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Abstract

We study rational Beatty sequences that partition the natural num-
bers in any given finite dimension, introduced by Fraenkel. We prove
that there is a 2-player vector subtraction game, as introduced by
Golomb, that admits any such given sequence, together with the O-
vector, as its unique set of P-positions.

1 Introduction

We set out to blend recent ideas in combinatorial number theory (CNT)
with a modern trend in combinatorial game theory (CGT).

Regarding CNT, Beatty sequences are normally associated with irra-
tional moduli a, 8. Recent studies deal with rational moduli a, 8. Clearly
if a/b # g/h are rational, then the sequences {|na/b|} and {|ng/h|} cannot
be complementary, since kbg x a/b = kha x g/h = kag for all k > 1. Also
the former sequence is missing the integers ka — 1 and the latter kg — 1,
so both are missing the integers kag — 1 for all £ > 1. However, comple-
mentarity can be maintained for the nonhomogeneous case: In [12], [29],
necessary and sufficient conditions on «, v, 3, d are given so that the se-
quences {|na+~]} and {|nS+ 0]} are complementary — for both irrational
moduli and rational moduli. We are not aware of any previous work in this
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direction, except that in Bang [3] necessary and sufficient conditions are
given for {|na]} 2 {|nB]} to hold, both for the case «, [ irrational and
the case «, ( rational. Results of this sort also appear in Niven [28], for the
homogeneous case only. In Skolem [32] and Skolem [33] the homogeneous
and nonhomogeneous cases are studied, but only for o and § irrational.

These investigations spawned the following conjecture [13], Erdos and
Graham [I1]: If the system U, {|na; +7i]}, n = 1,2, ... splits the positive
integers with m > 3 and a3 < as < ... < auy, then

az:(2m_1)/2m—z7 ’L:lavm (1)

It is well-known that if all the «; are integers with m > 2 and a3 < ag <
... < apy, then a1 = ayn. A proof using complex numbers and roots of
unity was given by Mirsky, Newman, Davenport and Rado — see Erdos [10].
A first elementary proof was given independently in [5] and by Simpson [30].
Graham [19] showed that if all the m moduli are irrational and m > 3, then
two moduli are equal. Thus distinct integer moduli or irrational moduli
cannot exist for m > 2 or m > 3 respectively in a splitting system.

The conjecture was proved for m = 3 by Morikawa [26], m = 4 by
Altman et. al [2], for all 3 < m < 6 by Tijdeman [35] and for m = 7 by
Barat and Varju [4] and was generalized by Graham and O’Bryant [20].
Other partial results were given by Morikawa [27], Simpson [3I]. Many
others have contributed partial results — see Tijdeman [34] for a detailed
history. The conjecture has some applications in job scheduling and related
industrial engineering areas, see e.g., Altman et. al [2], Brauner and Jost
[6]. However, the conjecture itself has not been settled. So this is a problem
that has been solved for the integers, has been solved for the irrationals, and
is wide open for the rationals!

The conjecture induced the rat game and its associates the mouse game
and the fat rat game [16] (rat — rational). The rat game, mouse game, fat rat
game are played on 3 piles, 2 piles and 4 piles of tokens respectively, whose
P-positions are the cases m = 3, 2, 4 of the conjecture respectively, together
with 0. Thus, for the rat game, the P-positions are {(|7n/4],|7n/2],Tn —
3), n=1,2,...} U{0}. For the rat and mouse games we also gave game
rules, but for the fat rat game, no game rules were found.

This brings us to a modern trend in CGT. A typical interest in CGT
is, given a finite rule set describing a game, find its P-positions, or also,
when possible, its Sprague-Grundy function. A modern trend is to reverse
this process: given a subsequence R of nonnegative vectors, is there a game
whose set of P-positions is precisely R? Any game for which some game-
move cannot be made from all game-positions because it would be a move



connecting two P-positions, is a variant game. Duchéne and Rigo [9] conjec-
tured that if R is the set of numbers produced by a pair of complementary
homogeneous Beatty sequences (with irrational moduli), then there is an
invariant game whose set of P-positions is R, together with (0,0). Larsson
et. al proved a generalization thereof [23]. Informally, a game is invariant if
every move can be done from every position, provided only that the result
is a game position.

This opens up the possibility of proving existence of games, though their
game rules are not necessarily known; nor even if there exist ﬁniteﬂ game
rules. The situation is analogous to Erdos’ probabilistic method [1]: to
prove that some system with desired properties exists, a probability space
of systems is defined, proving that those properties hold in this space with
positive probability.

2 Preliminaries

Throughout, both game-positions and game-moves are m-dimensional non-
negative integer vectors. So the terms “positions”, “moves”, “vectors” may
be used interchangeably below.

In an attempt to formalize the concept of reasonable, interesting, ap-
pealing games, Duchéne and Rigo [9] defined the notion of invariant games,
restricted to vector subtraction games.

We write € < yif x; < y;foralll <i<m;andx <yifx <y
and x; < y; for some i. The game G is invariant if for all positions p and
q and any move x such that x < p and © <X g, the move p — p — x is
permissible if and only if the move ¢ — q — « is permissible. Otherwise G
is variant. Invariant games are the games considered by Golomb [18]. Any
move in an invariant (variant) game is called invariant (variant). Duchéne
and Rigo readily admitted that there are appealing variant games when “the
dependence of the game rules to the actual positions is restricted to some
simple logical formula”.

Notation 1. (i) For any m-dimensional vector a = (a(1l),...,a(m)), we
assume a(1l) < --- < a(m).
(ii) The set of all P-positions of a game is denoted by P.

In a variant game, the vector @ — y may be permitted as a move ’some-
where else’; even if  and y are both in P. Such a move is not permitted
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in an invariant game. This simple observation motivates the second item of
Definition [l below.

Definition 1. (i) An integer vector s is feasible in a subtraction game, if
s(7) > 0 for all ¢ and s(i) > 0 for some .

(ii) A feasible vector s is applicable to a vector v if v — s = 0.

(iii) Let R be candidate set of P-positions in a vector subtraction game.
Any vector that connects two vectors in R, that is, any vector » — v’ with
r,r’ € R, is inadmissible. Any other vector is R-admissible.

(iv) If a vector is both feasible and admissible, we call it a mowve.

(v) A move s is befitting for a vector v if v — s = 0.

Example 1. m = 2. (—1,4) is not feasible, but (3,5) is feasible. Further,
(3,5) is applicable to (3,7) because (3,7) — (3,5) = (0,2) = 0. But (3,5) is
not applicable to (2, 7).

Notice that in every invariant game, every move is, in particular, admis-
sible (for R = P).

We will prove that for every m > 2 there exists an invariant two-player
vector subtraction game, with admissible moves only, that admits any given
sequence based on reals of the form , as specified below, together with
the 0-vector, as its unique set of P-positions.

For the purpose of the present work, we use the normal-play convention:
a player who cannot subtract, because at least one of the coordinates would
become negative, loses.

Since we disallow inadmissible vectors as moves, Definition[I] (ii) provides
the independence property of a sequence of P-positions of a subtraction
game: there is no move within R. Thus, for R to be a complete sequence of
P-positions, it suffices to demonstrate, that from any vector not in R, there
is an admissible move to a position in R.

3 Rat games
Notation 2. Let ap, = (2™ —1)/2m 7% B = —2k1 41, k=1,...,m,
Let us now define our class of subsequences. Given a finite dimension

m > 2, the standard form for our m-dimensional sequence is:

2m—1 k—1
Wﬂ —2 +1, k‘zl,...,m, n:1,2,...,



that is, for each m > 2, n > 1, the rats r,, are,

2m — 1 2m — 1 -
e ng—an{gm—sz -1,...,2"=1)n-2" 1+1>’ %

n =1,2,3,..., together with 7o := 0. We write R = {r,,}7°,. The com-
ponents of r,, are r¥ := [(2™ — 1)n/2mF| — 281 4 1, k =1,...,m. It
is known [13] that for every m > 2, the set of rats {r,}>2, partitions the

positive integers. (The case m =1 is trivial and is therefore excluded.)
Lemma 1. (i) 71 = (1,2,4,...,2™71).

(ii) For any inadmissible (vector) s not connecting to 0, there exist in-
tegers 1 < ny < ng such that s(m,i) = [(noams)| - [Miamsl, @ =
1,...,m. In particular, s(m,m) = (ng—n1)(2™ —1) = (ng —n1)m m-

(iii) Forn>1, rp(m) =2""14 (n—1)(2™ - 1).

Proof. (i) [(2™ —1)/2m~"] — 2071 41 = (20 = 1) — 2071 41 = 27! for
1<e<m.
(ii) Any move within R\ {0} must satisfy, for the m-th component,

(2™ —1Dng — 2" 41— (2" =Dy + 2™ =1 = (ng —nyg) (2™ — 1)

for some ny > ny > 0. The same argument holds for the other components
(7).

(iii) For n = 1 it follows from (i). If true for n, then for n 4 1 it follows
from (ii). n

The following lemma is one of our main results.

Lemma 2. Given any dimension m > 2, there is a feasible and admissible
move from every m-dimensional position  not in R, to a position in R.

Proof. Let & be a nonnegative m-dimensional vector, m > 2, ¢ R. We
have to find a move from x to a position in R. There are two possibilities,
either x is admissible (regarded as a move) or « is inadmissible.

Observe that because x # 0 is a position, it is trivially feasible.

First suppose that the position « is admissible. Then & — x = 0, and
we are done with this case, since 0 € R (normal play).

Suppose next that * € R is inadmissible. We have to find a position
r € R, such that r =  — s, where s is a feasible and admissible move.



The position r we seek is not 0, since » = 0 = « = s, so the move
s would be inadmissible. Since * ¢ R is inadmissible, there exist vectors
r, " € R such that € = r —7'. If ' = 0, then £ = r € R, contradicting
x ¢ R. Thus ' # 0. Therefore Lemma (ii) implies that there exist integers
1 < mj < ng such that z(i) = |nea; | — [nicy], i =1,...,m, so

x(m) = (ng —n1)(2™ —1).

Observe that x(m) = r,(m) for no n > 1. For suppose xz(m) = r,(m).
Then Lemma (iii) implies (ng — n1)(2™ — 1) = 271 + (n — 1)(2™ — 1),
so 2m~l = (ng —ny —n + 1)(2™ — 1). For m > 1, this is impossible,
since the right-hand-side has an odd factor (namely 2 — 1), and because
ne —n1 —n + 1 # 0. This odd factor is absent from the left-hand side.

Further, notice that z(m) = (ng —n1)(2m—1) > 2™ —1 > 2™~ =y (m)
for m > 2. Since x(m) = r,(m) for no n > 1, there exists ng > 1 such that
Tno(m) < z(m) < rpg41(m). Thus by Lemma [1f(iii),

2 4 (g — 1)(2™ — 1) < (ng —np)(2™ — 1) < 2™ 4 ng(2™ — 1).
Dividing by 2™ — 1 and rearranging terms, we get:

m—1 m—1
om _ 1 —1l<neg—ny—ng< om _ 1

Since the three n; are integers, we conclude

-1< <1

ng — N1 = ny.

We now show that the move  — 7, namely (i) — (1), 2 =1,...,m
is both feasible and admissible. We begin with feasability.

The preceding arguments show that the coordinate move z(i) — 7y, ()
can be written in the form z(i) = |naa; | — |[n1cu| — [noas| + Bi = 1y ().
The definition of the floor function implies that

o] — [nias| > [(n2 —ni)oy| = [nooy] > [noas) + Bi,

where the last inequality is strict for all ¢ > 1, since 3; < 0 for ¢ > 1. Thus
the move is feasible.
For admissibility, notice that

() — rag(m) = (ms — m)(2" ~ 1) =277 — (mp ~ (2" ~ 1) =277 1
By Lemma [If(ii), s(m) = no(2™ — 1) > 2™ — 1 > 2™~! — 1. Thus the move

is admissible. ]

We conclude:



Theorem 1. For every m > 2, there is an invariant vector subtraction
game. The rule set is to subtract any feasible admissible m-tuple, namely,
s#ri—rj, ri,7j € R, foranyi,j. If s = r; —r; for some r;,r; € R, then
s 18 not a mowve.

Proof. By Definition [I} there is no admissible move from a position in R
to another position in R. By Lemma [2| there is a feasible and admissible
move from any position not in R to some position in R. Thus R satisfies
the conditions for a unique set of P-positions. The game is invariant since
the moves do not depend on the positions. [ |

Remark 1. (i) The rule set of every game is a subset of all of its admissible
vectors, where the subset is determined by the game’s rule set. In the present
case, where there is only the game’s P-positions, the rule set is to use all
admissible vectors as moves.

(ii) We do not know whether there exist invariant rule sets for our rat
games that do not allude to their sets of P-positions. In [I6] such game rules
were given for the cases m = 2 and m = 3, but they were variant.

(iii) To make Theorem [I| usable, we need an efficient algorithm to decide
whether any given feasible m-tuple is admissible or not. This will be taken up
in section 5, where we will also compute the number of inadmissible moves.
In the next section we prepare the ground by studying basic properties of
the rats.

4 Anatomy of the rats

The P-positions of the form are not too convenient to work with, mainly
because of the floor function. There is an equivalent matrix representation
that captures the P-positions . We begin with an example, m = 4, which
was dubbed fat rat in [16].

Example 2. The standard form of the P-positions for m = 4, without O,

n>1,
15 15 15
4
n — - ) L, 1 :
T T, ({STLJ {4nJ {QnJ 3,15m 7> (3)



The first 11 rows of the rat matrix, t = [(n —1)/2™7 Y, m =4, n > 1,

n r} r2 r3 rd
1 15t+1 30t+2 60t+4 120t 48
2 15t+3 30t+6 60t+12 120t + 23
3 15t+5 30t+10 60t+19 120t + 38
4 15t+7 30t+14 60t +27 120t + 53
Ry = 5 15t+9 30t+17 60t +34 120t + 68
6 15t+11 30t+21 60t+42 120483
7 15t +13 30t +25 60t +49 120t + 98
8 15t+15 30t+29 60t+ 57 120t + 113
9 15t+1 30t+2 60t6+4 120+ 8
10 15¢+3 30t+6 60t+12 120+ 23

11 15t +5 30t+10 60t+19 120t 4 38

The reader is encouraged to check that the values of r,,, as n ranges from
1 to 11, are identical to the 11 lines of the matrix. For example, for n = 6,
the value of (3) is (11,21,42,83), the same as the linen =6, ¢t = |6/8] =0
of R4. For n = 9, yields (16,32,64,128), same as line 9 of R4 with
t =19/8] = 1. Also notice the periodicity mod 15 in the first column, after
the first 8 rows, and analogous periodicities in the other 3 columns (Fact 1
below).

More generally, for any m > 2, define the 2"~ x m matrix R,, = (r; ),
whose elements are defined by:

rig =271 2™ O+ 277 4 (i - 1)27 — [i/2m79] 41, (4)

i=1,...,2m 1 j=1,...,m, n=1,2....
Notice, for example, that for m = 4, r; ; produces precisely the values of
the matrix of Example

Lemma 3. For every m > 2, the vectors r,, of the form (@) and the matriz
R produce identical outputs. Specifically, the 21 vectors r,,, as n ranges
over 2"k +1 to 2™ 1k 4+ 2™ are identical to the 2! rows of Ry, for
n==k (k>0).

For proving this lemma, we begin by collecting a few facts about the rats
Th.
Fact 1. Periodicity property. For every 1 < k < m,

om 1 om 1
{Qm,k(”-%Zm_kﬁ = {ka7ﬁ'+2m“1
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2m—1 2m—1
Thus, | (2™ —1)n/2m*| is periodic mod 2™ — 1 after 2 ~* consecutive val-
ues of n.

Fact 2. The structure of the 2™~1 — 1 row gaps. For 1 <n < 277! let,
m m
An = Bm_kl(n + 1)J - {;_;nJ .
For k = m, no floors are needed, and A, ,, = 2™ —1 for all n > 1. We
may thus assume that 1 < k < m. For reals z,y, the floor function basic
property implies |z—y| < |z|—|y] < |z—y]+1. Also, (2™ —1)n/2m | =
2kn + [(=n)/2m7F|. Thus, 28 — 1 < A, < 2% for all n > 1.

We next determine for which values of n the gaps assume the value 25 —1,
and for which values 2" is assumed.

The periodicity implies that A, om—x = Ay, k. Hence it suffices to con-
sider n in the integer interval I := [1, 2m_k]. Suppose that for x values n in
I the gap 2F is assumed. Then the gap 2 —1 is assumed for 2% — z values
of n. Thus, 2F2 + (2% — 1)(2™~% —2) = 2™ — 1. Solving gives = 2™~ % — 1.
So only once in I is the gap 2¥ — 1 assumed. Now

2m —1 2m —1
A2m7k7k - \‘ 2m—k (2m_k —l— 1)J - \‘ 2m—k Qm_kJ = 2k — ].

Thus the so-called deficient gap, of length 2% — 1, is assumed at the end of
I. We have proved:

Lemma 4. A, ;, = 2k — 1, the deficient gap, occurs only for n = 0 (mod
om=k). Apg = 2F for all other values of n > 1.

This lemma gives us a convenient matrix form of the rats’ P-positions.

Fact 3. We give two characterizations for the structure of the m — 1
column gaps.

Lemma 5. For 1 <j<mand1l <n < om—1 T%H — r% € {r%,r% -1}
Moreover: ‘ A ‘

(i) T = 2p) for 1 <m < 2miml it — 9l for 2m—i-l <y <
om=j,

(ii) The binary representation b(n — 1) of n — 1 indicates which of the

two values is assumed: if b(n—1) has a 0 in column j, then Pl =l
if it has a 1 in column j, then it =) — 1



Sketch of proof for (i): From [4] the general term of matrix R,
riga = rig =270 4+ (i = 1)20 — ¢,
where ¢; j = [i/2m~971] — [i/2™77], and it remains only to analyze c; ;.

Fact 4. For N > 1, let
2m —1 2m —1
Ap kN = LW(”JFN)J - {Qm_k”J '

Clearly An,k,l = An,k-

The number Dj, of deficient gaps in any stretch of length N depends on
the location of the stretch. Without loss of generality (periodicity, Fact 1),
we assume that the stretch begins at some n < 2m=1 If the stretch begins
at ng = 0 (mod 2™7F), then Dy = [N/2™*], and this holds also for up to
some critical height Hy < ng. For n < Hy, D = [N/2m7F] — 1.

***Needs some justification™**

5 A constructive epilogue

Let m > 2 be fixed. Let © = (21,...,2y) = 0 with 1 < --- < x,, be a
feasible vector. We seek an efficient algorithm to decide an optimal move
from x for the next player — the one that plays from @. We check, term by
term, whether @ = r,, (of the form (2)) for some n > 1. If so, = is a P-
position, so Alice removes a single token from one of the piles. This is clearly
an admissible move, and has the advantage of forcing Bob to compute his
next move from a largest possible position.

So we may assume that & ¢ P. Then x € N. If x is admissible, then
one option of Alice is to move & — 0, consistent with the rule set specified
by Theorem [I| since x is admissible. Alice might choose an appropriate
different P-option, if available, so as to prolong the agony of Bob, if she is
so inclined. Notice that any such subtraction vector is necessarily admissible.

So assume that x is an inadmissible N-position. Then a subtraction
x — 0 is prohibited, since * = ro — 71, 1,72 € P, s0 o — 71 is prohibited.
For an invariant game, this excludes using the vector ro — r; as a move
anywhere. In particular, ro — 1 — 0 is prohibited. Again for an invariant
game, there must be an admissible subtraction vector leading from x to a
P-position. Two problems have thus to be solved:

(i) Decide efficiently whether or not « is inadmissible.
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(ii) If inadmissible, find efficiently a move to a P-option.

(i) We describe an algorithm for deciding this question, illustrating it
by using Example 2] This algorithm is our second main result. We appeal
to Facts 1, 2 and 4. For any integer interval I = [a,b], we define I + d =
[a+d,b+d]. Assume x = (9,19,37,75).

Recall that « is inadmissible if * = 7, — r; for some r;,r; € P. For
x to be inadmissible, it is needed that z,, = N(2™ — 1) for some N > 1.
For our example, N = 5, so inadmissibility of & has not been ruled out.
We now examine x1,...,Z,_1 in this order, testing for inadmissibility. We
need k — j = N for all components z; of . Write N = ng —ny for arbitrary
1 <nj; < no.

For k =1, is there ny > 1 such that A, 1 v = 217 By Facts 2 and 4, the
only candidates for x1 such that x be inadmissible are z; = 2N — Dy, D; €
{[N/2m=1] [N/2™~1] — 1}. For the example, Dy € {1,0}, so A,, 15 = 10
if Dy = 0; 91if Dy = 1. Notice that for 1 < n < 3, A, 15 = 10, but for
4<n<8 Apis =9 Wewrite Iy = [4,8 +8r1, 1 =0,1,2,..., for the
intervals I; of n-values accommodating x1 = 9. Without loss of generality,
r1 = 0. We see that & might still be inadmissible for n € {4,5,6,7,8}.

For k = 2, the question is whether there exists m; > 1 such that
Ap 2.8 = x2. The only candidates for inadmissibility are o = 4N — Do,
Dy € {[N/2m=%],[N/2™=2] — 1}. For the example, Dy = [5/4] = 2, or
1, so the candidates are Ay, 25 = 20 — Dy € {18,19}. Since zo = 19,
Dy = 1. Thus Is = [1,3] +4rg, o = 0,1,2,... for the range of n accom-
modating xo = 19. The values for n tha intersect with those for k = 1 are
n € {5,6,7}. So inadmissibility has not been ruled out.

We continue this way examining the x;, until we finally hit z,,_1.

For k = m — 1, is there n; > 1 such that Ay, ;,—1,8 = Z;m—17 The only
candidates for inadmissibility are x3 = 2™~!N — D3, D3 € {[N/2],[N/2] —
1}. For the example, D3 = [5/2] = 3, or 2, so the candidates are A, 25 =
40 — D3 € {37,38}. Since x3 = 37, D3 = 3. Thus I3 = [2,2] + 2r3,
r3 =0,1,2,... for the range of n accommodating 3 = 37. We see that the
only value intersecting with the above inadmissibility values is n = 6. Thus
x =(9,19,37,75) = r1; — rg is inadmissible.

Let us now modify the example a bit: = (9, 18,37,75). For o = 18 we
have Dy = 2, Iy = [4,4]+4r2, son € {4,8}. These same values intersect with
I3, so the smallest value in the intersection is n = 4. Thus, (9,18,37,75) =
r9 — 74 is also inadmissible. Now consider & = (9, 18,38, 75). For x5 = 38,
Ds =2, I3 = [1,1] 4+ 2r3, so n € {1,3,5,7}, whose intersection with Iy
for x9 = 18 is empty. Therefore (9, 18,38,75) is admissible. However, the

11



intersection of {1,3,5,7} with Iy for o = 19 is {1,3,5,7}, so n = 5, and
(9,19,38,75) = r19 — 75 is inadmissible.
***T have not edited beyond this point™***

6 A constructive interlude

6.1 The meager rat

We study subtraction games, where both positions and move options are
vectors (m-tuples) of non-negative integers, m € N a positive integer (here
> 2). Let n € N. The standard form for the meager rat is

(i)

For n € N, the meager rat’s P-matriz give all non-zero P-positions:

3n—2 6n-—4
732_( 3n 6n—1>

The meager rat’s forbidden-subtraction matriz consists of all vector differ-
ences of the meager rat’s P-matrix, together with the rows in the P matrix:

3n—2 6n-—4
3n 6n —1
S=13n-1 6n-3
3n—2 6n-—3

3n 6n

The easiest case in our main result, will be the vector subtracting game,
where a player can subtract (si,s2) from a given position (zj,x2), unless
(s1,82) equals a row in the forbidden-subtraction matrix, for some n. That
is, any vector (except 0) which is not a row-vector, is a valid subtraction in
the game, and provided the resulting position has non-negative coordinates.

Let us say that Lisa plays from the position (3,7). Suppose that she
suggests the move (3,7) — (3,2). Before carrying out the move she should
answer the following questions (in the mentioned order):

e is the move possible?

e is the move good?

12



In this case it is easy to check that the move is allowed, because each row
in the forbidden-subtraction matrix is increasing. so, indeed, the move to
position (3,7)—(3,2) = (0,5) will be carried out. But was this a good move?
The answer is in the P-matrix. Since (0,4) is not in this matrix the move
was losing. The ‘best’ move from (3, 7) is to subtract (3,7). In fact, the first
priority for the current player is to check whether the position belongs to S
or not, and it is easy to check that (3,7) does not belong to it; so (3,7) — 0
is a winning move.

Suppose now that the given position is (5,9). It is easy to see that (5, 9) is
not an allowed subtraction. But neither is (5,9) a P-position. Hence, there is
a winning move. In fact, if we look at the nearest P-position, which is (4, 8),
Lisa can subtract (1,1) and win (albeit not immediately). It is easy to find
a winning move for any row-position in this matrix, namely (1,1) and (0, 1)
respectively. It is also easy to check that, from each position in P, there is no
move to P: for example (3n,6n—1)—(3n—2,6n—4) = (2,3) = (3n—1,6n—3),
for n = 1, which is the second row in =S. These are the ideas that we used
in the proof of the main result, which generalizes the meager rat game to
the not so meager rat and the arbitrarily fat rats.

For n € Zso, the meager rat’s N”-matriz (equivalently S5\ P2 matrix)

3n—1 6n-—3
3n 6n

The rows correspond exactly to the N-positions in the game, for which there
is no move to 0.

is:

6.2 The not so meager rat

Let n run over the positive integers. The standard form for the not so

meager rat is
7 7
r3 = <Lan , {2nJ -1, — 3)

Let n run over the nonnegative integers. The not so meager rat matrix is

m+1 14n+2 28n+4
m+3 14n+6 28n+11
™m+5 14n+9 28n+18
m+7 14n+ 13 28n 4 25

Py =
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™m+1 14n+4+3 28n+7
™m+2 14n+3 28n+7
™m+2 14n+4 28n+7
m+3 1ldn+7 28n+ 14
S3\P3=|Tn+4 14n+7 28n+14
™m+5 14dn+10 28n+ 21
™m+5 14n+ 11 28n 4 21
m+6 14n+11 28n+21
m+7 1dn+14 28n + 28

We code the differences of the entries in this matrix as follows (For example
in the first row 1 x 2+ 1 =3 and 3 x 24+ 1 =7.) Thus, in general, it will
suffice to understand the first row of S, \ Py, together with the + matrix.

But this problem seems hard to resolve.

+

+ o |
+ oco | + +

+ o |
|

6.3 The fat rat

Standard form, fat rat

e ([ ) ] )

The fat rat matrix:

15n4+1 30n+2 60n+4 120n+8

15n4+3 30n+6 60n-+12 120n + 23
15n4+5 30n+10 60n+19 120n + 38
15m+7 30n+14 60n+27 120n+ 53
15n+9 30n+17 60n+34 120n + 68
15n+11 30n+21 60n+42 120n + 83
15n 4+ 13 30n+25 60n+49 120n + 98
15n+15 30n+29 60n+ 57 120n + 113

Py =

14




Sy \ Py =

15n 4+ 1
15m + 2
15m 4+ 2
15m + 2
15m + 3
15n +4
15n + 4
15n 4+ 5
15m +5
15n + 6
15n + 6
15n 4+ 6
15n + 7
15m + 8
15n +9
15m +9
15mn +9
15m + 10
15m + 10
15m + 11
15m + 11
15m + 12
15m + 13
15n + 13
15m + 13
15n 4+ 14
15m + 15

30n+ 3
30n+ 3
30n+4
30n + 4
30n+7
30n+7
30n + 8
30n + 11
30n + 11
30n + 11
30n 4+ 11
30n + 12
30n + 15
30n + 15
30n + 18
30n + 19
30n + 19
30n + 19
30n + 19
30n + 22
30n + 23
30n + 23
30n + 26
30n + 26
30n 4 27
30n + 27
30n + 30

15

60n + 7
60n + 7
60n + 7
60n + 8
60n + 15
60n + 15
60n + 15
60n + 22
60n + 23
60n + 22
60n + 23
60n + 23
60n + 30
60n + 30
60n + 37
60n + 37
60n + 38
60n + 37
60n + 38
60n + 45
60n + 45
60n + 45
60n + 52
60n + 53
60n + 53
60n + 53
60n + 60

120n + 15
120n + 15
120n + 15
120n + 15
120n 4 30
120n + 30
120n + 30
120n + 45
120n + 45
120n + 45
120n + 45
120n + 45
120n + 60
120n 4 60
120n 4+ 75
120n 4+ 75
120n 4+ 75
120n + 75
120n + 75
120n + 90
120n 4 90
120n + 90
120n 4 105
120n + 105
120n 4 105
120n + 105
120n 4 120




++ol +o001 +
++o 0+ +
+tooo | ++ +

+ + ol + o
ol oo | + o+ o |
I + + o o | + |

+ oo | + o |
+ ol | + o |
| + coco | +

6.4 Anatomy of the rats

1. Periodicity property. For every 1 < k < m,

2m —1 2m —1

SO

V;_kl(” - 2mk)J =

|
—
[\
3
|
—_
S
| I
—~
=
Qo
(oW
—~
[\]
3
|
—_
~—
~—

Thus, | (2™ —1)n/2m*| is periodic mod 2™ — 1 after 2% consecutive val-
ues of n.
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2. The structure of the 2~ — 1 row gaps. For 1 <n < 2m~1,
m m
An = Bm_kl(” + 1)J - nﬂ_l}nJ .
For k = m, no floors are needed, and A, ,, = 2™ —1 for all n > 1. We
may thus assume that 1 < k < m. Notice that then [(27 — 1)n/2mF| =
2F 4+ |(—=1)/2mF|] = 2F — 1. The floor function basic property implies
2k 1< Apg < 2% for all n > 1. We next determine for which values of n
the gaps assume the value 2¥ — 1, and for which values 2¥ is assumed.

The periodicity implies that A, om-x , = Ay, . Hence it suffices to con-
sider n in the integer interval I := [1,2™~*]. Suppose that for = values n in
I the gap 2 is assumed. Then the gap 2% —1 is assumed for 2% — z values
of n. Thus, 2Fz + (28 — 1)(2™F — 2) = 2™ — 1. Solving gives x = 2™ % — 1.
So only once in I is the gap 2F — 1 assumed. Now

2m -1, 2m—1_.
Agm-i j, = { e (27T 1)J - { i 2" ’fJ =2F—1.
Thus the extraneous gap is assumed at the end of I. We have proved:

Lemma 6. A, = 28 — 1 for n = 0 (mod 2™~ F); Ay = 2k for all other
values of n > 1.

This lemma gives us a convenient matrix form of the rats’ P-positions.

3. The structure of the m — 1 column gaps.

Lemma 7. For 1 <j<mandl <i < 2m71, Tij+1 — Tij € {Ti’j,rm' —
1}. Moreover, the binary representation b(i) of i indicates which of the two
values is assumed: if b(i) has a 0 in column j, then r; 1 — 15 =ri;; if it
has a 1 in column j, then r; j41 —1;i; =r;; — 1.

Proof. Sketch of proof: From Outline 3, displayed formula for general term
of matrix P, A A
riga =iy =270 4 (= 120 — ¢,

where ¢; j = [i/2m7971] — [i/2™777, and it remains only to analyze c; ;.

6.5 The general matrices

We have two representations for the arbitrarily fat rat. Recall, the m-
standard form, using the floor function, for each m € Z~1:

am __ 1 om _ 1 om _ 3 )
rn = (\‘ om—1 nJ?\‘Qm2 nJ _1, \‘Tnan —3,7(2m_1)n_2m 1+1>’
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and the matrix form, with p = 2™~

nXi1+Y11 nXo1+Ye:r ... nX,1+Y,
nXi12+Yi2 nXoo+Yos ... nX,2+Y,0
P(m) = ) . . ;
nXiu+ Y, nXou+Yo, oo nX, 4+ Y,
where

o X;j(m)=2'2" 1),
e Y1 ;(m)=2j—1, and
o Y;i(m)=2Y;_1,;(m)— G  fori>1,

where (; ; is the jth digit in (©—1)’s binary representation. The only missing
P-position in this matrix representation is O.

6.6 The rat-survivors

The non-reduced S,, matrix has 2272 + 1 rows, which may have duplica-
tions. Indeed, there are 2"~ P-rows, 2(2";71) subtractions of distinct rows
of the P matrix and one subtraction of a P matrix row by itself. (There are
2m=1 guch self subtractions, but since they are all trivially equal, we take
only one.)

Many rows will be identical. We prove that the reduced S,, matrix has
3m=1 4 2m=1 rows, as we will now show. For example, the meager rat has
2 P-rows and in total 5 S-rows, and this number is not possible to reduce.
The reduced matrix of the not-so-meager rat has 4 P-rows and 13 altogether
(and 17 non-reduced), and so on.

It suffices to show that the reduced S\ P matrix has 3™~! rows, since
P has 2! rows. The number of combinations of -,0 and + in the binary
representation of the S\ P matrix is 3™~ 1. Hence it suffices to show that the
cancellations of duplicates in all row-differences of the binary matrix corre-
sponds exactly to the cancellations of duplicates in the non-reduced S \ P
matrix. This latter matrix is obtained by pairwise subtraction of all rows in
the P matrix. The first column in the P-matrix consists of all odd numbers
between 1 and 2™. Two rows in the ternary matrix are cancelled if and only
if each sign is identical. It suffices to prove that standard subtraction of the
numbers in binary is identical if and only if the ternary representations are
identical. This is obvious.
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7 Conclusion
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