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Abstract

We consider two generalizations of the edge coloring problem in bipartite graphs. The
first problem we consider is the weighted bipartite edge coloring problem where we
are given an edge-weighted bipartite graph G = (V, E) with weights w : E → [0, 1]. The
task is to find a proper weighted coloring of the edges with as few colors as possible. An
edge coloring of the weighted graph is called a proper weighted coloring if the sum of the
weights of the edges incident to a vertex of any color is at most one. We give a polynomial
time algorithm for the weighted bipartite edge coloring problem which returns a
proper weighted coloring using at most d2.25ne colors where n is the maximum total weight
incident at any vertex. This improves on the previous best bound of Correa and Goemans [5]
which returned a coloring using 2.557n+ o(n) colors. The second problem we consider is the
Balanced Decomposition of Bipartite graphs problem where we are given a bipartite
graph G = (V, E) and α1, . . . , αk ∈ (0, 1) summing to one. The task is to find a partition
E1, . . . , Ek of E such that degEi(v) is close to αidegE(v) for each 1 ≤ i ≤ k and v ∈ V . We
give an alternate proof of the result of Correa and Goemans [5] that there is a decomposition
such that bαidegE(v)c − 2 ≤ degEi(v) ≤ dαidegE(v)e + 2 for each v ∈ V and 1 ≤ i ≤ k.
Moreover, we show that the additive error can be improved from two to one if only upper
bounds or only lower bounds on the degree are present. All our results hold also for bipartite
multigraphs, and the decomposition results hold also for general graphs.
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1 Introduction

Edge coloring problems have been crucial in the development of different algorithmic techniques
and have also been used to model various scheduling problems. In this paper, we consider
two edge coloring problems which have been inspired from study of Clos networks [4] and also
generalize classical coloring problems. Clos network were introduced by Clos [4] in the context
of designing interconnection networks used to route telephone calls and have found various
applications [2, 10]. We refer the reader to Correa and Goemans [5] for the relationship between
the problems considered here and Clos networks.

The first problem we consider is the weighted bipartite edge coloring problem where
we are given an edge-weighted bipartite graph G = (V, E) with weights w : E → [0, 1]. The
task is to find a proper weighted coloring of the edges with as few colors as possible. An edge
coloring of the weighted graph is called a proper weighted coloring if the sum of the weights of
the edges incident to a vertex of any color is at most one. If all the edges have weight one then
the problem reduces to the classical bipartite edge coloring problem. König’s Theorem [12] gives
an optimal coloring in this case where the number of colors used is exactly the maximum degree
of the graph. For the weighted bipartite edge coloring problem, Chung and Ross [3] gave the
following conjecture.

Conjecture 1.1 Given an instance of the weighted bipartite edge coloring problem,
there is a proper weighted coloring using at most 2n − 1 colors where n denotes the maximum
over all the vertices of the number of unit-sized bins needed to pack the weights of edges incident
at the vertex.

The following is a stronger version of the Conjecture 1.1.

Conjecture 1.2 Given an instance of the weighted bipartite edge coloring problem,
there is a proper weighted coloring using at most 2n − 1 colors where n is the smallest integer
greater than the maximum over all the vertices of the total weight of edges incident at the vertex.

Conjecture 1.2 is the best possible since there are instances where any proper weighted
coloring takes 2n − 1 colors. Melen and Turner [15] showed that the Conjecture 1.2 is true
when all edge-weights are at most 1

2 . Moreover when all weights are strictly more than 1
2 ,

Conjecture 1.2 is also true and follows simply from König’s Theorem.
One of our main results in the paper makes progress towards the resolution of Conjecture 1.2

and therefore Conjecture 1.1.

Theorem 1.3 There is a polynomial time algorithm for the weighted bipartite edge col-
oring problem which returns a proper weighted coloring using at most d2.25ne colors where n
is the maximum total weight incident at any vertex.

Theorem 1.3 improves on the previous best result given by Correa and Goemans [5] who give a
coloring using at most 2.557n+o(n) colors. Correa and Goemans [5] also give an algorithm which
returns a proper weighted coloring with 2.5480n + o(n) colors where n denotes the maximum
over all the vertices of the number of unit-sized bins needed to pack the weights of incident
edges. Theorem 1.3 implies the improved bound of d2.25ne for this variant as well.

The second problem we consider is the Balanced Decomposition of Bipartite graphs
problem where we are given a bipartite graph G = (V, E) and α1, . . . , αk ∈ (0, 1) summing to
one. The task is to find a partition E1, . . . , Ek of E such that degEi(v) is close to αidegE(v) for
each 1 ≤ i ≤ k and v ∈ V . Correa and Goemans [5] gave the following conjecture.
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Conjecture 1.4 Given an instance of Balanced Decomposition of Bipartite graph
problem there exists a decomposition such that

bαidegE(v)c ≤ degEi(v) ≤ dαidegE(v)e

for each 1 ≤ i ≤ k and each v ∈ v.

Correa and Goemans [5] proved a relaxed version of the conjecture in which both the upper
and lower bounds are relaxed by two, i.e, the decomposition guarantees that bαidegE(v)c − 2 ≤
degEi(v) ≤ dαidegE(v)e+ 2.

We give an alternate proof of the result of Correa and Goemans [5] using linear programming
methods and then show that the violation can be bounded by an additive one if only upperbound
(or lowerbound) are present.

Theorem 1.5 Given an instance of Balanced Decomposition of Bipartite graph prob-
lem there exists a decomposition E1, . . . , Ek of E such that

bαidegE(v)c − 2 ≤ degEi(v) ≤ dαidegE(v)e+ 2

for each 1 ≤ i ≤ k and each v ∈ V . Moreover, there are decompositions F1, . . . , Fk and G1, . . . Gk

such that
degFi(v) ≤ dαidegE(v)e+ 1

degGi(v) ≥ bαidegE(v)c − 1

for each 1 ≤ i ≤ k and v ∈ V .

1.1 Previous Work

Two classical results on edge coloring are König’s theorem [12] for coloring a bipartite graph
with ∆ colors and the Vizing’s theorem [18] for coloring any simple graph with ∆ + 1 colors
where ∆ is the maximum degree of the graph.

Before we review some of the existing literature on the problems discussed in this paper,
we introduce some notation. Given a weighted bipartite graph G = (A ∪ B,E) with weights
w : E → [0, 1], let χ′w(G) denote the minimum number of colors needed to obtain a proper
weighted coloring of G. Given positive integers n and r, let M(n, r) = maxGχ′w(G) where
the maximum is taken over all bipartite graphs G = (A ∪ B, E) with |A| = |B| = r and
maxv∈V

∑
e∈δ(v) we ≤ n. In this notation, Conjecture 1.2 can be reformulated to claim that

M(n, r) ≤ 2n− 1.
Given positive integers n and r, let m(n, r) = maxGχ′w(G) where the maximum is taken

over all bipartite graphs G = (A ∪ B,E) with |A| = |B| = r and where n is the maximum
over all the vertices of the number of unit-sized bins needed to pack the weights of incident
edges. Conjecture 1.1 can be reformulated to claim that m(n, r) ≤ 2n− 1. It is easy to see that
Conjecture 1.2 implies Conjecture 1.1 since m(n, r) ≤ M(n, r) for each n and r.

If the weight function is restricted to w : E → I for some interval I ⊆ [0, 1], then we let
the minimum number of colors be denoted by MI(n, r) an mI(n, r) respectively. Melen and
Turner [15] proved that m[0,1/2](n, r) ≤ M[0,1/2](n, r) ≤ 2n− 1 and in general showed that

m[0,B](n, r) ≤ M[0,B](n, r) ≤ n

1−B

Improving the bounds for m(n, r) and M(n, r) has received considerable attention [3, 5, 8,
15, 16, 17] and the previous best bounds known were

3



5n

4
≤ m(n, r) ≤ 2.548n + o(n)

2n− 1 ≤ M(n, r) ≤ 2.557n + o(n)

where both the upper bounds are by Correa and Goemans [5]. The lower bound on m(n, r) is
due to Ngo and Vu [16] and lower bound on M(n, r) is due to Du et al [8]. Our results improve
the upper bounds for both m(n, r) and M(n, r) to d2.25ne making progress towards resolution
of Conjecture 1.1 and Conjecture 1.2.

The Balanced Decomposition of Bipartite Graphs problem was introduced by Correa
and Goemans [5] who proved a relaxed version of the Conjecture 1.4 as mentioned above. Some
special cases of Conjecture 1.4 are known to be true. When k = 2, Conjecture 1.4 is true and the
decomposition was given by Hoffman [9]. When each αi is equal to 1

k then de Werra [7] showed
that the conjecture is true. The conjecture is also true when G is regular or when αidegE(v) is
an integer for each i and v and follows from König’s edge coloring theorem [12].

1.2 Bipartite Versus General Graphs

In all results stated in the paper, there is no distinction between bipartite graphs and bipartite
multigraphs (allowing parallel edges): the proofs apply without change also to bipartite multi-
graphs. Conjectures 1.2 and 1.4 do not hold as stated for arbitrary (non-bipartite) graphs. We
elaborate on this here, and explain which of the results in this paper extend to general graphs.

Consider the Petersen graph which is a regular graph of degree 3 whose edges cannot be
properly colored by 3 colors. Give every edge a weight 2/3. In the setting of Conjecture 1.2 this
corresponds to a value of n = 2 and a requirement for a proper weighted coloring with 3 colors,
which is impossible. This shows that when general graphs are concerned, the term 2n− 1 in the
conjecture needs to be raised to at least 2n.

If one allows parallel edges, then having odd cycles has a more dramatic effect. Consider for
example a triangle with k parallel edges between any two vertices. Give each edge a weight of
(k+1)/2k. Now n corresponds to k+1, whereas any proper weighted coloring requires 3k colors.
Hence as k grows, the bound in Conjecture 1.1 approaches 3n (if the graph is non-bipartite and
has parallel edges).

Applications of Conjecture 1.2 often involve bipartite graphs with parallel edges. And indeed,
our proof of Theorem 1.3 works without change even if the bipartite graph has parallel edges.
For general (non-bipartite) graphs, our proof of Theorem 1.3 easily extends to give a bound of
d2.25ne+ r, where r is the maximum multiplicity of any edge (and in particular, r = 1 in simple
graphs). In counting multiplicity of an edge, one may first merge parallel copies of an edge if
the sum of their weights does not exceed 1. Hence r need never exceed 2n.

Conjecture 1.4 does not hold for all graphs, a counter example being the triangle and α1 =
α2 = 1

2 . Nevertheless, our proof of Theorem 1.5 holds with no change for general graphs. The
previous proof of Correa and Goemans 1.4, that is cited after the statement of Conjecture 1.4,
makes use of the bipartiteness of the underlying graph, but it is possible to modify their proof
technique, using the results of Kano and Saito [11], such that that it works also for general
graphs (see also [6]). Unlike the nonbipartite version of Theorem 1.3 (discussed in the previous
paragraph), multiplicity of edges has no effect on Theorem 1.5.

2 Edge-Coloring Weighted Bipartite Graphs

In this section we give a proof of Theorem 1.3. The algorithm is a combination of König’s
Theorem [12] with the greedy algorithm. We state the König’s Theorem since we use it as a
subroutine in our algorithm.
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Theorem 2.1 [12] Given a bipartite (multi) graph G = (V, E) there exists a coloring of edges
with ∆ = maxv∈V degE(v) colors such that all edges incident at a common vertex receive a
distinct color. Moreover, such a coloring can be found in polynomial time.

The algorithm giving the guarantee of Theorem 1.3 is given in Figure 1. Observe that in
Step 3 of the algorithm, F can indeed be decomposed into dtne matchings, using Theorem 2.1
(because the maximum degree of F is dtne).

1. F ← ∅, t ← 9
4 .

2. Include edges in F in non-increasing order of weight maintaining the property that
degF (v) ≤ dtne for all v ∈ V .

3. Decompose F into r = dtne matchings M1, . . . ,Mr and color them using colors 1, . . . , r.
Let Fi ← Mi for each 1 ≤ i ≤ r.

4. Greedily add remaining edges to any of the Fi’s maintaining that weighted degree of each
color at each vertex is at most one, i.e,

∑
e∈δ(v)∩Fi

we ≤ 1 for each v ∈ V and 1 ≤ i ≤ r.

Figure 1: Algorithm for Edge Coloring Weighted Bipartite Graphs

We now show that the algorithm in Figure 1 gives a proper weighted coloring for t = 9
4 .

Since the algorithm only uses dtne = d9
4ne colors, it is enough to show that each edge will be

colored in either Step (2) when it is included in F or Step (4) of the algorithm. We prove this
by a series of claims which follow.

Claim 1 Each edge of weight at least 1
t is in F .

Proof: Let e = {u, v} be an edge such that we ≥ 1
t . If e cannot be added to F then

degF (v) ≥ dtne or degF (u) ≥ dtne when e is considered in Step (2) of the algorithm. But
edges added in F , before e is considered in Step (2), have weight larger than the weight of e.
Therefore, the total weight at the endpoint with degree at least dtne is at least tn · 1

t + we > n.
A contradiction. 2

Lemma 2.2 If t ≥ 9
4 then each edge can be colored with one of the colors.

Proof: For sake of contradiction suppose some edge cannot be colored in Step (3) or Step (4).
Let e = {u, v} be such an edge and let we = α. From Claim 1, we have that α < 1

t . Moreover,
when e is considered in Step (2), the degree of either u or v is already dtne else we would have
included e in F . Without loss of generality let that vertex be u, i.e, degF (u) = dtne.

For each color 1 ≤ i ≤ dtne, we must have that
∑

f∈δ(v)∩Fi
wf > 1 − α or

∑
f∈δ(u)∩Fi

wf >
1− α else we can color e in Step (4).

Let Lv = {i|∑f∈δ(v)∩Fi
wf > 1− α} and k = |Lv|. Then we have

n >
∑

i∈Lv

∑

f∈δ(v)∩Fi

wf > k(1− α) (1)

Now for each color i /∈ Lv, we have
∑

f∈δ(u)∩Fi
wf > 1− α. Moreover, degF (u) = dtne and each

of these edges weighs at least we = α. Hence, for each color 1 ≤ i ≤ dtne, there is an edge
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incident at u colored with color i with weight at least α. Therefore

n >
∑

f∈δ(u)

wf ≥
∑

1≤i≤dtne

∑

f∈δ(u)∩Fi

wf (2)

=
∑

i∈Lv

∑

f∈δ(u)∩Fi

wf +
∑

i/∈Lv

∑

f∈δ(u)∩Fi

wf (3)

≥
∑

i∈Lv

α +
∑

i/∈Lv

(1− α) = kα + (dtne − k)(1− α) (4)

≥ kα + (tn− k)(1− α). (5)

Let β = k
n . By scaling Inequation (1), Inequation (5) and from Claim 1, we have

β(1− α) < 1 (6)
β(2α− 1) + t(1− α) < 1 (7)

α <
1
t
. (8)

We now show that for t = 9
4 , we have a contradiction to the above inequalities.

The expression β(2α−1)+t(1−α) is a decreasing function of β as 2α−1 < 0 since α < 1
t < 1

2 .
Thus the expression β(2α− 1) + t(1−α) has a minimum value at largest possible β which is at
most 1

1−α and at β = 1
1−α , we have

β(2α− 1) + t(1− α) =
1

1− α
(2α− 1) + t(1− α) =

1
1− α

− 2 + t(1− α). (9)

Let g(α) = 1
1−α − 2 + t(1 − α). We claim that g(α) ≥ 1 for each α ∈ [0, 1

t ) which gives the
desired contradiction. Since, g(α) is a differentiable function of α in the range [0, 1

t ) the global
minimum will occur at either a local minimum or at boundary of the interval. The derivative
g′(α) = 1

(1−α)2
− t. Thus the local minima can occur at α = 1− 1√

t
. But then

g(0) = t− 1 ≥ 1 (10)

g(
1
t
) =

t

t− 1
− 2 + t− 1 =

(t− 2)2

t− 1
+ 1 ≥ 1 (11)

g(1− 1√
t
) =

√
t− 2 +

√
t = 2(

√
t− 1) ≥ 1 (12)

where the last inequality holds for t ≥ 9
4 . Thus g(α) ≥ 1 for each α ∈ [0, 1

t ) which contradicts
inequation (7). 2

3 Partitioning Bipartite Graphs

In this section we prove Theorem 1.5. First, we give an algorithm where we show a decomposition
which matches the guarantee of Correa and Goemans [5] and violates the bounds by at most two.
We then show how to modify the algorithm to obtain the stronger guarantee where violation is
bounded by at most one when only upper or lower bounds are present. Our algorithms use linear
programming methods and the techniques have close resemblance to result of Beck and Fiala [1]
on discrepancy of sets. We also note that the proofs do not use the fact that the graphs are
bipartite or simple and all our results in this section also hold for general graphs with parallel
edges.
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Theorem 3.1 [5] Given an instance of Balanced Decomposition of Bipartite graph
problem there exists a decomposition such that

bαidegE(v)c − 2 ≤ degEi(v) ≤ dαidegE(v)e+ 2

for each 1 ≤ i ≤ k and each v ∈ v.

Proof: We formulate a feasibility linear program for the following generalization of the decom-
position problem. For each edge e, we are given a set of allowable colors Ce ⊆ {1, . . . , k} and
for each vertex v, we have a degree bound for every color from a set of colors Kv ⊆ {1, . . . , k}.
We let the binary variable xi

e denote whether an edge e belongs to Ei for each edge e ∈ E
and i ∈ Ce. We initialize Ce = {1, . . . , k}, Kv = {1, . . . , k} for each v ∈ V and degree bound
Bi

v = αidegE(v) for each 1 ≤ i ≤ k, v ∈ V which corresponds to the required decomposition in
Conjecture 1.4.

(LP) minimize 0 (13)

subject to
∑

e∈δ(v):i∈Ce

xi
e = Bi

v ∀ v ∈ V, ∀ i ∈ Kv (14)

∑

i∈Ce

xi
e = 1 ∀ e ∈ E (15)

xe ≥ 0 ∀ e ∈ E (16)

Observe that the fractional solution xi
e = αi for each 1 ≤ i ≤ k and e ∈ E is a fractional

feasible solution to the linear program.
We give an iterative algorithm which rounds the above linear program into an integral

decomposition. The integral decomposition will violate the degree bounds by an additive error
of 2 giving us Theorem 3.1. The algorithm iteratively constructs the partition E1, . . . , Ek of E
and is given in Figure 2.

1. Let Ei ← ∅ for each 1 ≤ i ≤ k. While E 6= ∅ do

(a) Find an extreme point optimal solution x to (LP).

(b) If there is a variable xi
e = 0 then remove variable xi

e and let Ce ← Ce \ {i}.
(c) If xi

e = 1 then

• Ei ← Ei ∪ {e}
• E ← E \ {e}
• Bi

v ← Bi
v − 1 for each v ∈ e.

(d) If there exists a vertex v ∈ V and 1 ≤ i ≤ k such that i ∈ Kv and there are at most
3 edges incident at v with non-zero xi

e then remove the constraint at vertex v for i,
i.e, Kv ← Kv \ {i}.

2. Return Ei for 1 ≤ i ≤ k.

Figure 2: Decomposition Algorithm I

First we show that if the algorithm reaches Step (2), then the solution returned by the
algorithm satisfies the guarantees claimed in Theorem 3.1. In Step (1c) we reduce Bi

v whenever
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we select an edge e in Ei incident at v. Therefore, the bound for Ei at any vertex v can only
be violated if the constraint for v and i is removed in Step (1d). We maintain the property that
the constraint for vertex v and i is removed only if there are at most three edges incident at
vertex v which can possibly be included in Ei. Therefore, it follows that the number of edges
selected in Ei incident at v is strictly less than Bi

v + 3 and hence at most dBi
ve+ 2. Moreover,

we have already selected strictly more than Bi
v − 3 edges incident at v in Ei when we remove

the constraint for vertex v and color i. Hence, the number of edges in Ei incident at v is at least
bBi

vc − 2.
To complete the proof we show that the algorithm indeed reaches Step (2). Observe that

Steps (1b), (1c) and (1d) all make progress in the sense that they reduce either the number
of variables or the number of constraints. Lemma 3.2 implies that whenever Step (1a) is not
applicable (because we are already at an extreme point of the current LP), at least one of these
three other steps is indeed available. Since between every two applications of Step (1a) there
must be an application of one of the other three steps, Step (2) must be reached eventually.

Lemma 3.2 Given an extreme point solution x such that 0 < xi
e < 1 for each e ∈ E and i ∈ Ce

there must exist a vertex v and color i satisfying the conditions of Step (1d).

Proof: Suppose for the sake of contradiction there is no vertex v ∈ V and color i ∈ Kv with
at most three edges incident at v with non-zero xi

e. Since x is an extreme point, the number of
tight independent constraints equals the number of variables. We will show a contradiction to
this fact by showing that the number of tight independent constraints at x are strictly less than
the number of variables.

We first count the number of variables. For each edge e, we must have |Ce| ≥ 2 since xi
e < 1

for each edge e and i ∈ Ce and
∑

i∈Ce
xi

e = 1. Hence,

# of variables ≥ 2|E|. (17)

For each vertex v ∈ V and i ∈ Kv, let Di
v denote the number of variables of form xi

e where
v ∈ e. Since the condition of Step (1d) is not applicable we must have Di

v ≥ 4 for each vertex
v ∈ V and i ∈ Kv.

Hence,

# of variables ≥ 1
2

∑

v∈V

k∑

i=1

Di
v ≥ 2

∑
v

|Kv|. (18)

A simple averaging gives that the

# of variables ≥ |E|+
∑

v

|Kv| (19)

Observe that if equality must hold in inequations (18) and (19) then i ∈ Kv whenever i ∈ Ce

for some e ∈ δ(v).
Now we bound the total number of tight independent constraints. Since 0 < xi

e < 1 for each
e and i ∈ Ce, these integrality constraints cannot be tight at x. The number of other constraints
is exactly |E| + ∑

v |Kv|. Thus all of these constraints must be at equality at x and linearly
independent. We now show that this cannot be the case and derive a linear dependence in the
tight constraints.

Summing up all the edge constraints we obtain that
∑

e∈E

∑

i∈Ce

xi
e = |E| (20)

where LHS is the sum of the all the variables. Summing up all the vertex constraints we obtain
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∑

v∈V,i∈Kv

∑

e∈δ(v):i∈Ce

xi
e =

∑

v∈V,i∈Kv

Bi
v (21)

where each variable occurs exactly twice in the LHS. Thus equation (21) is exactly twice of
equation (20) giving us a dependence in the tight constraints which is a contradiction. 2

This completes the proof of the Theorem 3.1. 2

We now prove the second guarantee in Theorem 1.5.

Theorem 3.3 Given an instance of Balanced Decomposition of Bipartite graph prob-
lem, there are decompositions F1, . . . , Fk and G1, . . . Gk such that

degFi(v) ≤ dαidegE(v)e+ 1

degGi(v) ≥ bαidegE(v)c − 1

for each 1 ≤ i ≤ k and v ∈ V .

Proof: We first show how to construct the decomposition F1, . . . , Fk which satisfies the upper
bounds within an additive error of 1. The algorithm is very similar to the algorithm given in
Figure 2 with the following difference. The relaxation step (1d) is modified and the constraint
for i ∈ Kv is removed whenever Di

v ≤ dBi
ve+ 1 where Di

v is the number of variables of the form
xi

e for some edge e incident at v.

1. Let F i ← ∅ for each 1 ≤ i ≤ k. While E 6= ∅ do

(a) Find an extreme point optimal solution x to (LP).

(b) If there is a variable xi
e = 0 then remove variable xi

e and let Ce ← Ce \ {i}.
(c) If xi

e = 1 then

• F i ← F i ∪ {e}
• E ← E \ {e}
• Bi

v ← Bi
v − 1 for each v ∈ e.

(d) If there exists a vertex v ∈ V and i such that i ∈ Kv and Di
v ≤ dBi

ve+1 then remove
the constraint at vertex v for color i, i.e, Kv ← Kv \ {i}. Here Di

v = |{e ∈ δ(v) : xi
e >

0}|.

2. Return F i for 1 ≤ i ≤ k.

Figure 3: Decomposition Algorithm II

If the modified algorithm reaches Step (2) then it gives the claimed guarantee since the
bound for color i at vertex v is violated only when the corresponding constraint is removed in
Step (1d). In such a case we have Di

v ≤ dBi
ve + 1 and hence the total number of edges in F i

incident at v are bounded by dBi
ve+ 1 as desired.

To complete the proof of the Theorem 3.3 we show that the algorithm reaches Step (2). As
in the discussion preceding Lemma 3.2, this will follow from the following lemma.
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Lemma 3.4 Given an extreme point solution x such that 0 < xi
e < 1 for each v ∈ V and

i ∈ Kv there must exist a vertex v and color i such that Di
v ≤ dBi

ve+ 1 where Di
v is the number

of variables of the form xi
e for some edge e incident at v.

Proof: Suppose for sake of contradiction we have Di
v ≥ dBi

ve + 2 for each i ∈ Kv. We give
a contradiction to the fact that the number of tight independent constraints is equal to the
number of variables in x.

The contradiction is shown by a counting argument. We give one token to each variable which
redistributes its token to the constraints. We then collect one token for each tight independent
constraint and still have extra tokens, giving us the contradiction. The redistribution is given
by the following two rules.

• Rule 1: Each variable xi
e gives xi

e tokens to the constraint for edge e.

• Rule 2: Each variable xi
e gives 1−xi

e
2 tokens to the constraint for each endpoint v of e and

i.

Observe that each edge gives a total of one token.
Now, we count the number of tokens received by each constraint. Edge constraint for an

edge e receives
∑

i∈Ce
xi

e tokens from Rule 1 which is exactly one from the edge constraint of e
in (LP). Hence, each edge constraint receives one token in the redistribution.

Consider a constraint for vertex v ∈ V and i ∈ Kv. It receives 1−xi
e

2 tokens for each e ∈ δ(v)
such that xi

e > 0 by Rule 2 or equivalently each edge counting towards Di
v. Hence, the total

number of tokens received by the constraint is at least

∑

e∈δ(v),xi
e>0

1− xi
e

2
=

1
2
(Di

v −
∑

e∈δ(v),xi
e>0

xi
e) (22)

≥ 1
2
(Di

v −Bi
v) ≥ 1 (23)

where the last inequality follows since Di
v ≥ Bi

v + 2. Thus each degree constraint also receives
at least one token. Moreover, if any of the constraints receives more than token or there is a
vertex v ∈ V and color i /∈ Kv such that xi

e > 0 for some edge e ∈ δ(v) then 1−xi
e

2 token given by
Rule 2 is extra and gives us the contradiction. Otherwise, for any color i and vertex v, we must
have that i ∈ Kv whenever i ∈ Ce. But then the sum of all the edge constraints exactly equals
the sum of the all the degree constraints, contradicting the requirement that the constraints are
linearly independent. 2

This completes the proof that there exists a decomposition F1, . . . , Fk satisfying the upper
bounds within additive error of one.

We now show how to construct the decomposition G1, . . . , Gk which satisfies the lower bounds
within an additive error of one. The algorithm is exactly similar to one in Figure 3 except that
we modify Step (1d) in the following manner. We delete the constraint for vertex v ∈ V and
i ∈ Kv only when bBi

vc ≤ 1. Observe that with this modification it is easy to verify that the
solution returned satisfies the lowerbound within an additive error of 1. This follows from the
fact that at least bBi

vc − 1 edges incident at v are in Gi before we remove the degree constraint
for vertex v and color i.

We now show that algorithm will make progress with the modified Step (1d).

Lemma 3.5 Given an extreme point solution x such that 0 < xi
e < 1 for each v ∈ V and i ∈ Kv

there must exist a vertex v and color i such that bBi
vc ≤ 1.
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Proof: Suppose for sake of contradiction we have bBi
vc ≥ 2 for each i ∈ Kv. We give a

contradiction to the fact that number of tight independent constraints equal the number of
variables in x.

The contradiction is shown by a counting argument. We give one token to each variable
which redistributes its token to the constraints such that we can collect one token for each tight
independent constraints and still have extra tokens to spare. The redistribution is given the
following two rules.

1. Rule 1: Each variable xi
e gives 1− xi

e tokens to the constraint for edge e.

2. Rule 2: Each variable xi
e gives xi

e
2 tokens to the constraint for i and v where e ∈ δ(v).

Observe that each edge gives a total of one token. Now, we count the tokens received
by each constraint. The constraint for an edge e receives

∑
i∈Ce

(1 − xi
e) = (

∑
i∈Ce

1) − 1 =
|Ce| − 1 ≥ 1 tokens since |Ce| ≥ 2. Hence, each edge constraint receives at least one token in
the redistribution. Now, consider a constraint for v and i ∈ Kv. It receives xi

e
2 token for each

e ∈ δ(v) such that xi
e > 0. Hence, the total tokens received by the constraint is at least

∑

e∈δ(v):i∈Ce

xi
e

2
=

Bi
v

2
≥ 1 (24)

where the last inequality follows from the fact that Bi
v ≥ 2. Thus each constraint receives at

least one token. Moreover, if any of the constraints receives more than one token or there is a
vertex v ∈ V and i /∈ Kv such that xi

e > 0 for some edge e ∈ δ(v) then xi
e
2 token from Rule 2 is

extra giving us the contradiction. Hence for any color i and vertex v, we must have that i ∈ Kv

whenever i ∈ Ce. Moreover, all the constraints must be linearly independent. But then the sum
of all the edge constraints exactly equals the sum of the all the degree constraints giving us a
contradiction to independence of all constraints. 2

This completes the proof of Theorem 3.3. 2
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