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Abstract

We show that every set of m ' cn
√

n log log n vectors in {0, 1}n in which every
vector has Hamming weight 3 contains a subset of O(log n) vectors that form a linear
dependency. Our proof is based on showing that in every graph of average degree at least
c log log n, every legal edge coloring produces a cycle in which one of the colors appears
either once or twice. (In both results, c is some constant.) The results proved are used
(in a companion work) in refutation algorithms for semirandom 3CNF formulas.

1 Introduction

The problem studied in this paper can be viewed either as a problem involving linear
dependencies among binary vectors, or as a problem on hypergraphs. We present here the
hypergraph formulation.

Definition 1.1 An even cover in a hypergraph is a nonempty set of hyperedges that contains
each vertex an even number of times (either not at all, or twice, or four times, etc.). The
size of an even cover is the number of hyperedges in the even cover.

It is not hard to see that every hypergraph on n vertices with more than n hyperedges has
an even cover of size at most n + 1. This follows by viewing each hyperedge as an indicator
vector for its variables, noting that this gives a vector space of dimension at most n, and
that every minimal set of linearly dependent binary vectors (addition performed modulo
2) corresponds to an even cover. As the number of hyperedges in a hypergraph increases,
smaller even covers may appear. For r-uniform hypergraphs with r ≥ 3, it is reasonable
to conjecture the following relation between number of hyperedges and size of even covers.
(The Õ notation is meant to suppress an O(log n) multiplicative term, though the author
would be happy to settle also for somewhat larger low order multiplicative terms.)

Conjecture 1.2 Let c be sufficiently large. Then every r-uniform hypergraph on n vertices
and m = cβn hyperedges (with 1 < β ≤ O(n(r−2)/2)) has an even cover of size at most
Õ(n/β2/(r−2)).

1



For graphs (r = 2), minimal even covers are simply cycles. The natural analog of the
conjecture for graphs would be that every graph of sufficiently high constant average degree
has a cycle of length O(log n), which is well known to be true. For general r, the conjecture
is not known to hold, except of course at the very low density case when β < (log n)(r−2)/2,
in which case the conjecture is trivially true. When r is even, the conjecture is known to
be true also at the very high density case, say, when β = 2n(r−2)/2 (see Proposition 2.2).
The current work addresses the very high density case of Conjecture 1.2 when r is odd, and
comes closer to proving the conjecture in this case.

The case that motivates the current work is that of r = 3. In this case, β can range from
1 to

√
n. As we shall explain in Section 1.1, this case comes up in refutation of random

3CNF formulas. Some of the results in this work are stated only for this special case, but
easily extend to all odd r.

The following theorem is implicit in the work of Naor and Vastreate [11]. If not for the
term log n in the value of β, it would prove the conjecture for the very high density case.

Theorem 1.3 Every 3-uniform hypergraph with n vertices and βn hyperedges contains an
even cover of size at most log n. Here β = c log n

√
n for some sufficiently large universal

constant c.

In our work, we improve over the value of β and show:

Theorem 1.4 Let H be an arbitrary 3-uniform hypergraph with n vertices and m = βn
hyperedges, and let c be a sufficiently large universal constant. Then:

1. If β ≥ c
√

n log n/ log log n then H contains an even cover of size O(log n/ log log n).

2. If β ≥ c
√

n log log n then H contains an even cover of size O(log n).

Moreover, in both cases there is a polynomial time algorithm that finds the respective
even cover.

Our proof of Theorem 1.4 produces even covers which are of a special form (correspond
to linear dependencies over any field). See Corollary 4.5. Our proof technique reduces the
problem of even covers in hypergraphs to an extremal problem in graphs.

Definition 1.5 Given a graph G and an arbitrary legal coloring of its edges (incident edges
have different colors), a simple cycle (namely, a cycle that does not visit any vertex more
than once) is called a 1-cycle (2-cycle, respectively) if some color is used in order to color
exactly one (two, respectively) of its edges. We say that a cycle in an edge colored graph is
distinguished if it is either a 1-cycle or a 2-cycle.

The extremal problem is as follows: what is the maximum number of edges that a legally
colored n-vertex graph can have and still not contain a distinguished cycle of length at most
t? Observe that a graph may have arbitrarily many edges and still not have a 2-cycle (if
every edge is colored by a different color). It may have Ω(n log n) edges and still not have
a 1-cycle (e.g, color edges of the hypercube by the name of the coordinate that is flipped).
However, once both 1-cycles and 2-cycles are forbidden, we show that the number of edges
is at most O(n log log n).
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Theorem 1.6 For a sufficiently large constant c,

1. For every graph on n vertices and average degree at least c log n
log log n , every legal edge

coloring creates a distinguished cycle of length O( log n
log log n).

2. For every graph on n vertices and average degree at least c log log n, every legal edge
coloring creates a distinguished cycle of length O(log n log log n).

Moreover, in both cases there is a polynomial time algorithm that finds the respective
distinguished cycle.

As we shall see in the proof of Corollary 2.12, the correspondence between Theorem 1.6
and Theorem 1.4 is as follows. A degree of d in Theorem 1.6 gives a density of β = O(

√
dn)

in Theorem 1.4 for even covers that are twice as large as the corresponding distinguished
cycles. Hence item 1 of Theorem 1.4 follows from item 1 of Theorem 1.6. Likewise, item 2
of Theorem 1.4 almost follows from item 2 of Theorem 1.6, except for a log log n term in
the size of the even cover. To remove this log log n term, we appeal to some elementary
properties of cycle bases in graphs.

1.1 Motivation and related work

The author’s motivation for studying small even covers comes from a sequence of works on
refuting random 3CNF formulas. The goal of these works is to design algorithms that when
given a nonsatisfiable 3CNF Boolean formula (conjunction of clauses, where each clause is
a disjunction of three literals such as x1 ∨ x̄2 ∨ x3) certifies that no satisfying assignment
exists. In general, this problem is coNP-hard, but it turns out that for sufficiently dense
random (or semirandom) formulas efficient refutation algorithms exist (with high probability
over the choice of the input formula). The methodology developed in [8, 4, 7, 6, 5] to
design such algorithms reduces the problem of refuting 3CNF formulas to a stronger form
of refutation but for an easier problem, max-3LIN2. Namely, given an inconsistent system
of linear equations with three Boolean variables per equation (such as x1 + x2 + x3 = 1
modulo 2), certify that the system is “far” from being satisfiable (in the sense that every
assignment leaves “many” equations not satisfied). We call this strong refutation (though
in a sense not as strong as that of [3]). Refuting satisfiability of 3LIN2 is easy (by Gaussian
elimination), but strong refutation is in general NP-hard (by a rephrasing of the known
hardness of approximation results [9] for max-3LIN2). However, the max-3LIN2 systems
that are obtained from the reduction from random 3CNF formulas are random rather than
worst case instances, and hence there is hope for strongly refuting them. Here is the
approach developed in the above works.

Given a 3LIN2 system φ, let Hφ be the following 3-uniform hypergraph. The vertices of
Hφ are the variables of φ. The hyperedges are the equations of φ. For example, the clause
x1 +x2 +x3 = 0 gives rise to the hyperedge (x1, x2, x3). The hypergraph does not represent
the right hand side of the equations. Assume that Hφ has an even cover of size 2` (observe
that an even cover always has an even number of hyperedges, because every hyperedge
contains three vertices, and every vertex appears an even number of times). Consider the
2` linear equations that correspond to the hyperedges of the even cover. Summing up
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all equations, the left hand side gives 0 (since every variable appears an even number of
times and addition is performed modulo 2). As to the right hand side, if there is some
randomness in the equation in the sense that for every equation independently there is
some small probability δ that its right hand side is random, then with probability Ω(δ`)
(or at least 1/4 if δ` > 1) the right hand side will sum up to 1, leading to a contradiction.
Moreover, if Hφ has many disjoint even covers that can be found efficiently, this gives many
disjoint subsystems, and if the original 3LIN system is somewhat random in the above
sense, then many of them are likely not to be satisfiable. This is exactly what we want
to achieve by strong refutation. Observe that a theorem such as Theorem 1.4 implies the
existence of many disjoint even covers (and not just one), because after a small even cover is
found, it can be removed from the hypergraph without substantially changing the number
of hyperedges, and then the theorem can be applied again.

Theorem 1.4 plays a central role in the refutation algorithm presented in [5]. Its proof
was only sketched in [5] and is presented in full in the current paper. (Remark: the bounds
proved in the current paper are stronger than the corresponding bounds claimed in [5].)

Results in [6] support Conjecture 1.2. There, the special case of r = 3 and β = n0.4

was considered. If was shown that if the hypergraph is random, then indeed it is likely to
have even covers of size O(n/β2) = O(n0.2). The proof works for other values of β as well
(except possibly for very small values of β – this needs to be checked). We remark that
random hypergraphs serve as examples showing that Conjecture 1.2 cannot be improved
upon. This follows from a simple expectation computation. See for example [6].

The “super-high” density case of β = nδ+(r−2)/2 for some δ > 0 was studied in [11].
The motivation there comes from studying the Hamming distance of codes that have low
density parity check matrices (see more details in [11]). When δ > 0 there are even covers
of constant size, and the goal is to figure out how this constant depends on δ. In our work
we slightly improve over the bounds proven in [11] when r is odd and large (see the end of
Section 2). More importantly, our proof technique, though sharing some features with that
of [11], works for a wider range of parameters than the proof technique of [11]. Hence we
start getting meaningful results when β ≥ n(r−2)/2

√
log log n, whereas the techniques of [11]

require β ≥ n(r−2)/2 log n.
Some nontrivial upper bounds on the size of even covers can be obtained by proving

the existence of subhypergraphs that contain more hyperedges than vertices, and on such a
hypergraph invoking the argument that follows Definition 1.1. For example, in [1] it is shown
that every 3-uniform hypergraph with βn hyperedges has a set of ` = O(n log n/β) vertices
that induce at least `+1 hyperedges. It follows that even covers of size O(n log n/β) always
exist. This line of work suggest the following conjecture as an intermediate step towards
proving Conjecture 1.2.

Conjecture 1.7 Let c be sufficiently large. Then every 3-uniform hypergraph on n vertices
and m = cβn hyperedges (with 1 < β ≤ O(

√
n)) has a set of n′ ≤ Õ(n/β2) vertices that

induce at least 2n′/3 hyperedges.
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2 Distinguished cycles shorter than log n

This section contains the proof of item (1) of Theorem 1.4. It is based on a simplification
of the proof technique of [11], and works when β >

√
n log n/ log log n. In passing, we also

improve some other results of [11]. For this reason, the presentation will be for r-uniform
hypergraphs for general r, even though 3-uniform hypergraphs suffice for Theorem 1.4.

It will be convenient for us to view hyperedges of H as r-tuples of vertices, rather than
as sets of vertices. Hence we shall use the convention that vertices of H are sorted in some
arbitrary order, and likewise, the r vertices in a hyperedge are sorted according to the same
order. The r-tuple corresponding to a hyperedge is this sorted list of vertices.

The following lemma is a result taken from [2]. (The result in [2] is slightly stronger.
Weaker results that would also suffice for the purpose of our paper were known previous
to [2].)

Lemma 2.1 In any n-vertex graph of average degree d > 2 there is a cycle of length no
longer than 2`, if d(d− 1)`−1 > n.

Proof: If the graph is d-regular, the proof follows easily by performing breadth first
search, starting from an arbitrary vertex. The (known) proof for nonregular graphs is not
as simple. See [2] for details. 2

The difficulty in proving Theorem 1.4 stems from the fact that it deals with r-uniform
hypergraphs with odd r = 3. It is instructive to first see how a corresponding (in fact,
stronger) theorem can be proved when r is even. The following proposition is taken from [11].

Proposition 2.2 For even r and d > 1, every r-uniform hypergraph H with m = dnr/2

hyperedges contains an even cover of size O(log n).

Proof: Construct the following auxiliary graph G. It has
( n
r/2

) ≤ nr/2 vertices, labelled
by all possible sets of r/2 vertices of H. Every hyperedge e of H contributes one edge e′ to
G, connecting the vertex in G that is labelled by the set of r/2 vertices that make the prefix
of the r-tuple that labels e and the vertex labelled by the set of r/2 vertices that make the
suffix of the r-tuple that labels e. The average degree of G is (slightly larger than) 2d > 2,
and hence Lemma 2.1 implies that G has a cycle of length O(log n). The hyperedges of H
that correspond to the edges of G along this cycle form an even cover in H. 2

We now return to the case that r is odd (in our case, r = 3), and consider an r uniform
hypergraph with m = dnr/2 edges.

For given n, r and d, let h be maximal such that h and s are positive integers satisfying
nh < dnr/2 and h+2s = r. For example, when r = 3 we have that h = s = 1, and for r = 5
we have that h = 1 when d <

√
n.

The following notion (used also in [11]) helps simplify later proofs.

Definition 2.3 For h and s as defined above, an r-uniform hypergraph satisfies the small
overlap condition if no two hyperedges share h + s vertices.

The following lemma (similar to [11]) shows that up to a negligible effect on d, we may
assume that the small overlap condition holds.
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Lemma 2.4 Let H be an r-uniform hypergraph with dnr/2 hyperedges, let h and s be as
above, and let ε > 0 satisfy εdnr/2−s > 1. Then either

• H has a subhypergraph with (d − 2ε)nr/2 hyperedges that satisfies the small overlap
condition,

or

• H has an even cover of size 4`, where ` is the smallest integer satisfying (2εdnr/2−s)` >
ns. For example, when r = 3 and ε > 1/d this corresponds to an even cover of size 8.

Proof: Given an r-uniform hypergraph H, consider an auxiliary graph G whose vertices
are the hyperedges of H, and two vertices of G are connected by an edge if the respective hy-
peredges share at least h+s vertices (in H). Consider an arbitrary maximal matching M in
G. If the matching contains less than εdnr/2 edges, then remove the corresponding matched
hyperedges from H. The number of hyperedges in H remains essentially unchanged, and
H now satisfies the small overlap condition.

If the matching M contains εdnr/2 edges, then consider an auxiliary multigraph F (it
may have parallel edges). The vertices of F are s-tuples of vertices of H. Every edge of
the matching M contributes one edge to F as follows. Let the matching edge correspond
to two hyperedges e1 and e2 in H, and without loss of generality, assume that e1 and e2

share their first h + s vertices (in H). Then in F add an edge between the vertex that is
labelled by the last s vertices of e1 and the vertex that is labelled by the last s vertices of
e2. Observe that now any cycle in F corresponds in a natural way to an even cover in H
(with twice as many hyperedges in H than edges if F ). The average degree in F is at least
2εdnr/2−s, which is greater than 2 by the conditions in the statement of the lemma. Hence
Lemma 2.1 implies that H has an even cover with 4` edges, where ` is the smallest value
satisfying (2εdnr/2−s)` > ns. 2

We shall assume that the hypergraph H satisfies the small overlap condition. This
assumption can be made essentially without loss of generality, because results proved under
this assumption easily generalize to arbitrary hypergraphs with almost the same parameters,
by Lemma 2.4.

Now is our main point of departure from [11]. We construct an auxiliary graph G that is
different from the one constructed in [11], and this leads both to a considerable simplification
in the proofs, and to a strengthening of the results. The graph that we construct is similar
to the one constructed in [8] in their refutation algorithm for random 3SAT.

Each vertex of G corresponds to a set of 2s vertices of H. By our convention that
vertices of H are sorted, a vertex of G will be labelled by a 2s-tuple of vertices of H, for
which the prefix of size s is sorted and the suffix of size s is sorted. The same vertex of
H may appear both in the prefix and in the suffix. Hence G has

(n
s

)2 vertices. The edges
of G are derived from hyperedges of H as follows. Every hyperedge of H is an r-tuple.
Every two hyperedges e1 and e2 of H whose r-tuples agree on the last h vertices contribute
one edge to G. This edge connects the vertices v1 and v2 in G, if the labels of v1 and v2

satisfy the following conditions. The tuple labelling v1 agrees on its first s coordinates with
the first s coordinates of the tuple labelling e1, and agrees in its last s coordinates with
coordinates s+1 up to 2s of the tuple labelling e2. The tuple labelling v2 agrees on its first
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s coordinates with the first s coordinates of the tuple labelling e2, and agrees in its last
s coordinates with the coordinates s + 1 up to 2s of the tuple labelling e1. Moreover, we
color this edge by the color c, where c is a tuple containing the last h vertices (the overlap
vertices) in the tuples e1 and e2. Hence every edge of G (together with its color and the
labels of its endpoints) uniquely determines which two hyperedges in H generated it.

Here are a few examples to illustrate the construction. When r = 3 we have that
h = s = 1. Hence G contains n2 vertices. Two hyperedges e1 = (1, 2, 5) and e2 = (3, 4, 5)
in H would contribute the edge ((1, 4)(3, 2)) to G, and this edge would be colored (5).
When r = 5 and d is small, then h = 1 and s = 2. Hence G contains

(n
2

)2
< n4 vertices.

Two hyperedges e1 = (1, 3, 4, 6, 8) and e2 = (2, 4, 5, 7, 8) in H would contribute the edge
((1, 3, 5, 7)(2, 4, 4, 6)) to G, and this edge would be colored (8).

The following proposition is the key reason for introducing the small overlap property.

Proposition 2.5 If H satisfies the small overlap condition, then the coloring of the edges
of G is a legal coloring (no two edges of the same color are incident with the same vertex).

Proof: Otherwise there would be two hyperedges in H whose overlap is at least h + s.
2

The key to finding even covers in H is by using cycles in G. Observe that for every
cycle in G, every vertex of H appears an even number of times on this cycle (counting
all its appearances in hyperedges of H that generated the cycle in G). Hence a cycle in
G corresponds to an even cover in H. However, there is one potential problem in this
correspondence. A hyperedge in H may generate several edges in G. Hence it might be
the case that in a given cycle of G, some hyperedges of H appear more than once. Two
appearances of the same hyperedge in an even cover can (and should) be removed – this
still results in an even cover. Continuing in this fashion, if it happens that every hyperedge
of H appears on the cycle an even number of times (say, either twice or not at all), all
hyperedges are removed and one remains with the empty even cover. In this case we say
that the cycle is trivial: it corresponds to the trivial even cover that contains no hyperedges.
Hence a cycle in G corresponds to an even cover in H if and only if the cycle is not trivial.
In this work, we shall consider one particular class of nontrivial cycles in G, namely, the
class of distinguished cycles, as defined in Definition 1.5.

Lemma 2.6 A distinguished cycle in G of length ` corresponds to an even cover in H with
at most 2` hyperedges.

Proof: Every edge of G is generated by two hyperedges of H. Consider one appearance
of the color c that appears either once or twice in the distinguished cycle, and the two hy-
peredges that generated this appearance. If c appears only once, then these two hyperedges
each appear only once on the cycle (because any edge that any of them generates will be
colored c). If c appears twice, then in can not be that both appearances were generated
by the same pair of hyperedges, because then both appearances would correspond to the
same edge, contradicting the requirement that the cycle is simple. Hence in a distinguished
cycle there is at least one hyperedge that appears exactly once on the cycle, and hence the
cycle cannot be trivial. A nontrivial cycle corresponds to an even cover, and the hyperedges
of the even cover are those hyperedges that generated the edges of the cycle. Hence the
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corresponding even cover has at most 2` hyperedges (and possible less, if some hyperedges
generated more than one edge along the cycle). 2

To show that G has short distinguished cycles, we first bound from below its average
degree.

Lemma 2.7 The graph G has average degree at least (roughly) d2.

Proof: Recall that G has
(n
s

)2 vertices, that H has dnr/2 hyperedges, and that 2s+h = r.
Group the hyperedges into

(n
h

)
disjoint groups, one for every possible h-suffix of a label of a

hyperedge. A simple shifting argument implies that the number of edges in G is minimized
when all groups are of the same size. Hence we assume that every group contains dnr/2/

(n
h

)

hyperedges (ignoring rounding issues). Each group then generates
(dnr/2/(n

h)
2

)
edges, and the

total number of edges in G is roughly d2nr/2
(n
h

)
. The average degree is at least as claimed

because
(n
s

)2(n
h

) ≤ nr. 2

The discussion so far leads to the problem of providing bounds for Lavg(N, D) as defined
below.

Definition 2.8 Let Lavg(N, D) denote the minimum value of ` such that for every graph G
with N vertices (in our case N ' nr−h) and average degree at least D (in our case D ≥ d2),
and for every legal coloring of its edges, G must contain a distinguished cycle of length at
most 2`.

In our application G need not be a simple graph. It may have parallel edges. But if it
does, then it contains a distinguished cycle of length two.

When D > c log N
log log N (here c is some sufficiently large constant) then the existence of

short distinguished cycles can be analyzed using the same approach as that used for the
existence of short cycles in general. As we do not care for constant factors in the degree D,
the analysis can be simplified by the following proposition (also used in [11] for the same
purpose).

Proposition 2.9 Every graph of average degree D has a subgraph of minimum degree D/2.

Proof: Iteratively remove vertices of degree less than D/2 together with their incident
edges. The total number of edges that can be removed in this process is strictly less than
nD/2, and hence some subgraph remains. 2

We define Lmin(N,D) in a way similar to Definition 2.8, but with minimum degree re-
placing average degree. Proposition 2.9 implies that Lavg(N,D) ≤ maxN ′≤N [Lmin(N ′, D/2)].
(Our upper bounds on Lmin(N, D) will be nondecreasing in N , and hence the value of N ′

to be used in the above inequality will be N .) The following lemma proves item 1 of
Theorem 1.6.

Lemma 2.10 For Lmin(N, D) as defined above, Lmin(N, D) ≤ ` where ` is the smallest
integer for which D!/(D − `)! ≥ N , if such an integer ` < D exists.

Proof: Pick an arbitrary vertex r in G as the root, and develop a colorful version of
a breadth first search tree from r. The root r is at level 0. All neighbors of r (there are
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at least D of them) are at level 1. Having developed level i, level i + 1 is developed as
follows. For every vertex v of level i, consider all edges incident with it that have colors
different from the colors of the tree edges along the path from r to v. There are at least
D − i such edges. If any such edge connects to a different vertex v′ at level i, then this
closes a distinguished cycle (going through v, v′ and their least common ancestor). Hence
we may assume that all these edges go to level i + 1. It follows that at level ` at the latest
(with ` as in the lemma), some vertex has two different ancestors at one level below. This
closes a cycle. As no color can appear more than twice on this cycle, it is a distinguished
cycle. 2

Remark 2.11 The proof of Lemma 2.10 shows the existence of cycles in which all colors
on the cycle appear either once or twice, whereas for a cycle to be distinguished it suffices
that one color appears either once or twice.

Corollary 2.12 Given n, r, d and s as defined above, let D = (d − 1)2/2 and let ` < D
be such that D!/(D − `)! ≥ n2s. Then every r-uniform hypergraph H on n vertices with
m = dnr/2 hyperedges has an even cover with no more than 4` hyperedges. Moreover, such
an even cover can be found in time polynomial in n and m.

Proof: Given a hypergraph H, use Lemma 2.4 with ε = 1 to transform it to a hyper-
graph satisfying the small overlap condition, with the value of d replaced by d − 1. (The
other alternative in Lemma 2.4, if it holds, already implies an even cover of the desired
size.) Construct from the resulting hypergraph the graph G. By lemma 2.7 the average
degree in G is at least (d − 1)2. By Proposition 2.9 G has a subgraph of minimum degree
at least D. By Lemma 2.10, this subgraph has a distinguished cycle of length at most 2`.
By Lemma 2.6 this corresponds to an even cover of size at most 4` in H. By inspection
one can verify that all parts of the proof are algorithmic, leading to the desired polynomial
time algorithm. 2

When D is much larger than `, then the degree condition in Corollary 2.12 is essentially
d2` ≥ n2s for the existence of an even cover of size k = 4`. Hence, to have an even cover of
size k a value of d = O(n4s/k) suffices. We remark that in [11] a somewhat different value
is proved for d. Namely, for r divisible by 3, the bound in [11] is d = O(n4r/3k) (and an
error term is introduced in the exponent when k is not divisible by 3). For large r, we can
choose s ≤ (r + 3)/4 (or smaller, if r + 1 is divisible by 4) and we get a better bound of
d = O(nr/k+3/k).

Setting r = 3 and d ' √
log n/ log log n in Corollary 2.12 proves item 1 of Theorem 1.4.

3 Distinguished cycles longer than log n

This section contains the proof of item (2) of Theorem 1.6. Only parts of this section
(Proposition 3.3, Theorem 3.4 and Lemma 3.5) will be used in the proof of item 2 of
Theorem 1.4, which will appear in section 4.

The proof of Lemma 2.10 assumes the minimum degree to be D = Ω(log n/ log log n).
The purpose of this section is to prove the existence of distinguished cycles when the min-
imum degree is much lower. We note that principles used in the analysis of [11] fail to
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work already when the minimum degree drops below log n, because (translating their proof
technique to our notation) they are using a stricter notion of distinguished cycle in which
some color needs to appear exactly once. A hypercube in which edges are colored according
to the coordinate of the bit that they flip is an example of a graph of degree log n that is
legally colored and does not have any distinguished cycle in this stronger sense.

3.1 A digression

For the purpose of explaining our proof technique, let us temporarily change the setting in
which we seek to find a distinguished cycle. Rather than having a legally-colored graph of
minimum degree D, we shall assume that we have a graph in which edges are colored (not
necessarily legally) by D colors, and every vertex is incident with at least one edge of every
color.

Definition 3.1 Let Lcol(N, D) denote the minimum value of ` such that for every graph G
with N vertices and any coloring of its edges by D colors, if every vertex is incident with
edges of all colors, then G contains a distinguished cycle of length at most 2`.

It may be useful to notice that Lcol(N, D), Lavg(N,D) and Lmin(N,D) have a common
special case, namely D-regular graphs with a legal coloring by D colors. Such colorings
exist for all bipartite D-regular graphs.

Observe that the proof of Lemma 2.10 applies to Lcol(N, D) as well. Hence for D >
2 log n

log log n we have that Lcol(N,D) ≤ 2 log n
log log n (the leading constant 2 is for illustrative purposes

only and is not meant to be best possible). The following proposition improves the value
of D.

Proposition 3.2 For D > log log N , Lcol(N, D) ≤ O(log3 N). Moreover, a distinguished
cycle of this length can be found in polynomial time.

Proof: Consider an arbitrary graph on N vertices, and an arbitrary coloring of its
edges by D colors such that every vertex is incident with all colors. We will show that a
distinguished cycle exists. Our proof also provides a polynomial time algorithm for finding
such a cycle.

Remove all edges from G and put them back in, one color class at a time. We shall
consider the minimum size of connected components that are formed at various steps of this
process. We shall show that the assumption that there are no distinguished cycles implies
the existence of a connected component of size larger than N , which is a contradiction.
Moreover, throughout our proof we shall control the diameter of connected components,
and this will lead to a proof that there is a distinguished cycle of length O(log3 N).

Initially, all vertices are isolated and there are N components. After adding edges of the
first color class, every vertex has degree at least one. We partition the graph into connected
components as follows.

1. Iteratively, pick an arbitrary vertex that has not yet been marked. Mark it as a center
vertex, and mark all its neighbors and all their neighbors as noncenter vertices.
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2. Every center vertex will correspond to exactly one connected component. It will be
connected to all its neighbors. All other noncenter vertices (those are at distant two
from the set of center vertices) connect to the center vertex that originally marked
them (other choices would work as well).

It is not hard to see that every connected component has size at least s1 = 2 and
diameter at most d1 = 5, where for convenience diameter is measured here as the number of
vertices (including endpoints) on the shortest path between the two most distant vertices in
a connected component. (Hence for example, the diameter of C4, the cycle on four vertices,
is 3.)

Consider now what happens when edges of the second color class are added. If any
such edge lies in an existing connected component, then this component must contain a
distinguished cycle with this edge being the only edge of its color. Hence all second color
edges join different components. Moreover, if there are two components that are joined by
two edges of the second color, this leads to a distinguished cycle in which the second color
appears twice. Hence we may assume that there is at most one edge of the second color
joining any two components.

Consider now a graph for which the components after the first phase are the vertices,
and edges of the second color are the edges. This must be a simple graph, and moreover,
its minimum degree is 2 (because every vertex in every component is incident with at least
one edge of the second color). Partitioning this new graph into connected components as
described above we get components of size at least s2 = s1(s1 + 1) = 6, and diameter at
most 5d1 = 25.

Likewise, after adding edges of the third color, all components are of size at least s3 =
s2(s2 + 1) = 42 and the diameter is at most 5d2 = 125. By induction, after the i + 1th
color is added, all components are of size larger than 22i

. Hence if there are more than
log log N colors there must be a distinguished cycle. The length of the distinguished cycle
is at most twice the size of the maximum diameter reached (plus two, for the two edges of
the last color connecting two components), and can readily be seen to be at most essentially
5log log N , and hence O(log3 N). 2

3.2 Back to the main proof

We now return to the proof of item 2 in Theorem 1.6. The following technical proposition
will be used in the proof of our next theorem.

Proposition 3.3 For every integers 0 < b < a:

1. log a + b
a < log(a + b).

2. b
a < log(b+1)

log(a+1) .

3. log log a + b
a < log log(a(b + 1)).

(All logarithms are in base 2.)

Proof:

11



1. For b = 0 and for b = a, log a + b
a = log(a + b). Hence the result for 0 < b < a follows

by concavity of the logarithm function.

2. For b = 0 and for b = a, b
a = log(b+1)

log(a+1) . Again, the result for 0 < b < a follows by
concavity of the logarithm function.

3. In the derivation below, the first inequality follows from item (2) and the third in-
equality follows from item (1) (using log a as a).

log log a +
b

a
< log log a +

log(b + 1)
log(a + 1)

< log log a +
log(b + 1)

log a

< log(log a + log(b + 1)) = log log(a(b + 1))

2

We now want to prove a result similar to that of Proposition 3.2 also for Lavg(N, D).
We first do so without providing any bounds on the length of the distinguished cycle.

Theorem 3.4 For every graph on n vertices and average degree d > 4 log log 2n, every legal
coloring of its edges creates at least one distinguished cycle.

Proof: Given n and d, start with the empty graph on n vertices, and add in the edges
one color class at a time, under the assumption that there is no distinguished cycle. We
shall prove the following inductive hypothesis.

Inductive hypothesis. At no stage during the process there is a connected component
with n′ vertices and average degree larger than d′ = 4 log log 2n′.

Base case. All connected components are of size 1, with average degree 4 log log 2 = 0.
Inductive step. Assume that the theorem is true before adding color class c. When

adding color class c, no new edge lies within an existing connected component, as this edge
could be used to close a distinguished cycle with edges of previous colors. Likewise, no two
previous components are connected by two new edges, as again these two new edges can be
used to close a distinguished cycle with edges of previous colors. Hence any two previous
components are connected by at most one new edge.

For every new edge connecting two components, charge both endpoints of the edge to
the smaller of the two components (breaking ties arbitrarily), and there spread the charge
evenly among all vertices of the smaller component. We show by induction that the total
charge of a vertex v does not exceed 4 log log 2n′, where n′ is the size of the component to
which v belongs. Observe that for every connected component, the sum of the charges of
all vertices is equal to the sum of the degrees. Hence the fact that in a component of size
n′ no charge exceeds 4 log log 2n′ implies the same with respect to average degree.

For a vertex v, let s be the size of its component before edges of color c are added. By
the induction hypothesis, its charge at this point is at most 4 log log 2s. Assume that when
adding edges of color c, the number of edges that are charged to the component of v is b.
Hence the new charge for v is 4 log log 2s + 2b

s . On the other hand, v must belong now to
a component of size at least s(b + 1), because each one of the b edges must connect to a
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distinct component at least as large as s. Hence to establish the inductive step, it remains
to see that

4 log log 2s +
2b

s
≤ 4(log log 2s +

b

2s
) ≤ 4 log log(2s(b + 1))

where the last inequality follows from item (3) in Proposition 3.3 (replacing a by 2s). 2

We shall now show that when the degree is c log log 2n (for large enough c) there is a
distinguished cycle which is not too long, and that such a cycle can be found efficiently. We
shall use the following known lemma.

Lemma 3.5 There is a polynomial time algorithm that given any graph on n vertices and
m edges and a value k > 1, removes at most m/k edges and produces a graph in which every
connected component has diameter O(k log n).

Proof: Pick an arbitrary vertex and grow a ball of radius r around it, where r is the
minimum value for which the number of boundary edges (that exit the ball) is smaller
than 1/k times the number of internal edges (within the ball). Then discard the boundary
edges (if any boundary edges exist). Repeat the process starting at an arbitrary vertex not
already within a ball, as long as such vertices exist.

For every edge discarded, we keep at least k internal edges, and hence at most a 1/k
fraction of the edges are discarded. The radius of a component cannot exceed k ln m because
every new layer increases the number of edges by a factor of (1+1/k), and we need to have
(1 + 1/k)r ≤ m. 2

Our plan is to use Lemma 3.5, multiple times, once for each color class used in the legal
coloring. For this reason, we first show that it suffices to consider legal colorings with only
few colors.

Lemma 3.6 Consider an arbitrary N -vertex graph of average degree D and an arbitrary
legal coloring of it. Then there is a polynomial time procedure that generates a new graph
G with at most 2N vertices and average degree at least D/4 together with a legal coloring
of the edges of G using at most 4D colors, such that every distinguished cycle in G can be
mapped back to a distinguished cycle of the same length in the original graph.

Proof: Consider an arbitrary legally colored graph on N vertices with average degree
D. Modify the input graph to be nearly regular, with all degrees between D and D/2. This
can be done as follows. First, iteratively removing vertices of degree at most D/2, resulting
(as in Proposition 2.9) in a graph of minimum degree at least D/2. Thereafter, iteratively
split any vertex of degree D′ > D into two vertices, one of degree dD′/2e and the other of
degree bD′/2c. The splitting operation preserves the number of edges. Hence the resulting
graph G′ has minimum degree D/2, maximum degree D, and at most 2N vertices. It is
legally colored and every distinguished cycle in G′ corresponds to a distinguished cycle of
at most the same length in the original graph.

The legal coloring of G′ is arbitrary and there is no a-priori bound on the number of
colors that it uses (other than not being larger than the number of edges). We now describe
a procedure for replacing this legal coloring by a new legal coloring of the edges with only
4D new colors. This is done by going over the original colors one by one. For each of the

13



original colors Cold pick one of the new colors Cnew and recolor all edges of original color
Cold by the color Cnew. If this new coloring introduces conflicts (this can happen if an edge
of Cold is incident with a vertex that already has some other incident edge colored Cnew),
then drop the edge of Cold that leads to the conflict. To avoid dropping too many edges,
we use the following rule when mapping a color Cnew to Cold: we choose the new color that
will result in the smallest number of dropped edges from Cold (breaking ties arbitrarily).
As there are 4D new colors and only at most 2(D− 1) edges incident with the endpoints of
any edge, there must be a choice of Cnew that will result in dropping at most half the edges
of Cold. Hence eventually the resulting graph is legally colored, and its average degree is at
least D/4. Moreover, every distinguished cycle in the new graph (with respect to the new
colors) is a distinguished cycle of the original graph (with respect to the original colors).
2

We now reach the theorem that implies the proof of item (2) in Theorem 1.6.

Theorem 3.7 Every legally colored graph on N vertices and average degree D ≥ 32 log log 4N
has a distinguished cycle of length O(log N log log N). Moreover, such a cycle can be found
in polynomial time.

Proof: By Lemma 3.6, instead of the input graph we may consider a new graph G with
at most 2N vertices, average degree at least 8 log log 4N , and with a legal coloring that
uses at most 4D = O(log log N) colors. Observe that the average degree is at least twice
as large as that used in the proof of Theorem 3.4. This allows us to discard half the edges
of the graph, and there still would be a distinguished cycle. We shall use this slackness so
as to modify the proof of Theorem 3.4 so that after adding each color, no component will
have diameter larger than O(log N log log N). This is done by applying Lemma 3.5 after
each color class is added. The parameter k in the lemma is chosen to be 8D, so that even
after the lemma is applied 4D times (once for each color), at most half of the edges are
discarded in total. The proof of Theorem 3.4 still works even though we discard at most
half the edges, because there was a factor 2 slackness in the average degree that we started
with. Hence eventually a distinguished cycle will be found (when an edge of a new color
is placed inside an existing component, or when two edges of a new color join two existing
components). The diameter of every component at the time that the distinguished cycle is
found is at most O(log N log log N), and the length of the distinguished cycle need never be
more than two plus sum of diameters of two components that are connected by two edges
of the same color.

All steps of the proof are constructive and give a polynomial time algorithm for finding
a distinguished cycle of the appropriate length. 2

3.3 A negative example

A question that remains is whether for some constant average degree D and any legal edge
coloring there must be a distinguished cycle. The only nontrivial negative result that the
author is aware of is the following.

Proposition 3.8 There are 3-regular graphs whose edges can be colored in such a way that
no distinguished cycle exists.
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Proof: Consider an infinite tiling of the plain by hexagons (later we will modify the
construction to be finite). This defines a 3-regular graph in a natural way. Legally color its
edges by three colors so that every hexagon contains only two colors. This can be done by
first coloring any two adjacent edges, and then this determines uniquely the color of every
other edge (by alternating two colors along the edges of a hexagon, and using the third
color for the other edges incident with the vertices of the hexagon).

We now show that there is no distinguished cycle. W.l.o.g., let red be the color that
appears twice on a hypothetical distinguished cycle. (The case that some color appears
only once is even simpler, and omitted.) Then the rest of the cycle is composed of paths
that have only colors blue and green, and each such path must lie on a single hexagon. This
requires two hexagons that are colored by the colors blue and green to be connected by two
different edges of color red, but this never happens in the given 3-coloring.

Inspection shows that the coloring is periodic. Hence the infinite graph can be replaced
by a finite graph as follows. Picking some orientation of edges as vertical, the hexagons are
arranged in rows. Two even rows sufficiently far from each other can be identified to be
one row. Each column makes a zigzag pattern. Two such columns sufficiently far from each
other (at a distance that is a multiple of three) can be identified to be one column. This
results in a finite graph. 2

Proposition 3.8 refers to distinguished cycles, but does not imply anything for even
covers. The graph there contains cycles of length 6, but it is possible to show that any
hypergraph that satisfies the small overlap condition for which the corresponding graph has
cycles of length 6 must have an even cover of size at most 12. This leads to the following
question.

Question 3.9 Is there is a 3-uniform hypergraph H satisfying the small overlap condition
that on the one hand does not contain any even cover, and on the other hand, the graph G
associated with H has a cycle (in which case this cycle must be trivial)?

If the answer to Question 3.9 is negative, then item 2 of Theorem 1.4 can easily be
improved: it would suffice to have β = Θ(

√
n) in order for even covers of size O(log n) to

exist.

3.4 Extensions

The bound on the degree stated in Theorem 3.7 is 32 log log 4N . The leading constant of 32
is a consequence of our attempt to keep the proof simple, rather than optimize the leading
constant. It can be drastically reduced, with only a modest loss in the cycle length (which
will still asymptotically remain O(log N log log N)). Let us mention a few places where
there is slackness in our analysis.

The leading constant in the bound on the degree in Theorem 3.4 can be improved with
more work. For example, the original reason for having log log 2n in the theorem rather
than log log n is to handle cases that n ≤ 2 in a unified way. However, this later costs a
factor of 2 in the leading constant. Additional savings can be obtained by changing the
charging mechanism. Rather than charging both end points of an edge to the smaller of
the two components, one can allocate part of the charge to the larger component (not to
mention the possibility of propagating the charge to other components).
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In Lemma 3.6 we loose a factor of 4 in the average degree. However, there is no need to
loose more than a factor of (1 + ε) (for some small ε), at the cost of having the new legal
coloring use more colors (which will eventually translate to longer distinguished cycles).
This can be done by allowing G′ to have maximum degree roughly D/ε, and thereafter
using O(D/ε2) new colors. (Possibly, with tighter analysis, the number of colors would
have a better dependency on ε than 1/ε2.)

In the proof of Theorem 3.7 we may take k to be much larger (say 1/ε times the number
of colors), which again will reduce the degree requirement at a cost of increasing the diameter
of connected components (and hence the length of the distinguished cycle).

Summarizing the above discussion, it should not be difficult to reduce the degree re-
quirement in Theorem 3.7 to c1 log log 4N with c1 being a constant much smaller than 32
(possibly, nearly 1), at the cost of finding distinguished cycles of length c2 log N log log N ,
with c2 being a constant that depends on c1.

In special families of graphs (that are probably not relevant to the application of refuting
semirandom 3SAT instances), we can improve the bounds of Theorem 3.4. We first briefly
recall a few well known facts. A graph H is a minor of graph G if it can be obtained from G
by the operations of contracting edges, deleting edges, and removing isolated vertices. As
shown by Robertson and Seymour, every minor closed family of graphs can be characterized
by a finite list of forbidden minors. For example, the family of planar graphs is closed under
minors, and the two forbidden minors are K5 and K3,3 (this was proved by Wagner, and is
related to Kuratowski’s theorem). For a minor closed family of graphs, if some graph F on
f vertices is a forbidden minor, then so is Kf . Every graph of average degree d must have
Kf as a minor, for some f = Ω(d/ log d) [10, 12]. Hence the average degree of any graph
from a minor closed family is bounded by O(f log f), where f is the size of the smallest
forbidden minor. Theorem 3.4 is not interesting (in an asymptotic sense) for minor closed
families of graphs, because the degree bound log log 2n in the theorem cannot be attained
when n is large. For such graphs, the following corollary replaces the dependency on n by
a similar dependency on f .

Corollary 3.10 Let G be any graph with no Kf as a minor and of average degree d, with
d > c log log f + O(1), where c ≥ 1 is some universal constant. Then for any legal coloring
of the edges of G there is distinguished cycle.

Proof: The proof follows that of Theorem 3.4, with the following change. When
adding color c, let C be a new component formed by connecting some previous compo-
nents C1, C2, . . ., and let |Ci| denote the number of vertices in component Ci. Redistribute
the connecting edges so that every one of the original components Ci is incident with at
most min[|Ci|, s] edges, where s = f log f . This is possible, because otherwise G has Kf as
a minor. Now apply the charging mechanism of Theorem 3.4.

We now compute how much a vertex v is charged overall. The total charge until its
component has size s is O(log log s), as in the proof of Theorem 3.4. Thereafter, for the
component to grow from size S to fS, vertex v is charged at most s/S. Hence the total
charge after size s is reached forms a decreasing geometric series that sums up to O(1). 2
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4 Nontrivial cycles of length O(log n)

Here we prove item 2 of Theorem 1.4.
We recall some known facts about cycle bases of graphs. Given a connected graph with

n vertices and m edges, order the edges in some arbitrary order, and with each set of edges
associate an indicator vector in {0, 1}m in a natural way. For the purpose of the discussion
here, a cycle in a graph will be any collection of edges such that the degree induced on each
vertex is even. (In particular, the union of two edge disjoint cycles is a cycle.) The vectors
associated with all cycles in a graph form a vector space of dimension m−n+1 (with vector
addition modulo 2). A basis for this vector space can be obtained as follows. Consider an
arbitrary spanning tree T of the graph. For each edge e 6∈ T , there is a unique cycle (called
a fundamental cycle) that is a simple cycle containing (some of the) edges of the tree and
the edge e. The m− n + 1 fundamental cycles form a basis for the cycle space.

The radius R(G) of a graph G is defined to be the maximum distance between a center
vertex u and any other vertex in the graph, where a center vertex u is any vertex that
minimizes this maximum.

Proposition 4.1 Every graph of radius R has a cycle basis in which every cycle has length
at most 2R + 1.

Proof: Let u be a center vertex for the graph, and consider the spanning tree corre-
sponding to the breadth first search tree rooted at u. Then the fundamental cycles with
respect to this tree each has length at most 2R + 1. 2

Recall that Lemma 3.5 shows that for every graph with m edges, we may discard half
of its edges such that each connected component that remains has radius O(log m).

Corollary 4.2 In every graph with m edges one may discard half the edges such that the
remaining graph has a cycle basis in which each cycle is of length O(log m).

Proof: Use Lemma 3.5 to choose which edges to discard so that each remaining com-
ponent has radius O(log m). Thereafter, for each connected component separately, find a
cycle basis as in Proposition 4.1. The union of these cycle bases is the desired cycle basis.
2

The following lemma motivates our degression to cycle bases of graphs.

Lemma 4.3 Let G be a graph constructed from a hypergraph H as explained in Section 2.
Let G′ be an edge induced subgraph of G that has a cycle basis in which every cycle is of
length at most `. Then if G′ has a distinguished cycle (of arbitrary length), then G′ must
also have a nontrivial cycle of length `.

Proof: Label every edge of G′ by the two hyperedges of H that generate it. Then as
we have shown in the proof of Lemma 2.6, there must be some hyperedge e of H that labels
only one of the edges of the distinguished cycle. The distinguished cycle can be expressed
as a sum (mod 2) of basis cycles. Then it must be the case that at least on one of these
basis cycles (which has length at most `), e labels an odd number of its edges. Hence this
basis cycle must be nontrivial. 2
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Note that the nontrivial cycle found in the proof of Lemma 4.3 need not be a dis-
tinguished cycle (because addition of basis cycles is done modulo 2 which may lead to
cancellations of edges).

Theorem 4.4 Let G be a graph constructed from a hypergraph H as explained in Section 2.
If G has degree 8 log log 2n, then it contains a nontrivial cycle of length O(log n).

Proof: Use Corollary 4.2 to remove half the edges and remain with a graph G′ of
average degree at least 4 log log 2n and a cycle basis in which each cycle has length O(log n).
Theorem 3.4 implies that G′ has a distinguished cycle. Lemma 4.3 implies that G′ has a
nontrivial cycle of length O(log n). As G′ is a subgraph of G, then also G has a nontrivial
cycle of length O(log n). 2

The leading constant of 8 in Theorem 4.4 was chosen for concreteness and simplicity. It
can be reduced using arguments similar to those presented in Section 3.4.

Item 2 of Theorem 1.4 follows from Theorem 4.4 in a way similar to the proof of Corol-
lary 2.12.

There is a straightforward correspondence between even covers in hypergraphs and linear
dependency modulo 2 in vectors. We note that our proofs, going through the notion of
nontrivial cycles, in fact correspond to linear dependencies of {0, 1} vectors over any field
(and this was also the case in [11]). The reason is as follows. Orient the edges of the
nontrivial cycle so that it creates a directed cycle. An edge directed from v1 to v2 corresponds
to two hyperedges. In the linear dependency we shall add one of them and subtract the
other according to the following convention. The hyperedge whose prefix labels the prefix
of v1 is added, and the hyperedge whose prefix labels the prefix of v2 is subtracted. It is
not hard to see that going around the nontrivial cycle, all vertices cancel out.

Corollary 4.5 For a sufficiently large constant c, in any set of cn
√

n log log n vectors in
{0, 1}n of hamming weight 3, there are two disjoint multisets of O(log n) vectors (the same
vector may appear more than once in a multiset and then it is counted more than once)
such that the two respective sums of all vectors in the multisets are identical.
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