solution that is as good

as the planted one.

Maximum independent set (MIS).

Worst case. The input is an arbitrary graph G(V,E). The goal is to output a set

S ⊂ V of maximum cardinality that induces an independent set (namely,

(u, v) 6∈ E for every u, v ∈ S).

Distributional. Given parameters n, k and p (where k < n are positive integers

and 0 < p < 1), first, a graph G(V,E′) is generated as a Gn,p random graph.

Thereafter, a random set S ⊂ V of k vertices is turned into an independent

set by removing from E′ all edges of the form (u, v) for u, v ∈ S. This S is

referred to as the planted independent set. The resulting graph G(V,E) is

the input graph, and the goal is to output an independent set of maximum

size. If k is sufficiently large (e.g., for p = 1
2 it suffices to take k = 3 log n)

then with high probability the unique independent set of maximum size is

S.

Semi-random. Given parameters n, k and p, the input graph G(V,E) (with |V | =
n) is generated as follows. First, a graph with a planted independent set

S is generated exactly as in the distributional model. This completes the

random component of the construction. Thereafter, all edges within V \ S
are removed. Finally, an adversary observes the random graph (whose only

edges are between S and V \ S) and may add to it arbitrary edges of its

choice, as long as none of the added edges has both endpoints inside S.

Hence the adversary has complete control over the subgraph induced on

V \S, and acts as a monotone adversary with respect to the edges between

S and V \ S. The goal is to output an independent set of size at least k in

the resulting input graph G(V,E). Note that regardless of the edges added

by the adversary, S itself is a feasible solution, but depending on the edges

(not) added by the adversary, there might be other feasible solutions.
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1.2 Why study semi-random models?

A semi-random model involves a random component and an adversarial component.

As we have seen in Section 1.1.1 (and we will see additional examples later), there

are many different roles that we can delegate to the adversary when constructing the

input instance. Below we discuss some of the considerations involved in proposing

a semi-random model. As semi-random models are often conceived as refinements

of distributional models, we shall also discuss some of the motivations for studying

distributional models, with emphasis on those motivations that apply also to semi-

random models.

In the discussion that follows, it will be convenient to distinguish between two

classes of distributional models. We shall refer to one class as that of oblivious

random models, and to the other as planted models.

In oblivious random models, the input is generated by a random process that

is independent of the optimization problem that one is interested in solving. The

distributional model given for 3SAT in Section 1.1.1 is an example of an oblivious

random model, and the model applies without change to other constraint satisfac-

tion problems such as 3AND or not-all-equal 3SAT. An example of an oblivious

random model for graph problems is the Erdos-Renyi Gn,p random graph model.

This model applies to any graph problem, though the range of interest for the pa-

rameter p might depend on the optimization problem of interest. For example, for

max clique one might choose p = 1
2 , for Hamiltonicity one might choose p = logn

n ,

whereas for 3-coloring one might choose p = 4
n .

In planted models, the input is generated by a random process that depends

on the optimization problem that one is interested in. For example, the planted

distributional models considered in Section 1.1.1 for the three graph problem, min

bisection, 3-coloring and maximum independent set, are different from each other.

In planted models, the planted solution is often the unique optimal solution.

1.2.1 Average case analysis

Distributional models are sometimes assumed to represent input instances that may

occur in practice. The extent to which one can defend such assumptions depends

on the setting.

In some settings, distributional models exactly capture the set of interesting input

instances. Most notably, this happens in settings related to cryptography, in which

participants in a cryptographic scheme are instructed to generate various inputs to

the scheme at random. For example, in public key cryptographic schemes such as

RSA, a participant is instructed to generate its public key by privately picking two

large random primes p and q, computing n = pq, and publishing n as the public

key. Factoring algorithms that are tailored for this specific distributional setting

have far reaching consequences for the underlying cryptographic scheme.
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In some settings, distributional models are conjectured to be a good approxi-

mation of reality. For example, studies in statistical physics often involve random

graph models that have a geometric nature: the vertices of the graph lie in a low

dimensional space, and only vertices that are geometrically close to each other may

be connected by edges. The random aspect of the model can either be in the lo-

cation of the vertices, or in the choice of which of the possible edges are indeed

edges.

However, in many settings, the relation between distributional models and typical

instances that occur in practice is less clear. For example, in the study of social

networks, one often considers distributions over graphs that are generated by a

random process such as preferential attachment. These distributions may capture

some of the typical aspects of social networks (such as typical degree sequences),

though for any given social network of interest, there may be other important

aspects (such as the relative frequencies of various small subgraphs) that are not

captured well by the underlying distributional model.

Oblivious random models typically exhibit a multitude of nearly optimal solu-

tions, with pairs of nearly optimal solutions that are very different from each other.

As argued in Chapters 5 and 6, in some settings, an optimal solution to an opti-

mization problems is most useful when it is basically unique, and of significantly

better value than those solutions that significantly differ from it. In these cases,

planted models can serve as the basis for average case analysis of instances of inter-

est, as the planted solution are often the unique optimal solutions. But also here,

the planted models capture only some aspects of “interesting” input instances, and

may not capture other aspects.

Summarizing the discussion above, distributional models, whether oblivious or

planted, are sometimes meant to represent average case analysis, but in many cases

there is a major difficulty of characterizing the “right” distributional model for the

set of problems that may appear in practice. In such settings, it is important that

algorithms that are designed for inputs generated by the distributional model will be

robust, and work well also for inputs that are generated by other processes. A way of

addressing this concern is through the use of semi-random models. In these models,

the exact distribution of input instances is not known to the algorithm, as some

aspects of the input instance are left to the discretion of an adversary. Consequently,

algorithms designed for semi-random models avoid the danger of “over-fitting” to

a particular input distribution, and they are expected to be more robust than

algorithms that are designed for distributional models. This is one of the major

reasons for introducing semi-random models such as the monotone adversary (e.g.,

for min bisection in Section 1.1.1). In Section 1.3 we will see examples of how such

models direct the design of algorithms towards algorithms that are more robust.

Another contribution of semi-random models is in providing refinements of av-

erage case analysis, clarifying what it is that one actually averages over. In semi-

random models, some aspects of the input instance are chosen by an adversary, and
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the random distribution is over some other aspects. For example, in smoothed mod-

els (e.g., for 3SAT in Section 1.1.1), the algorithm needs to work well on average

not only when the average is taken as a global average over all input instances, but

also when one takes a local average around any particular tentative input instance,

regardless of what this tentative input instance is. Another example is random or-

der models for online algorithms (see Chapter 11) where an adversary may select a

worst case instance, and only the order of arrival is random.

1.2.2 Recovering a signal contaminated by noise

Randomness in generation of input instances can sometimes be thought of as repre-

senting “noise” that makes finding an otherwise obvious solution more difficult. For

example, for error correction of encoded messages transmitted over a noisy channel,

the source of difficulty in decoding is because of errors introduced into the encoded

message by the noisy channel. In the absence of noise, decoding the transmitted

message is trivial. With noise, decoding typically involves two aspects. One is infor-

mation theoretic – does the noisy message contain sufficient information in order

to uniquely recover the transmitted message (with high probability)? The other is

algorithmic, designing an efficient algorithm for recovering encoded messages from

their noisy received message.

Noise is often modelled as being random. For example, in a binary symmetric

channel (BSC) each transmitted bit is flipped independently with probability p < 1
2 .

However, it is also reasonable to model noise as being semi-random. For example,

one may assume that each transmitted bit i is flipped with probability pi ≤ p

rather than exactly p, where the value of pi is determined by an adversary. If a

decoding algorithm works in the former model but not in this latter model, this

may be a sign of “over-fitting” the algorithm to the model. Noise is also often

modelled as being fully adversarial. In Hamming’s model, within a block of bits,

the total fraction of bits flipped is at most p, but an adversary may decide which

bits are flipped. Decoding in the information theoretic sense is more difficult in

the Hamming model than in the BSC model (the transmission rate under which

unique decoding is possible is smaller in the Hamming model). Also, decoding in

the algorithmic sense appears to be more difficult in the Hamming model. This last

statement is supported by the observation that for every p < 1
2 and p′ < p, if block

sizes are sufficiently large, every decoding algorithm for the Hamming model with

p fraction of errors works also in the BSC model when the error probability is p′.

In analogy to the coding setting, planted models can also be viewed as represent-

ing an ideal object contaminated by noise. Under this view, the goal is typically

to recover the ideal object. Solving an optimization problem associated with the

object may serve as a means towards this end, but is not the goal by itself. This

view is different from that taken in most of this chapter, where the goal is typically
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to solve an optimization problem, and a solution is accepted even if it does not

correspond to the planted object.

As an example, for the MIS problem, the ideal object is an independent set of

size k in an otherwise complete graph. This ideal object is contaminated by noise,

where noise corresponds to removing some of the edges of the graph. If every edge

is removed independently with the same probability (in analogy to independent

noise), one gets the standard distributional model for planted independent set (but

with the goal of finding the planted independent set, rather than that of finding

a maximum independent set). Semi-random models for MIS correspond to models

in which the noise is not independent, and this makes recovering the ideal object

more difficult.

1.2.3 A model for worst case instances

To make progress (e.g., achieve a better approximation ratio) in the design of algo-

rithms for a difficult computational problem, it is useful to have an understanding

of which are the most difficult instances of the problem. For some problems, dis-

tributional models are conjectured to produce input instances which are essentially

as difficult as worst case instances. For example, it is conjectured that 3SAT on

random 3CNF formulas with dn clauses (for some large constant d – such formulas

are unlikely to be satisfiable) are essentially as difficult to refute as adversarially

chosen 3CNF formulas with dn clauses. For some other problems, such as the dense

k-subgraph problem (given an input graph and a parameter k, find the induced

subgraph on k vertices with the highest average degree), distributional models ap-

pear to capture the limitations of currently known algorithms, and progress on

distributional instances played a key role in improving the approximation ratio also

for worst case instances (see Bhaskara et al. (2010)).

There are problems whose approximability is not well understood (examples in-

clude sparsest cut, unique games) and (natural) distributional models produce in-

stances on which known algorithms perform much better than the best approxima-

tion ratios known for worst case instances. In such cases, it is instructive to consider

semi-random instances, and try to extend the good performance of algorithms to

the semi-random instances (as done in Kolla et al. (2011)). Success in this effort

may suggest that known algorithmic approaches might also suffice in order to han-

dle worst case instances (even though we might be lacking the analysis to support

this), whereas failure may help clarify what aspects of input instances are those

that create difficulties for currently known algorithms.

1.2.4 NP-hardness

The theory of NP-completeness has great value in informing us that certain prob-

lems do not have polynomial time algorithms (unless P=NP), and hence that we
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should not waste efforts in trying to design polynomial time algorithms for them

(unless we are seriously trying to prove that P=NP). This theory has been extended

to proving NP-hardness of approximation results. This plays a key role in directing

research on approximation algorithms to those problems (such as sparsest cut) for

which there still is hope for substantial improvements, and away from problems

(such as max-3SAT) for which there is only negligible room for improvements. Un-

fortunately, the theory of NP-completeness has not been successfully extended (so

far) to distributional problems, and hence it is difficult to judge whether our failure

to find good algorithms for a distributional problem (in those cases where we fail)

is because there really is no good algorithm for handling the instances generated

by the distribution, or because we are not using the right algorithmic tools for

the distributional problem. This makes it difficult to classify which distributional

problems are easy and which are hard.

One of the advantages of semi-random models is that their adversarial component

offers us possibilities for proving NP-hardness results. Consequently, it is not rare

that for semi-random models, for certain ranges of parameters we have polynomial

time algorithms, and we also have NP-hardness results that explain why the algo-

rithmic results do not extend to other ranges of the parameters. Hence research on

algorithms for semi-random models can be guided by the theory of NP-completeness

towards problems where there is hope to make progress, and away from problems

for which progress is hopeless. This aspect is missing in research on algorithms for

distributional problems.

1.3 Some representative work

In this section we shall present some key insights that emerged in the study of semi-

random input models. In doing so, we shall provide some historical perspective of

how these ideas developed (though not necessarily in historical order).

1.3.1 Preliminary results on semirandom models

Blum and Spencer (1995) (following earlier work by Blum (1990)) motivated and

introduced several semi-random models for the k-coloring problem. One of these

models, referred to in their work as the colorgame model, is a monotone adversary

model for k coloring. In this model, the set of vertices is partitioned into k equal

sized color classes. Thereafter for every pair of vertices u, v in different color classes,

an edge (u, v) is introduced independently with probability p. The edges introduced

in this stage are referred to as random edges. Finally, the adversary may introduce

arbitrary additional edges between color classes, referred to as adversarial edges.

The goal is to design polynomial time algorithms that k-color the resulting graph,
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for a wide range of values of k and p. As in all semi-random models, the coloring

algorithm is not told which edges are random and which are adversarial.

For k = 3 Blum and Spencer propose the following algorithm. Let N(v) denote

the set of neighbors of a vertex v. Two vertices u and v are said to be linked if

the subgraph induced on N(u) ∩N(v) includes at least one edge. Observe that in

every legal 3-coloring, two linked vertices must both be colored by the same color,

because in every legal coloring their common neighborhood requires at least two

colors. Consequently, two linked vertices u and v may be merged, namely, replaced

by a single vertex w, with N(w) = N(u) ∪ N(v). The new graph is 3-colorable

if and only if the original graph is 3-colorable. Any two vertices that were linked

in the original graph are also linked in the new graph, but there may be vertices

that were not linked in the original graph and become linked in the new graph.

Repeatedly merging linked vertices whenever possible (in an arbitrary order – all

orders give the same final outcome), the algorithm is successful if the final resulting

graph is a triangle. In this case the graph has a unique 3-coloring: for every vertex

t of the triangle, the set of vertices that were merged in order to give t forms a

color class. Observe that the algorithm is monotone in the following sense: if it is

successful for a graph G, then it also successful for every 3-colorable graph G′ that

can be obtained from G by adding edges to G. This follows because any sequence of

merge operations that is performed in G can also be performed in G′. The only edge

addition that can prevent a merge between linked vertices u and v is to add the edge

(u, v), but this is not allowed because the resulting graph will not be 3-colorable.

Blum and Spencer proved that when p > n−0.6+ε there is high probability (over

the choice of the random edges, regardless of the choice of the adversarial edges) that

the algorithm indeed 3-colors the graph. At this low edge density, initially most pairs

of vertices do not have any common neighbors and hence cannot possibly be linked,

and the crux of the proof is in showing that as the algorithm progresses, more pairs

of vertices become linked. The algorithm can be adapted to k-coloring of k-colorable

semi-random graphs (two vertices are linked if their common neighborhood contains

a Kk−1), though the required value of p increases to n−δk+ε, for δk = 2k
k(k+1)−2 .

Blum and Spencer also considered an unbalanced k-colorable semi-random model

in which the sizes of different color classes can differ significantly, and showed an

NP-hardness result for coloring such graphs.

Theorem 1.1 (Blum and Spencer (1995)) For every k ≥ 4 and every ε > 0, if

p ≤ n−ε then it is NP-hard to k-color graphs that are produced by the monotone

adversary unbalanced semi-random model for k-coloring.

Proof We sketch the proof for k = 4. Suppose that p = n−3ε for some 0 < ε < 1.

Let H be an arbitrary graph on 3nε vertices for which one wishes to find a 3-

coloring. This problem is NP-hard, but can be reduced to the problem of 4-coloring

a semi-random graph with unbalanced color classes. This is done by creating a

graph G∗ that is composed of a disjoint union of H and an independent set I of
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size n − 3nε, and connecting every vertex u ∈ H and v ∈ I by an edge (u, v).

Every 4-coloring of G∗ must 3-color H, and moreover, deriving the 3-coloring for

H from the 4-coloring of G∗ can be done in polynomial time. Hence if 3-coloring

H is NP-hard, so is 4-coloring G∗.

However, G∗ can be obtained with high probability as the outcome of the un-

balanced semi-random 4-coloring model. Suppose for simplicity of the presentation

that the three color classes of H are of equal size. Then consider the unbalanced

4-coloring semi-random model with one “large” color class of size n−3nε and three

“small” color classes, each of size nε. With high probability, all random edges in the

construction of the input graph will have at least one of their endpoints in the large

color class, and no edges between the small color classes. If this high probability

event happens, then the monotone adversary can add between the three small color

classes a set of edges that make the subgraph induced on them isomorphic to H,

and also add all missing edges between the large color class and each of the small

color classes, and this results in the graph G∗. As we argued that it is NP-hard to 4-

color G∗, it is NP-hard to 4-color graphs in the unbalanced semi-random 4-coloring

model.

1.3.2 Planted clique/MIS with a monotone adversary

In this section we shall discuss algorithms for a semi-random model for the max-

imum independent (MIS) set problem. The model and associated algorithms can

easily be adapted to the clique problem as well, due to the fact that a set S of ver-

tices forms a clique in G if and only if it forms an independent set in the complement

graph Ḡ

The following is a standard distributional model Gn,k, 12 for MIS, often referred

to as planted MIS, or hidden MIS (and in analogy, planted/hidden clique – see

Chapter 8). One first generates a random Gn, 12 graph G′. In G′, one selects a

set S of k vertices at random, and removes all edges within S. The result is the

input graph G. The goal is to design a polynomial time algorithm that with high

probability (over the choice of G) solves the MIS problem. For sufficiently large k

(k slightly above 2 log n suffices), there is high probability (over the random choice

G ∈ Gn,k, 12 ) that S is the unique maximum independent set in G, and in this case

the goal of solving MIS coincides with a goal of finding S.

When k ≥ c
√
n log n for a sufficiently large constant c, the vertices of S are (al-

most surely) simply those of lowest degree in G. When k ≥ c
√
n, recovering S (with

high probability) is more challenging, but there are several known algorithms that

manage to do so. Perhaps the simplest of these is the following algorithm of Feige

and Ron (2010). The highest degree vertices in the (residual) graph are removed

from the graph in an iterative fashion, until only an independent set remains. Feige

and Ron prove that with high probability this independent set I is a relatively
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large subset of S. Moreover, S can be recovered by adding to I those vertices not

connected to any vertex in I.

Alon et al. (1998) developed a spectral algorithm for recovering S. It is easier

to present their algorithm in the planted clique model rather than planted MIS.

It is well known that for the adjacency matrix A of a random Gn, 12 graph, almost

surely the largest eigenvalue satisfies λ1(A) ' n
2 , whereas all other eigenvalues are

not larger than roughly
√
n. A standard argument based on Rayleigh quotients

implies that planting a clique of size k > c
√
n (for sufficiently large constant c) in a

random graph should create an eigenvalue of value roughly k
2 . Hence for the input

graph G, we expect its adjacency matrix AG to satisfy λ2(AG) ' k
2 >

√
n. Alon

et al. (1998) proved that with high probability, the set K of k largest entries in

the eigenvector with eigenvalue λ2 have an overlap of size at least 5k
6 with set S.

Iteratively removing from K pairs of vertices that do not form an edge results in a

clique K ′ of size at least 2k
3 . It is not hard to prove that necessarily K ′ ⊂ S, and

that all other vertices of S are precisely those vertices that are neighbors with all

vertices of K ′.

To evaluate the robustness of these algorithmic techniques, the distributional

Gn,k, 12 model for MIS can be extended into a semi-random model by introducing

a monotone adversary. The adversary, who has unbounded computational power,

may observe G, and add to it edges of his choice, provided that S remains an

independent set. This gives the semi-random graph Ĝ. Observe that if S is a MIS

(the unique MIS, respectively) in G, then necessarily S is a MIS (the unique MIS,

respectively) in Ĝ as well. The goal is to design a polynomial time algorithm that

with high probability (over the choice of G ∈ Gn,k, 12 , for every Ĝ that may be

generated from G) finds S.

The iterative algorithm that is based only on degrees of vertices can easily be

fooled by the adversary (who in particular has the power to make all vertices of

S have substantial higher degree than all the remaining vertices). Likewise, the

spectral algorithm can also be fooled by the adversary, and it too will not find S

in Ĝ. However, with additional machinery, the spectral algorithm can be salvaged.

An algorithm that does work in the semi-random model is based on semi-definite

programming (SDP). At a high level, one may think of SDPs as a technique that

combines spectral techniques with linear programming. This is because SDPs in-

volve two types of constraints: spectral (requiring a certain matrix to have no

negative eigenvalues), and linear (as in linear programming).

We present here the algorithm of Feige and Krauthgamer (2000) for the semi-

random MIS model. It is based on the ϑ function of Lovasz (which will be defined

shortly). Given a graph G, ϑ(G) can be computed (up to arbitrary precision) in

polynomial time, and it provides an upper bound (that might be far from tight) on

α(G) (the size of the maximum independent set in G). The key technical lemma

in Feige and Krauthgamer (2000) is the following.
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Lemma 1.2 Let k ≥ c
√
n for sufficiently large c. For G ∈ Gn,k, 12 , with probability

at least 1− 1
n2 (over choice of G) it holds that ϑ(G) = α(G).

Though Lemma 1.2 is stated for G ∈ Gn,k, 12 , it applies also for Ĝ generated by

the semi-random model. This is because ϑ is a monotone function – adding edges

to G can only cause ϑ to decrease. But ϑ cannot decrease below α(Ĝ), and hence

equality is preserved.

Given Lemma 1.2, finding S in Ĝ is easy. The failure probability is small enough

to ensure that with high probability, for every vertex v ∈ S it holds that ϑ(Ĝ\v) =

k − 1, and for every vertex v 6∈ S it holds that ϑ(Ĝ \ v) = k (here Ĝ \ v refers to

the graph obtained from Ĝ by removing vertex v and all its incident edges). This

gives a polynomial time test that correctly classifies every vertex of Ĝ as either

in S or not in S. As we shall see, in fact it holds that all vertices can be tested

simultaneously just by a single computation of ϑ(Ĝ).

Let us now provide some details about the contents of Lemma 1.2. The ϑ function

has many equivalent definitions. One of them is the following. An orthonormal

representation of G(V,E) associates with each vertex i ∈ V a unit vector xi ∈ Rn,

such that xi and xj are orthogonal (xi · xj = 0) whenever (i, j) ∈ E. Maximizing

over all orthonormal representations {xi} of G and over all unit vectors d (d is

referred to as the handle) we have

ϑ(G) = max
d,{xi}

∑
i∈V

(d · xi)2

The optimal orthonormal representation and the associated handle that maximize

the above formulation for ϑ can be found (up to arbitrary precision) in polyno-

mial time by formulating the problem as an SDP (details omitted). To see that

ϑ(G) ≥ α(G), observe that for any independent set S the following is a feasible

solution for the SDP: choose xi = d for all i ∈ S, and choose all remaining vec-

tors xj for j 6∈ S to be orthogonal to d and to each other. Observe also that ϑ is

indeed monotone as explained above (adding edges to G adds constraints on the

orthonormal representation, and hence the value of ϑ cannot increase).

Now we explain how Lemma 1.2 can be used in order to recover the planted

independent set S. Applying a union bound over less than n subgraphs, the lemma

implies that with probability at least 1− 1
n (over the choice of G ∈ Gn,k, 12 ) ϑ(G′) =

α(G′) = α(G)− 1 for every subgraph G′ that can be obtained from G by removing

a single vertex of S. The above equalities imply that for every vertex i ∈ S, it holds

that in the optimal SDP solution d · xi ≥ 1− 1
2n . Otherwise, by dropping i from G

without changing the SDP solution we get that ϑ(G\{i}) > ϑ(G)−1+ 1
2n > α(G)−1,

contradicting the equality above (with G′ = G \ {i}). No vertex i 6∈ S can have

d · xj ≥ 1− 1
2n , as together with the contribution of the vertices from S, the value

of ϑ(G) would exceed |S| = α(G), contradicting Lemma 1.2. We thus conclude

that with high probability (over the choice of G ∈ Gn,k, 12 ), for Ĝ generated in the
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semi-random model, the vertices of S are precisely those that have inner product

larger than 1− 1
2n with the handle d.

We now explain how Lemma 1.2 is proved. Its proof is based on a dual (equivalent)

formulation of the ϑ function. In this formulation, given a graph G(V,E)

ϑ(G) = min
M

[λ1(M)]

where M ranges over all n by n symmetric matrices in which Mij = 1 whenever

(i, j) 6∈ E, and λ1(M) denotes the largest eigenvalue of M . As a sanity check,

observe that if G has an independent set S of size k, the minimum of the above

formulation cannot possibly be smaller than k, because M contains a k by k block

of 1 entries (a Rayleigh quotient argument then implies that λ1(M) ≥ k). Given

G ∈ Gn,k, 12 with an independent set S of size k, Feige and Krauthgamer (2000)

construct the following matrix M . As required, M is symmetric, and Mi,j = 1 for

all vertices i, j for which (i, j) 6∈ E (including the diagonal of M). It remains to set

the values of Mi,j for pairs of vertices i, j for which (i, j) ∈ E (which can happen

only if at least one of i or j is not in S). This is done as follows. If both i and j are

not in S, then Mij = −1. If i 6∈ S and j ∈ S then Mi,j = −k−di,Sdi,S
, where di,S is

the number of neighbors that vertex i has in the set S. This value of Mij roughly

equals −1, and is chosen so that
∑
j∈SMij = 0 for every i 6∈ S. Finally, if i ∈ S

and j 6∈ S, then symmetry of M dictates that Mij = Mji. For this matrix M , the

vector vS ∈ {0, 1}n, which has entries of value 1 at coordinates that correspond to

vertices of S and 0 elsewhere, serves as an eigenvector of eigenvalue k. Feige and

Krauthgamer (2000) prove that with high probability (over choice of G) it holds

that this matrix M has no eigenvalue larger than k. This establishes that ϑ(G) = k.

The same M applies also to any graph Ĝ derived from G by a monotone adversary,

because adding edges to G only removes constraints imposed on M .

Summarizing, the spectral algorithm of Alon et al. (1998) can find the planted

independent set in the distributional modelGn,p, 12 . The way to extend it to the semi-

random model is by use of semi-definite programming, based on computing the ϑ

function. More generally, a useful rule of thumb to remember is that semidefinite

programming can often serve as a robust version of spectral algorithms.

Another advantage of the SDP approach, implicit in the discussion above, is that

it not only finds the planted independent set, but also certifies its optimality: the

solution to the dual SDP serves as a proof that Ĝ does not contain any independent

set of size larger than k.

1.3.3 Refutation heuristics

In Section 1.3.2 we presented algorithms that search for solutions in various ran-

dom and semi-random models. Once a solution is found, the algorithm terminates.

A complementary problem is that of determining that an input instance does not
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have any good solutions. For example, when attempting to verify that a given hard-

ware design or a given software code meets its specification, one often reduces the

verification task to that of determining satisfiability of a Boolean formula. A satis-

fying assignment for the Boolean formula corresponds to a bug in the design, and

the absence of satisfying assignments implies that the design meets the specifica-

tions. Hence one would like an algorithm that certifies that no solution (satisfying

assignment, in this case) exists. Such algorithms are referred to as refutation algo-

rithms.

For NP-hard problems such as SAT, there are no polynomial time refutation

algorithms unless P=NP. Hence it is natural to consider random and semi-random

models for refutation tasks. However, refutation tasks involve a difficulty not present

in search tasks. NP-hard problems do not possess polynomial size witnesses for their

non-satisfiability (unless NP = coNP). Consequently it is not clear what a refutation

algorithm should be searching for, and what evidence a refutation algorithm can

gather that would ensure that the input instance cannot possibly have a solution.

Recall the distributional model for 3SAT presented in Section 1.1.1. In that

model, the input is a random 3CNF formula φ with n variables and m clauses,

and the goal is to determine whether it is satisfiable. Standard use of Chernoff

bounds and a union bound over all possible assignments shows that when m > cn

(for some sufficiently large constant c) then almost surely φ is not satisfiable. Hence,

if we trust that the formula was indeed generated according the the distributional

model, and are willing to tolerate a small probability of error, then a refutation

algorithm can simply output not satisfiable, and will with high probability (over

choice of φ) be correct. However, this approach is not satisfactory for multiple rea-

sons, one of which being that it provides no insights as to how to design refutation

algorithms in practice. Consequently, we shall be interested in algorithms that for

a given distributional model D have the following properties.

1. For every input formula φ, the algorithm A correctly determines whether φ is

satisfiable or not.

2. With high probability (over choice of φ ∈ D), the algorithm A produces its

output in polynomial time.

We can completely trust the output of such an algorithm A. However, on some

instances, A might run for exponential time, and we might need to terminate A

before obtaining an answer. If most inputs generated by D are not satisfiable, then

it is appropriate to refer to A as a refutation heuristic.

Before addressing refutation heuristics for SAT, it is useful to consider refutation

heuristics for a different NP-hard problem, that of MIS. Consider the Gn, 12 distri-

butional model for MIS, and fix k = n
5 . We refer to graphs G for which α(G) ≥ k

as satisfiable. For this setting we offer the following refutation heuristic, based on

the ϑ function discussed in Section 1.3.2.
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Refutation heuristic for MIS. Compute ϑ(G). If ϑ(G) < k output not satis-

fiable. If ϑ(G) ≥ k use exhaustive search to find the maximum independent set in

G. If its size is at least k output satisfiable, and if its size is less than k output not

satisfiable.

The output of the refutation heuristic is always correct because ϑ(G) ≥ α(G) for

every graph G. For most input graphs G generated from Gn, 12 the algorithm runs

in polynomial time, because for such graphs ϑ(G) = O(
√
n) with high probability

(an indirect way of proving this is by combining Lemma 1.2 with monotonicity of

the ϑ function), and ϑ can be computed up to arbitrary precision in polynomial

time.

The above refutation heuristic extends without change to Gn,p models with p ≥ c
n

for a sufficiently large constant c, because also for such graphs ϑ(G) < n
5 with high

probability. See Coja-Oghlan (2005).

Given that we have a refutation heuristic for MIS we can hope to design one

for 3SAT as well, by reducing 3SAT to MIS. However, the standard “textbook”

reductions from 3SAT to MIS, when applied to a random 3SAT instance, do not give

a random Gn,p graph. Hence the refutation heuristic for MIS might not terminate

in polynomial time for such graphs. This difficulty is addressed by Friedman et al.

(2005), who design a different reduction for 3SAT to MIS. They also design a simpler

reduction from 4SAT to MIS, and this is the reduction that we choose to explain

here.

We consider a random 4CNF formula φ with m = cn2 clauses, for large enough

c. Partition φ it into three subformulas. φ+ contains only those clauses in which all

literals are positive, φ− contains only those clauses in which all literals are negative,

and φ′ contains the remaining clauses. We completely ignore φ′, and construct two

graphs, G+ based on φ+, and G− based on φ−. We describe the construction of

G+, and the construction of G− is similar.

The vertex set V of G+ contains
(
n
2

)
vertices, where each vertex is labeled by a

distinct pair of distinct variables. For every clause in φ+ (that we assume contains

4 distinct variables), put an edge in G+ between the vertex labeled by the first two

variables in the clause and the vertex labeled by the last two variables in the clause.

Lemma 1.3 If φ is satisfiable, then at least one of the two graphs G+ and G−

has an independent set of size at least
(
n/2
2

)
' |V |/4.

Proof Consider an arbitrary satisfying assignment for φ, let S+ be the set of

variables assigned to true, and let S− be the set of variables assigned to false.

Consider the set of
(|S−|

2

)
vertices in G+ labeled by pairs of vertices from S−.

They must form an independent set because φ cannot have a clause containing only

variables from S− in which all literals are positive. Likewise, G− has an independent

set of size at least
(|S+|

2

)
. As max[|S+|, |S−|] ≥ n/2, the proof follows.

Observe that if φ is random then both G+ and G− are random graphs, each with
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roughly m/16 ' c|V |/8 edges, and hence average degree roughly c/4. (Clarification:

the exact number of edges in each of the graphs is not distributed exactly as in

the Gn,p model. However, given the number of edges, the locations of the edges

are random and independent, exactly as in the Gn,p model. This suffices for the

bounds of Coja-Oghlan (2005) on the ϑ function to apply.) For large enough c, the

refutation Heuristic for MIS will with high probability take only polynomial time

to certify that neither G+ nor G− have independent sets larger than |V |/5, and

thus establish that φ cannot have a satisfying assignment.

The refutation heuristic for 4SAT can be extended to kSAT, refuting random

kCNF formulas for all k, provided that m > cnk/2. Doing so for even values of

k is fairly straightforward. The extension to odd k (including k = 3, 3SAT) is

significantly more difficult. For some of the latest results in this respect, see Allen

et al. (2015) and references therein.

It is an open question whether there are refutation heuristics that can refute

random 3CNF formulas with significantly fewer than n3/2 clauses. The answer to

this question may have implications to the approximability of various NP-hard

problems such as min-bisection and dense k-subgraph (see Feige (2002) for details),

as well as to problems in statistics and machine learning (see for example Daniely

et al. (2013)).

1.3.4 Monotone adversary for locally optimal solutions

Recall the semi-random model for the MIS problem presented in Section 1.1.1.

That model, referred here as the FK model (as it was introduced by Feige and

Kilian (2001)) is more challenging than the model presented in Section 1.3.2, as the

monotone adversary has complete control on the subgraph induced on V \ S. That

subgraph might contain independent sets larger than S, and hence S need not be

the maximum independent set in G. Consequently, there is no hope of developing

algorithms that solve MIS in the FK model, as the solution might lie within V \S,

and the graph induced on V \S might be a “worst case” instance for MIS. Likewise,

recovering S unambiguously is also not a feasible task in this model, because the

adversary may plant in V \ S other independent sets of size k that are statistically

indistinguishable from S itself. Consequently, for simplicity, we set the goal in this

model to be that of outputting one independent set of size at least k. However, we

remark that the algorithms for this model meet this goal by outputting a list of

independent sets, one of which is S. Hence the algorithms might not be able to tell

which of the independent sets that they output is S itself, but they do find S.

The FK model attempts to address the following question: what properties of an

independent set make finding the independent set easy? Clearly, being the largest

independent set in a graph is not such a property, as MIS is NP-hard. Instead,

the FK model offers a different answer which can be phrased as follows: if the

independent set S is a strong local maximum, then S can be found. The term
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strong local maximum informally means that for every independent set S′ in G,

either |S′ ∩ S| is much smaller than |S|, or the size |S′| is much closer to |S′ ∩ S|
than to |S|. The strong local optimality of S is implied (with high probability)

by the random part of the FK model, and adding edges to G (by the monotone

adversary) preserves the property of being a strong local minimum.

Another motivation for the FK model comes from the graph coloring problem.

Every color class is an independent set, but need not be the largest independent

set in the graph. Algorithms for finding independent sets in the FK model easily

translate to graph coloring algorithms in various random and semi-random models

for the graph coloring problem.

Algorithms for the FK model are based on semi-definite programming. However,

Lemma 1.2 need not hold in this model. The subgraph induced on V \S can cause the

ϑ function to greatly exceed k – this is true even if this subgraph does not contain

any independent set larger than k. Consequently, in the FK model, the algorithm

presented in Section 1.3.2 need not find neither S, nor any other independent set

in G of size at least k.

Feige and Kilian (2001) make more sophisticated use of semidefinite program-

ming, and in a certain regime for the parameters of the FK model, they obtain the

following result.

Theorem 1.4 (Feige and Kilian (2001)) Let k = αn, and let ε > 0 be an arbitrary

positive constant. Then in the FK model (in which |S| = k, edges between S and

V \ S are introduced independently with probability p, and the adversary may add

arbitrary edges (u, v) 6∈ S × S) the following results hold:

• If p ≥ (1+ε) lnn
αn then there is a random polynomial time algorithm that with high

probability outputs an independent set of size k.

• If p ≤ (1− ε) lnn
αn then the adversary has a strategy such that unless NP ⊂ BPP ,

every random polynomial time algorithm fails with high probability to output an

independent set of size k.

The algorithm in the proof of Theorem 1.4 has five phases which are sketched

below (with most of the details omitted).

1. Make repeated use of the ϑ function to extract from the graph t ≤ O(log n) sets

of vertices S1, . . . , St, with the property that most vertices of S are among the

extracted vertices.

2. Make repeated use of the random hyperplane rounding technique of Goemans

and Williamson (1995) so as to find within each set Si a relatively large inde-

pendent set Ii.

3. It can be shown that with high probability, there will be good indices i ∈ [t]

for which |Ii ∩ S| ≥ 3
4 |Ii|. “Guess” (by trying all possibilities – there are only

polynomially many of them) which are the good indices. Take the union of

the corresponding Ii, and remove a maximal matching from the corresponding
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induced subgraph. The resulting set I of vertices that remains forms an indepen-

dent set (due to the maximality of the matching). Moreover, as every matching

edge must contain at least one vertex not from S, it follows that (for the correct

guess) most of the vertices of I are from S.

4. Setting up a certain matching problem between I and V \ I, identify a set of M

vertices to remove from I, resulting in I ′ = I \M . It can then be shown that

I ′ ⊂ S.

5. Consider the subgraph induced on the non-neighbors of I ′ (this subgraph in-

cludes I ′ itself), find in it a maximal matching, and remove the vertices of the

matching. This gives an independent set, and if it is larger than I ′, it replaces

I ′. It can be shown that this new I ′ maintains the invariant that it is a subset

of S. Repeat this process until there is no further improvement in the size of I ′.

If at this point |I ′| ≥ k, then output I ′.

In phase 3 the algorithm tries out polynomially many guesses, and several of

them may result in outputting independent sets of size at least k. Feige and Kilian

(2001) prove that when p ≥ (1 + ε) lnn
αn , there is high probability that the planted

independent set S is among those output by the algorithm. However, when p ≤
(1 − ε) lnn

αn , the monotone adversary has a strategy that may cause the algorithm

to fail. The algorithm does manage to complete the first three phases and to find a

fairly large independent set, but of size somewhat smaller than k. The difficulty is

in the fourth and fifth phases of the algorithm. This difficulty arises because there

is likely to be a small (but not negligible) set of vertices T ⊂ (V \ S) that has no

random edge to S. The adversary may then choose a pattern of edges between T and

S that on the one hand makes the largest independent set in S ∪T be S itself, and

on the other hand makes it difficult for the algorithm to determine which vertices of

I (the result of the third phase) belong to T . These vertices prevent extending I to

a larger independent set. Moreover, these considerations can be used to derive the

NP-hardness result stated in the second part of Theorem 1.4, along lines similar to

those used in the proof of Theorem 1.1.

We end this section with an open question.

Question: What is the smallest value of k (as a function of n) such that an inde-

pendent set of size k can be efficiently found in the FK model when p = 1
2?

McKenzie et al. (2018) show that an algorithm based on semidefinite program-

ming works when k ≥ Ω(n2/3). In analogy to the results stated in Section 1.3.2,

one may hope to design an algorithm that works for k ≥ Ω(
√
n), though such an

algorithm is not known at the moment, and neither is there a hardness result that

suggests that no such algorithm exists.
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1.3.5 Separable semi-random models

In Sections 1.3.2 and 1.3.4 we discussed semi-random graph models in which some of

the edges in the input graph are generated at random, and others are generated by

an adversary. Hence when generating an input instance, both the random decisions

and the adversarial decisions refer to the same aspect of the input instance, to the

edges. In this and subsequent sections we discuss classes of semi-random models

that we refer to as separable. In these models, certain aspects of the input instance

are random, and certain other aspects are adversarial. Such models help clarify

which aspects of a problem contribute to its computational difficulty.

Recall the 3SAT semi-random model of Section 1.1.1, with n variables, m clauses,

and probability p of flipping the polarity of a variable. When setting p = 1
2 , it

provides a conceptually simple separable model for 3SAT. One may think of a

3CNF formula as having two distinct aspects: one is the choice of variables in

each clause, and the other is the polarity of each variable. In the distributional

model, both the choice of variables and the choice of their polarities are random.

In the separable semi-random model, the choice of variables is left to the complete

discretion of the adversary, whereas given the set of variables in each clause, the

polarities of variables are set completely at random (each variable appearance is set

independently to be positive with probability 1
2 and negative with probability 1

2 ).

As in the distributional model for 3SAT, when m > cn (for some sufficiently large

constant c) then almost surely the resulting input formula is not satisfiable. As

discussed in Section 1.3.3, when m > cn3/2, there are refutation heuristics for the

distributional model. As stated, these heuristics do not apply to the separable semi-

random model. To appreciate some of the difficulties, observe that for the heuristic

described in Section 1.3.3 for refuting 4SAT, the graphs G+ and G− referred to

in Lemma 1.3 will not be random in the semi-random model. Nevertheless, if one

allows a modest increase in the number of clauses to m ≥ cn3/2
√

log logn, then

there are ways of adapting the known refutation heuristics for 3SAT to the semi-

random model (see Feige (2007)). This suggests that the key aspect that is required

for efficient refutation of random 3CNF formulas (with sufficiently many clauses) is

randomness in the polarity of the variables. Randomness in the choice of variables

does not seem to play a significant role. To test this conclusion, it makes sense to

study also a complementary separable semi-random model for 3SAT, in which the

choice of variables in each clause is random, whereas the choice of their polarities

is adversarial. We do not know if the known refutation heuristics can be adapted

to this other separable semi-random model.

1.3.6 Separable models for unique games

An instructive use of separable semi-random models is provided by Kolla et al.

(2011). They consider instances of unique games. A unique game instance is speci-
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fied by a graph G(V,E) with n vertices, a set [k] of labels, and for every (u, v) ∈ E
– a permutation πuv on [k]. Given an assignment of a label L(v) ∈ [k] to each

vertex v ∈ V , the value of the game is the fraction of edges (u, v) for which

L(v) = πuv(L(u)). One seeks an assignment of labels that maximizes the value

of the game. This problem is NP-hard, and the unique games conjecture (UGC)

of Khot (2002) states that for every ε > 0, there is some k such that it is NP-hard

to distinguish between unique games of value at least 1 − ε and unique games of

value at most ε. Due to its many consequences for hardness of approximation, much

effort has been spent both in attempts to prove and in attempts to refute the UGC.

Such efforts could presumably be guided towards promising avenues if we knew how

to design instances of unique games with value 1− ε for which no known algorithm

can find a solution of value greater than ε. Given n, k and ε, the design of such

unique games instance involves four aspects:

1. A choice of input graph G(V,E).

2. A function L : V → [k] assigning labels to the vertices, and a choice of permu-

tations πuv that cause the value of the assignment to be 1.

3. A choice of ε|E| edges E′ to corrupt.

4. A choice of alternative permutations π′uv for (u, v) ∈ E′ (where possibly L(v) 6=
π′uv(L(u))).

If an adversary controls all aspects of the input instance, then we get a worst case

unique games instance. There are four separable semi-random models that weaken

the adversary in a minimal way. Namely, for each model three of the above aspects

are controlled by the adversary, where the remaining one is random. One may ask

which of these semi-random models generates a distribution over inputs on which

UGC might be true. Somewhat surprisingly, Kolla et al. (2011) prove that none of

them do (if the input graph has sufficiently many edges).

Theorem 1.5 (Kolla et al. (2011)) For arbitrary δ > 0, let k be sufficiently large,

let ε > 0 (the fraction of corrupted edges) be sufficiently small, and suppose that the

number of edges in G is required to be at least f(k, δ)n (for some explicitly given

function f). Then there is a randomized polynomial time algorithm that given an

instance generated in any one of the above four separable semi-random models, finds

with high probability a solution of value at least 1− δ.

The probability in the above theorem is taken both over the random choices made

in the generation of the semi-random input instance, and over the randomness of

the algorithm.

For lack of space we do not sketch the proof of Theorem 1.5. However, we do

wish to point out that when only the third aspect (the choice of E′) is random,

the adversary is sufficiently strong to foil all previously known approaches for ap-

proximating unique games. To handle this case, Kolla et al. (2011) introduce the so

called crude SDP, and develop techniques that exploit its solutions in order to find
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approximate solutions for unique games. One of the goals of semi-random models

is to bring about the development of new algorithmic techniques, and the separable

model for unique games has served this purpose well.

1.3.7 The hosted coloring framework

We discuss here two separable semi-random models for 3-coloring. Recall the 3-

coloring distributional model of Section 1.1.1. The key parameter there is p – the

probability with which edges are introduced between vertices of different color

classes. When p is constant, the 3-coloring can be recovered using the fact that

for graphs of degree Ω(n), 3-coloring can be solved in polynomial time even on

worst case instances. (Here is a sketch of how this can be done. A greedy algorithm

finds a dominating set S of size O(log n) is such a graph. “Guess” (that is, try

all possibilities) the true color of every vertex in S. For each vertex not in S, at

most two possible colors remain legal. Hence the problem of extending the correct

3-coloring of S to the rest of the graph can be cast as a 2SAT problem, and 2SAT is

solvable in polynomial time.) As p decreases, finding the planted coloring becomes

more difficult. In fact, if there is an algorithm that finds the planted 3-coloring

(with high probability) for p = p0, then the same algorithm can be applied for

every p1 > p0, by first sub-sampling the edges of the graph, keeping each edge with

probability p0
p1

.

Blum and Spencer (1995) design a combinatorial algorithm that finds the planted

3-coloring (w.h.p.) when p ≥ nε−1 for ε > 0. Their algorithm is based on the

following principle. For every two vertices u and v one computes the size of the

intersection of the distance r neighborhood of u and the distance r neighborhood

of v, where r = Θ( 1
ε ) and r is odd. For some threshold t that depends on p and r, it

holds with high probability that vertices u and v are in the same color class if and

only if the size of the intersection is above t. For example, if p = n−0.4 one can take

r = 1 and t = n
2 p

2, because vertices of the same color classes are expected to have

p2 2n
3 common neighbors, whereas vertices of different color classes are expected to

have only p2 n3 common neighbors.

Alon and Kahale (1997) greatly improved over the results of Blum and Spencer

(1995). They designed a spectral algorithm (based on the eigenvectors associated

with the two most negative eigenvalues of the adjacency matrix of G) that finds

the planted 3-coloring (w.h.p.) whenever p ≥ c logn
n (for sufficiently large constant

c). Moreover, enhancing the spectral algorithm with additional combinatorial steps,

they also manage to 3-color the input graph (w.h.p.) whenever p ≥ c
n (for sufficiently

large constant c). At such low densities, the planted 3-color is no longer the unique

3-coloring of the input graph (for example, the graph is likely to have isolated

vertices that may be placed in any color class), and hence the algorithm does not

necessarily recover the planted 3-coloring (which is statistically indistinguishable

from many other 3-colorings of the graph).
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David and Feige (2016) introduced the hosted 3-coloring framework for the 3-

coloring problem. In their models, there is a class H of host graphs. To generate an

input graph G, one first selects a graph H ∈ H, and then plants in it a balanced 3-

coloring (by partitioning the vertex set into three roughly equal parts, and removing

all edges within each part). The resulting graph G is given as input to a polynomial

time algorithm that needs to 3-color G. The distributional 3-coloring model is a spe-

cial case of the hosted 3-coloring framework, in which H is the class of Gn,p graphs,

a member H ∈ H is chosen at random, and then a balanced 3-coloring is planted

at random. Other models within the hosted 3-coloring framework may assign parts

(or even all, if the class H is sufficiently restricted) of the graph generation process

to the discretion on an adversary.

In one separable semi-random model within the framework, H is the class of d-

regular spectral expander graphs. Namely, for every graph H ∈ H, except for the

largest eigenvalue of its adjacency matrix, every other eigenvalue has absolute value

much smaller than d. A graph H ∈ H is chosen by an adversary, and the planted

3-coloring is chosen at random. David and Feige (2016) show that the 3-coloring

algorithm of Alon and Kahale (1997) can be modified to apply to this case. This

shows that random planted 3-colorings can be found even if the host graph is chosen

by an adversary, provided that the host graph is an expander.

In another separable semi-random model within the framework, a host graph H

is chosen at random from H = Gn,p, but the planted balanced 3-coloring is chosen

by an adversary, after seeing H. Somewhat surprisingly, David and Feige (2016)

show that for a certain range of values for p, corresponding to the random graph

having average degree somewhat smaller than
√
n, 3-coloring the resulting graph

is NP-hard. We explain here the main idea of the NP-hardness result (substantial

additional work is required in order to turn the following informal argument into a

rigorous proof). Let Q be a carefully chosen class of graphs on which 3-coloring is

NP-hard. First one shows that given any 3-colorable graph Q ∈ Q on nε vertices,

if p is sufficiently large (p ≥ n−2/3 is required here), then H is likely to contain

many copies of Q. The computationally unbounded adversary can find a copy of Q

in H, and plant in H a 3-coloring that leaves this copy of Q unmodified (by having

the planted coloring agree on Q with some existing 3-coloring of Q). Moreover, if

p is not too large (p ≤ n−1/2 is required here), the planting can be made in such

a way that Q becomes separated from the rest of H (due to the fact that edges

that are monochromatic under the planted 3-coloring are removed from H). Any

algorithm that 3-colors G can infer from it in polynomial time a 3-coloring for Q,

because it is easy to find Q within G. As 3-coloring Q was assumed to be difficult,

so is 3-coloring G.

In general, results in the hosted 3-coloring framework help clarify which aspects

of randomness in the planted coloring model are the key to successful 3-coloring

algorithms.
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1.4 Open problems

As is evident from Section 1.3, there are many different semi-random models. We

presented some of them, and some others are discussed more extensively in other

chapters of this book. Some of the more creative models, such as the PIE model

of Makarychev et al. (2014), were not discussed due to lack of space.

We also attempted to provide an overview of some of the algorithmic techniques

that are used in handling semi-random models. Further details can be found in the

references. Moreover, we provided brief explanations as to how hardness results are

proved in semi-random model. We believe that having hardness results (and not just

algorithms) is a key component in building a complexity theory for semi-random

models.

There are many open questions associated with distributional and semi-random

models. Some were mentioned in previous sections. Here we list a few more. The

first two refer to improving the parameters under which algorithms are known to

work. Similar questions can be asked for other problems. The other two questions

relate to less standard research directions.

• Recall that Alon and Kahale (1997) design a 3-coloring for the distributional

model for 3-coloring, provided that p ≥ cn for a sufficiently large constant c.

Can the algorithm be extended to hold for all p? In this context, it is worth

mentioning that for a different NP-hard problem, that of Hamiltonicity, there is

a polynomial time algorithm that works in the Gn,p model for all values of p.

That is, regardless of the value of p, with high probability over the choice of the

input random graph G, if G is not Hamiltonian then the algorithm provides a

witness for this fact (the witness is simply a vertex of degree less that 2), whereas

if the graph is Hamiltonian the algorithm produces a Hamiltonian cycle (using

the extension-rotation technique). See Bollobás et al. (1987) for details.

• In Theorem 1.5 (concerning unique games), can one remove the requirement that

the number of edges is sufficiently high?

• Consider the following semi-random model for the MIS problem. First an adver-

sary selects an arbitrary n vertex graph H(V,E). Thereafter, a random subset

S ⊂ V of size k is made into an independent set by removing all edges induced

by S, thus making S a random planted independent set. The resulting graph G

(but not H) and the parameter k (size of S) are given as input, and the task is to

output an independent set of size at least k. Is there a polynomial time algorithm

that with high probability (over the random choice of S) outputs an independent

set of size at least k? Is there a proof that this problem is NP-hard?

• Recall that there are refutation heuristics for 3SAT when the random 3CNF

formula has more than n3/2 clauses. The following questions may serve as a first

step towards refuting sparser formulas.

Given an initial random 3CNF formula φ with nδ clauses, one can set the po-
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larities of all variables to be positive, and then the resulting formula is satisfiable.

The question is how one should set the polarities of the variables so that the re-

sulting formula φ′ can be certified in polynomial time to be not satisfiable. When

δ > 3
2 , this can be done by setting the polarities at random, as then the refutation

heuristic of Section 1.3.3 can be used. For 7
5 < δ < 3

2 , with high probability over

the choice of φ, there are settings of the polarities (not necessarily by a polyno-

mial time procedure) under which refutation can be achieved in polynomial time.

(Hint: break φ′ into a prefix with random polarities, and a suffix whose polarities

form a 0/1 string that encodes the refutation witness of Feige et al. (2006) for

the prefix.) For δ < 7
5 , it is an open question whether there is any setting of the

polarities (whether done in polynomial time or exponential time) under which

polynomial time refutation becomes possible.
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