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Abstract

Let ϕ = (1 +
√

5)/2 denote the golden section. We investigate re-
lationships between unbounded iterations of the floor function applied
to various combinations of ϕ and ϕ2. We use them to formulate an
algebraic polynomial-time winning strategy for a new 4-pile take-away
game Flora, which is motivated by partitioning the set of games into sub-
sets CompGames and PrimGames. We present recursive, arithmetic and
word-mapping winning strategies for it. The arithmetic one is based on
the Fibonacci numeration system. We further show how to generate the
floor words induced by the iterations using word-mappings and and char-
acterize them using the Fibonacci numeration system. We also exhibit an
infinite array of such sequences.
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1 Introduction

As customary, we denote by bxc the integer part of x, commonly known as the
floor function. It is the largest integer not exceeding x. Let ϕ = (1 +

√
5)/2

denote the golden section.
Two topics motivate this work. On the one hand, we wish to study what

happens when we keep iterating the floor function with either ϕ or ϕ2 in various
ways. Are any interesting relationships between them discernible even after an
unbounded number of iterations, or total chaos takes over?

On the other hand, we aim at shedding more light on the class of impar-
tial take-away games. This class appears to be partitioned into two disjoint
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subclasses: those that are easy to generalize to more than one or two piles,
and those for which this seems to be very hard. A well-known representative
of the former is Nim [2], and of the latter Wythoff’s game [5]. Some progress
in generalizing Wythoff to multiple piles was recently made. See [9], [24], [23].
Three-pile games that are extensions rather than generalizations of Wythoff
were also given recently [8], [4].

Here we consider an extension of Wythoff to four piles. The efforts in defining
a “right” extension and particularly in proving the validity of the winning strat-
egy are considerably greater than those for three-pile extensions. We present
four formulations of the winning strategy.

In §2 we investigate unbounded iterations of the floor function and formu-
late a wealth of relationships and identities. In §3 we define the subclasses
CompGames and PrimGames, which motivate the definition of the 4-pile game
dubbed Flora. In §3.1 we formulate an algebraic winning strategy for the game,
based on the results derived in §2, and prove that its complexity is poly-time.
In §3.2 we formulate a recursive winning strategy which appears very simple,
but its polynomiality is implied only by a recent result [12]. We end in §3.3
with a polynomial-time arithmetic winning strategy, based on the Fibonacci
numeration system. In §4 we indicate how to generate sequences induced by
iterations of the floor function using word-mappings. We apply it to one of the
sequences in §4.1. In §4.2 we present our fourth, word-mapping, formulation of
the winning strategy of the Flora game, which is also polynomial-time. In §4.3
we use results from §3.3 and §2 and make minor use of the language of §4, to
characterize the representations of general cases of the special sequences playing
a major role in the algebraic formulation of the winning strategy of Flora. In
§5 we show, by means of an example, how to produce infinite complementary
arrays using sequences induced by the iterations. In the final Epilogue we wrap
up and indicate natural further directions of research.

Let a(n) = bnϕc, b(n) = bnϕ2c. It is well-known that the sequences a
and b split the positive integers [5], §3. An example of an iterated identity is
a(b(n)) = a(n) + b(n). It can be abbreviated as ab = a + b, where the product
means iteration (composition). We also write a2 for aa, ab3a2 for abbbaa, etc.
An example of 4 iterated complementary sequences is a2 = b − 1, ab = a + b,
ba = a+b−1, b2 = a+2b, since every positive integer is in precisely one of these
4 sequences. We use the notation w = w1w2 . . . wk to denote the word w as well
as the (iterated) sequence w(n). If the sequence is intended, we sometimes write
w(n) rather than only w. Notice that the product, though not commutative, is
associative.

Let h = b, u = a, and for k ≥ 2, hk = ak−1b, uk = bak−1. Let ∆ak(n) =
ak(n + 1)− ak(n), ∆hk(n) = hk(n + 1)− hk(n). For technical reasons we put

a0(n) = n, h0(n) = a(n).

Further, let F−1 = 1, F0 = 1, Fn = Fn−1 + Fn−2 (n ≥ 1) be the Fibonacci
sequence.
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Notation 1. For k ≥ 0, s ∈ Z, let Gk = ∪∞n=1a
k(n), Hk = ∪∞n=1h

k(n), Uk =
∪∞n=1u

k(n), V2 = ∪∞n=1b
2(n), Gk − s = ∪∞n=1(a

k(n) − s) (subtracting s from
every element of Gk).

In particular, G0 = Z≥1, and H0 = G1 = U1.

Note. In our applications, s ∈ {0,−1,−2, 2}, most often 0.

2 Identities

After multiplying by the irrational ϕ and then throwing out the fractional part
for an unbounded number of times, one might expect complete chaos among
relationships involving ak, hk, uk and bk. It is thus surprising that there are
many striking identities and relationships among them. Our purpose in this
section is to prove a selection of them.

Theorem 1. For every k ∈ Z≥1 and every n ∈ Z≥1 the following holds:

(a) The k + 1 sequences Gk,Hk,Hk−1, . . . , H2,H1 partition Z≥1.

(b) uk+1 = ak + ak+1 = ak+2 + 1.

(c) hk = ak+1 + Fk−1.

(d) uk+1 = hk+1 − Fk + 1 = ak+2 + 1.

(e) (e1) hk+1 − hk = ak + Fk−2 − 1.

(e2) hk+1 − ak+1 = ak + Fk − 1.

(e3) auk+1 = uk+2 + 1.

(f) (f1) Let

S1 = {n ∈ Z≥1 : ∆a(n) = F0}, S2 = {n ∈ Z≥1 : ∆a(n) = F1}.

Then S1 and S2 split Z≥1; and each of S1 and S2 is an infinite set.

(f2) For all k ∈ Z≥1 the following holds: ∆ak(n) = Fk−1 for all n ∈ S1

and ∆ak(n) = Fk for all n ∈ S2.

(f3) (i) If ∆ak(n+1) = Fk−1 for some n ∈ Z≥1, then ∆ak(n) = ∆ak(n+
2) = Fk. (ii) If ∆ak(n + 1) = ∆ak(n + 2) = Fk for some n ∈ Z≥1,
then ∆ak(n) = ∆ak(n + 3) = Fk−1.

(f4) ∆ak(n) = ∆hk−1(n) ∈ {Fk−1, Fk}, and each of Fk−1 and Fk is
assumed for infinitely many n.

(f5) (i) ∆ak(0) = 1, (ii) ∆hk(0) = Fk−1 + 1.

(g) ak(h(n)) = hk+1(n) (due to Lior Goldberg).

(h)(h1) (G2 + 2) ⊂ G1.
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(h2) G2 ∪ (G2 + 2) = G1.

(h3) U2 ⊂ (G1 − 2) ⊂ G1 ∪ U2.

(h4) (V2 − 1) ⊂ G2.

We begin by recalling some elementary properties of the floor function. Let x,
y be any real numbers. Denote by {x} the fractional part of x, so x = bxc+{x}.
Then:

• 0 ≤ {x} < 1, x− 1 < bxc ≤ x. Replacing x by −x, −x− 1 < b−xc ≤ −x,
hence −1 ≤ bxc + b−xc ≤ 0 and bxc + b−xc = 0 if and only if x is
an integer. For example, bϕc = 1, b−ϕc = −2, bϕc + b−ϕc = −1; and
ϕ2 = ϕ + 1 implies {ϕ} = ϕ−1 = ϕ− 1.

• bxc + byc ≤ bx + yc ≤ bxc + byc + 1. This follows immediately from
bx + yc = bbxc+ {x}+ byc+ {y}c = bxc+ byc+ b{x}+ {y}c.

Lemma 1. (i) Let s ∈ Z. Each of the sequences Gk + s,Hk + s, Uk + s, V2 + s
is strictly increasing for every k ≥ 1.
(ii) The sequences Gk, Hk split Gk−1 for every k ≥ 1.

Proof. (i) Follows from the fact that ϕ2 = ϕ + 1 > ϕ > 1.
(ii) Since ϕ−1 + ϕ−2 = 1, the sequences G1 and H1 split Z≥1 = G0 (see e.g.,
[5], §3), so the result holds for k = 1. For any k ≥ 1, assume that Gk, Hk split
Gk−1. Then

Gk+1 ∪Hk+1 =
⋃
n

(ak+1(n) ∪ hk+1(n)) =
⋃
n

(aak(n) ∪ ahk(n))

=
⋃
n

aak−1(n) (by induction) =
⋃
n

ak(n) = Gk. ¥

Proof of Theorem 1 (a). We noted that G1 and H1 split Z≥1. Suppose
that Gk,Hk, Hk−1, . . . ,H2,H1 partition Z≥1. Then Gk+1,Hk+1,Hk, . . . , H2, H1

partition Z≥1, since Gk+1,Hk+1 split Gk by Lemma 1. ¥
Note. It follows from Lemma 1(ii) (or from (a)) that for any positive

integers m, n, a(m) 6= b(n). This property will be referred to in the sequel as
disjointness.

Proof of Theorem 1 (b). By definition,

ak+2 = a2ak = bϕbϕakcc ≤ bϕ2akc = bak = uk+1.

By disjointness, uk+1 = bak ≥ ak+2 + 1. Conversely, multiply ϕak < ak+1 + 1
by ϕ to get, ϕ2ak < ϕ(ak+1 + 1), hence bak ≤ bϕ(ak+1 + 1)c. By disjointness
this inequality is strict, so

uk+1 ≤ bϕ(ak+1 + 1)c − 1 ≤ ak+2 + bϕc = ak+2 + 1.

On the other hand, uk+1 = b(ϕ + 1)akc = ak + ak+1. ¥
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Lemma 2. For every k ∈ Z≥1,
(i) bϕFk−1c ∈ {Fk − 1, Fk}.
(ii) bϕ2F2k−2c = F2k − 1, bF2k−1ϕ

2c = F2k+1.

Proof. (i) The ratios Fk/Fk−1 are the convergents of the simple continued
fraction expansion of ϕ = [1, 1, 1, . . .]. Therefore |ϕFk−1 − Fk| < F−1

k−1 (see e.g.,
[14], ch. 10), so ϕFk−1 − Fk = δ, where −F−1

k−1 < δ < F−1
k−1. Thus bϕFk−1c =

Fk + bδc. The result follows if |δ| < 1, which is the case for all k ≥ 1, since
Fk−1 ≥ F0 = 1.

(ii) The ratios Fk+2/Fk are the convergents of the simple continued fraction
expansion of ϕ2 = [2, 1, 1, 1, . . .]. In fact, F2k+1/F2k−1 < ϕ2 < F2k/F2k−2. This
follows easily from [14], ch. 10. Then ϕ2F2k−1 − F2k+1 = δ, where 0 < δ <
F−1

2k−1, hence bϕ2F2k−1c = F2k+1, since 0 < δ < 1 for all k ≥ 1. Similarly,
ϕ2F2k−2 − F2k = δ, where −F−1

2k−2 < δ < 0. Thus bϕ2F2k−2c = F2k − 1, since
−1 < δ < 0 for all k ≥ 1. ¥

Lemma 3. h2 − a3 = 2.

Proof. In Lemma 9 of [8] we proved the special case k = 1 of (d), namely
h2 = u2+1. Thus h2−a3 = u2−a3+1. Clearly a3 = bϕbϕbnϕccc ≤ bϕ2ac = u2.
But this inequality is strict by disjointness. Thus h2 − a3 ≥ 2.

Conversely, multiply the inequality ϕa < a2+1 by ϕ, to get ϕ2a < ϕ(a2+1).
Therefore bϕ2ac ≤ bϕ(a2 + 1)c. Again by disjointness, this inequality is strict,
i.e., u2 ≤ a3 + 1. As we saw, Lemma 9 of [8] asserts u2 = h2 − 1. Therefore,
h2 − a3 ≤ 2. ¥

Notation 2. For any positive integer N , denote by R(N) the representation of
N in the Fibonacci numeration system. It has the form R(N) = (dm, . . . , d0)
where N =

∑m
i=0 diFi, di ∈ {0, 1}, di = 1 =⇒ di−1 = 0, i ≥ 1 [6]. The

position of a representation is the subscript i of di. Thus, d0 is in position 0, d1

in position 1, etc.

Proof of Theorem 1 (c). For k = 1, this is Lemma 5 of [8], Sect. 5. For
k = 2, it is Lemma 3 above. Suppose that hk = ak+1 + Fk−1 for some arbitrary
k ≥ 2. Multiply by ϕ and take the floor of both sides. This gives, by Lemma 2,
hk+1 = bϕ(ak+1 + Fk−1)c ≤ ak+2 + bϕFk−1c + 1 ≤ ak+2 + Fk + 1. Now [8]
Sect. 6 implies that R(a2) ends in 01. By Lemma 1, the same holds for ak and
hk for every k ≥ 3 (but it does not hold for h2). Since R(Fk) ends in 00 for
k ≥ 2, R(ak+2 + Fk) also ends in 01 for k ≥ 2, and so does hk+1 for k ≥ 2. But
R(ak+2 + Fk + 1) ends in 10. Hence hk+1 = ak+2 + Fk. ¥

Proof of Theorem 1 (d). From (b) and (c), uk+1 = ak+2 + 1 = hk+1 −
Fk + 1. The second follows once more from (c). ¥

We note that inspection shows that (d) does not hold for k < 1.

Proof of Theorem 1 (e1). Subtracting (c) from (c) with k replaced by
k + 1 gives hk+1 − hk = ak+2 − ak+1 + Fk−2. Substituting the value of ak+2
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from (b) yields the desired result. ¥
(e2) Follows from (e1), where we replace hk by its value from (c). ¥
(e3) We have,

auk+1 = bϕbϕ2ak)cc = bϕ(ak + ak+1)c
≤ ak+1 + ak+2 + 1 = uk+2 + 1,

where the last equality follows from (b). On the other hand,

bϕ(ak + ak+1)c ≥ ak+1 + ak+2 = uk+2.

Hence by disjointness, bϕuk+1c = uk+2 + 1. ¥
We recall the following special case of Lemma 2 of [5]:
Lemma I. For integers i > j ≥ 0 and integer Ni+1 ∈ Z≥ 1, let R(Ni+1) =

Fi + Fi−2 + · · · + Fj, where j = 0 if i is even, j = 1 if i is odd. Then Ni+1 =
Fi+1 − 1.

This is the analog in the Fibonacci numeration system of the decimal 99 . . . 9.

Proof of Theorem 1 (f1). For any n ∈ Z≥1, clearly ϕ − 1 < ∆a(n) <
ϕ + 1, so ∆a(n) ∈ {1, 2} = {F0, F1}. This shows already that S1, S2 split
Z≥1. Moreover, if ∆a(n) = 1 for all large n, then, since h(n) is increasing,
we would have a(n) ∩ h(n) 6= ∅ for infinitely many n ∈ Z≥1, contradicting the
complementarity of the 2 sequences. If ∆a(n) = 2 for all large n, then also
∆h(n) = 2 for all large n by complementarity. But a direct computation shows
that ∆a(n) = 2 =⇒ ∆h(n) = 3, another contradiction. Thus each of S1 and
S2 is infinite as claimed. ¥

(f2) We proceed by induction on k. Suppose that for some k ≥ 1, ∆ak(n) =
Fk−1 for all n ∈ S1, and ∆ak(n) = Fk for all n ∈ S2. This holds for k = 1 by
(f1). For now let’s assume that n ∈ S1. Then

∆ak+1(n) = bϕak(n + 1)c − bϕak(n)c < ϕak(n + 1)− ϕak(n) + 1 = ϕFk−1 + 1

by the induction hypothesis. Also,

∆ak+1(n) > ϕak(n + 1)− ϕak(n)− 1 = ϕFk−1 − 1.

So bϕFk−1c ≤ ∆ak+1(n) ≤ bϕFk−1c+1. Then Lemma 2 implies that ∆ak(n) ∈
{Fk − 1, Fk, Fk + 1}.

In the proof of (c) above, it was mentioned that R(a2(n + 2)) ends in 01.
The same thus holds for R(ak+1(n + 1)) and R(ak+1(n)) for all k ≥ 1, since
Gk+1 is a subsequence of G2 for all k ≥ 1. Therefore R(∆ak+1(n)) ends in
00, the same as R(Fk). But R(Fk + 1) ends in 01, and Lemma I implies that
R(Fk − 1) ends in 10, or in 01, depending on whether k is even or odd. Hence
∆ak+1(n) = Fk for all n ∈ S1. The same proof shows that ∆ak+1(n) = Fk+1

for all n ∈ S2. ¥
(f3) This follows easily for k = 1 by considering the size of ϕ. For all k ≥ 1

it follows from (f2). ¥
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(f4). This follows directly from (f1) and (f2). ¥
Note. Part of the proof of (f4) follows directly from (d):

hk+1(n + 1)− ak+2(n + 1) = hk+1(n)− ak+2(n) = Fk.

Hence ∆hk+1(n) = ∆ak+2(n). But this establishes the equality part of (f4)
only for k ≥ 3 and doesn’t prove the membership part.

(f5). (i) Induction on k. (ii) By definition, ∆hk(0) = hk(1)−hk(0) = hk(1).
The result for hk(1) follows directly from (i) and (c). ¥

(g). For k = 1, h2(n) = bϕh(n)c = a(h(n)). If the assertion holds for any
k ≥ 1, then hk+2(n) = bϕhk+1(n)c = bϕak(h(n))c = ak+1(h(n)). ¥

(h1). Clearly G2 ⊂ G1, so for every n ∈ Z≥1, a2(n) = a(m) for some
m ∈ Z≥1. By (c), a2(n) + 1 = h(n) 6∈ G1. But then a2(n) + 2 = a(m + 1) ∈ G1

by (f4) for k = 1. ¥
The following is a special case of Property 1, Sect. 5 of [5]:
Lemma II. The set of numbers {R(N) : N ∈ G1} ends in an even (possibly

0) number of 0s, hence the complementary set of numbers {R(N) : N ∈ H1}
ends in an odd number of 0s.

(h2). By (h1), G2 ∪ (G2 + 2) ⊆ G1. Choose any a(n) ∈ G1. If a(n) ∈
(G2 + 2), we are done. So suppose that a(n) = a2(m) + 2 for no m ∈ Z≥1. By
(c), a2(m) + 1 = h(m) for all m ∈ Z≥1, so by disjointness, a(n) = a2(m) + 1
for no m ∈ Z≥1. But then a(n) = g2(m) for some m ∈ Z≥1 by (f4) for k = 1,
so a(n) ∈ G2. ¥

(h3). The following is immediately implied by (f3): (a) if a(n) − 1 6∈ G1,
then a(n) − 2 ∈ G1; and, conversely, (b) if a(n) − 1 ∈ G1, then a(n) − 2 6∈ G1.
Consider case (b). Lemma II then implies that R(a(n) − 1) ends in an even
positive number of 0s, and R(a(n)) ends in 01. By Lemma I, R(a(n)− 2) then
ends in 10. We now show that R(bϕ2a(n)c) ends in 10 for all n ∈ Z≥1.

Now R(a(n)) ends in F2k−2 for some k ∈ Z≥1. By Lemma 2(ii), bϕ2F2k−2c =
F2k − 1, and R(F2k − 1) ends in 10 by Lemma I, the same as R(a(n) − 2) for
case (b). This proves that R(bϕ2a(n)c) ends in 10 for all n ∈ Z≥1, and the
right-hand-side of (h3). On the other hand, let N ∈ U2. Then R(N) ends in
10, and so N + 1 and N + 2 are both in G1. Thus N ∈ G1 − 2, proving the
left-hand-side of (h3). ¥

(h4). In the proof of (h3) we showed that R(bϕ2a(n)c) ends in 10 for all
n ∈ Z≥1. Since R(h(n)) ends in an odd number of 1s for all n ∈ Z≥1 by
Lemma II, R(v2(n)) ends in an odd number N ≥ 3 of 1’s. Then Lemma I
implies that R(v2(n)− 1) ends in 01. Theorem 3 of [8] states that R(G2) is the
set of all numbers whose representation ends in 01, so (V2 − 1) ⊂ G2. ¥

Remark. Consider the word w = `1`2 . . . `k of length k over the binary
alphabet {a, b}. The number m of occurrences of the letter b is the weight of
w. We also put F−2 = 0. Recently, Clark Kimberling [18] proved the following
nice and elegant result:
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Theorem I. For k ≥ 2, let w = `1`2 . . . `k of length k be any word over
{a, b} of length k and weight m. Then w = Fk+m−4a + Fk+m−3b − c, where
c = Fk+m−1 − w(1) ≥ 0 is independent of n.

Notice that in the theorem only the weight m appears, not the locations
within w where the bs appear. The locations, however, obviously influence the
behavior of w. This influence is hidden in the “constant” c = ck,m, where not
only Fk+m−1 obviously depends on k and m, but also w(1).

We could have used Theorem I to prove most of the results of Theorem 1
simply by expressing each side of an identity as in Theorem I and verifying
that they are identical. This verification, however, seems less satisfactory than
the above proofs, which shed some light on the nature of the identities. In a
recent book review it says, “but it is fair to say that while it is a proof, it is
not an explanation” (AMM, 116, Aug-Sept 2009, p. 660). Hardy [13], writ-
ing about seven proofs of the Rogers-Ramanujan identities, put it this way:
”None of these proofs can be called “simple” and “straightforward”, since the
simplest are essentially verifications”. I got the Hardy reference from opin-
ion 90 on the webpage of my esteemed opinionated friend Doron Zeilberger
http://www.math.rutgers.edu/ zeilberg/OPINIONS.html. Moreover, the com-
putation of c is not, generally, so easy, as acknowledged by Kimberling. For
example, we can show that for w = hk (m = 1) we get w(1) = hk(1) = Fk−1 +1,
so ck = Fk−2−1. The proof depends on Lemma 2 and the Fibonacci numeration
system.

3 An Application: The Flora Game

The class of impartial take-away games appears to be partitioned into two dis-
joint subclasses:

• CompGames (composite games), and

• PrimGames (prime games).1

Informally, CompGames are games that are easy to generalize to more than
one or two piles; PrimGames are those for which this seems to be very hard.
A well-known representative of the former is Nim, and of the latter, Wythoff’s
game. Some progress in generalizing Wythoff to multiple piles was recently
made. Two 3-pile games that are extensions rather than generalizations of
Wythoff were also given recently. It appears that, largely, a game belongs to
class CompGames if it decomposes into a disjunctive sum of subgames, such as
Nim, which is the Nim-sum of its pile sizes; and it belongs to class PrimGames
if it is not decomposable. Hence the names CompGames (composite games)
and PrimGames (not decomposable – prime). Whereas for the former there
are theories for both the impartial as well as for the partizan case, there is no
general theory for the latter yet, and we believe that these “lone wolf” games
should be investigated more seriously.

1It’s different from the partition into MathGames and PlayGames defined in [7].
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Here we study an extension of Wythoff to four piles, which appears to be a
PrimGame. The efforts in defining a “right” extension, and particularly in prov-
ing the validity of the winning strategy, are considerably greater than those for
three-pile extensions. We present four winning strategies, algebraic, recursive,
arithmetic and word-mapping. The recursive is the easiest to describe, though
it seems to be hardest computationally. Actually it’s also polynomial-time [12].
The algebraic depends on iterations of the floor function, the arithmetic on
the Fibonacci numeration system and the word-mapping on a morphism-like
mapping. All are polynomial time winning strategies.

The Flora game is a 2-player game played on 4 piles of tokens. We denote
positions of Flora by (a1, a2, a3, a4) with 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4. It goes without
saying that every pile must contain a nonnegative number of tokens at all times.

The end position is T0 := (0, 0, 0, 0). The first player unable to move (because
the present position is T0) loses; the opponent wins.

There are 3 rules of move:

I. Any positive number of tokens from up to 3 piles may be removed.
II. From a nonzero position one can move to T0 if any of the following 3

conditions hold: (i) two piles have the same size, (ii) a3−a2 = 1, (iii) a1 = h(n)
and a2 < h2(n)− 2 for some n ∈ Z≥1.

III. If 0 < a1 < a2 < a3 < a4, one can remove p > 0 from a3, q > 0 from a4

and an arbitrary nonnegative integer from a1 and a2, subject to:
(i) q = p if a4 − a3 6∈ V2, except for the proviso that if a3 − p is the second
smallest component in the quadruple moved to, then p 6= 5.
(ii) q = p + 1 if a4 − a3 ∈ V2.

We say that a move in Flora is legal if it is consistent with the rules (I)-(III).

Note. If the position moved to under rule III(i) is (b1, b2, b3, b4) (where
of course 0 ≤ b1 ≤ b2 ≤ b3 ≤ b4), then a3 − p = bi, a4 − p = bj for some
1 ≤ i < j ≤ 4. Then a4−a3 = bj − bi = t for some t ∈ Z≥1, and normally t 6= p.

3.1 Algebraic Formulation of the P -positions

The set of P -positions of a game is the set of game positions from which the
second (Previous) player can force a win. The set of all P -positions of a game
is denoted P. In particular, for Flora, T0 ∈ P.

Let
An = h(n), Bn = a3(n), Cn = h2(n), Dn = h3(n),

A = ∪∞n=1An, B = ∪∞n=1Bn, C = ∪∞n=1Cn, D = ∪∞n=1Dn,

Tn := (An, Bn, Cn, Dn), T = ∪∞n=0Tn.

A prefix of T of size 19 is shown in Table 1. We shall presently show that T
constitutes the set of P -positions of Flora. Assuming the truth of this assertion,
we illustrate simple moves in instances of Flora.
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Examples. (i) From each of the positions (4, 6, 9, 9), (5, 8, 9, 14), (7, 8, 11, 20)
one can move to T0 ∈ P by II.
(ii) From (6, 7, 9, 14), one can move to (5, 6, 8, 12) ∈ P by I.
(iii) From (19, 21, 22, 32) can move as follows: 19 → 9, 21 → 11, 22 → 7,
32 → 17, resulting in (7, 9, 11, 17) ∈ P by III(i).
(iv) From (24, 29, 32, 37), one can move to (5, 6, 8, 12) ∈ P by III(ii) (since
37− 32 = 5 ∈ V2).

Table 1: P -positions of Flora.

n h(n) a3(n) h2(n) h3(n)
0 0 0 0 0
1 2 1 3 4
2 5 6 8 12
3 7 9 11 17
4 10 14 16 25
5 13 19 21 33
6 15 22 24 38
7 18 27 29 46
8 20 30 32 51
9 23 35 37 59
10 26 40 42 67
11 28 43 45 72
12 31 48 50 80
13 34 53 55 88
14 36 56 58 93
15 39 61 63 101
16 41 64 66 106
17 44 69 71 114
18 47 74 76 122

Notation 3. For n ∈ Z≥1, let ∆DC(n) := h3(n) − h2(n), ∆DB(n) := h3(n) −
a3(n), ∆DA(n) := h3(n)− h(n), ∆CB(n) := h2(n)− a3(n), ∆CA(n) := h2(n)−
h(n), ∆BA(n) := a(n)−h(n), ∆(n) = ∆DC(n)∪∆DB(n)∪∆DA(n)∪∆CB(n)∪
∆CA(n) ∪∆BA(n), ∆ = ∪∞n=1∆(n).

Lemma 4. (i) ∆DC(n) = a2(n),
(ii) ∆DB(n) = a2(n) + 2,
(iii) ∆DA(n) = u2(n),
(iv) ∆CB(n) = 2,
(v) ∆CA(n) = a(n),
(vi) ∆BA(n) = a(n)− 2,
(vii) ∆ = Z≥1 \ V2,
(viii) ∆ = ∪∞n=1(∆DC(n) ∪∆DB(n) ∪∆DA(n)).

10



Proof. (i) This is Theorem 1 (e1) for k = 2.
(ii) Theorem 1 (e2) for k = 2.
(iii) ∆DA(n) = (h3(n) − h2(n)) + (h2(n) − h(n)) = a2(n) + a(n) = u2(n) by
Theorem 1 (e1) and (b).
(iv) Theorem 1 (c).
(v) Theorem 1 (e1).
(vi) ∆BA(n) : (a3(n)− h2(n)) + (h2(n)− h(n)) = a(n)− 2.
(vii) Notice that for every n ∈ Z≥1, a2(n) ∈ G1, a2(n) + 2 ∈ G1 (by Theo-
rem 1 (h1)), 2 ∈ U2, a(n) − 2 ∈ G1 ∪ U2 (by (h3). It then follows from (iii)
and (v) that ∆ = G1 ∪ U2. The result follows since the sets G1, U2, V2 clearly
partition Z≥1.
(viii) Follows from (i)-(iii), (vii) and Theorem 1 (h2). ¥

Lemma 5. For fixed n ∈ Z≥1, let 0 < t < a2(n), t 6∈ V2. Then there exists
0 ≤ m < n such that t ∈ ∆DC(m) ∪∆DB(m) ∪∆DA(m).

Proof. We have t < a2(n) = ∆DC(n) < ∆DB(n) < ∆DA(n). It then follows
from Lemma 4(viii), that there must be some m < n for which t ∈ ∆DC(m) ∪
∆DB(m) ∪∆DA(m). ¥

Theorem 2. The set T constitutes the set of P -positions of the game Flora.

Proof. To begin with we note the following facts:

• Lemma 1 implies that each of the sequences An, Bn, Cn, Dn is increasing
(Lemma 1).

• A, B, C, D partition Z≥1 (Theorem 1 (a)).

It evidently suffices to prove the following two statements:

(A) Every move from any position in T results in a position outside T .

(B) For every position outside T there is a move into a position in T .

(A) Clearly there is no legal move T1 → T0. Suppose that there are positions
Tn, Tm with m < n, n ≥ 2 such that there is a legal move Tn → Tm. This move
must be of type III, since A,B, C, D partition Z≥1, from which it follows easily,
using Lemma 4, that An < Bn < Cn < Dn for n ≥ 2.

By Lemma 4(vii), ∆DC(n) 6∈ V2, so we have to consider only move III(i).
We first show that Dn − p can only be Dm. It cannot be Am, since then
Cn − p < Am has no place in row m of T . Suppose Dn − p = Bm. Then
Cn − p = Am. But ∆BA(m) < ∆BA(n) = a(n) − 2 < ∆DC(n) = a2(n),
contradicting the move rule III(i). Suppose Dn − p = Cm. Since Cn − Bn = 2
for all n ∈ Z≥1, we have Cn − p = Am. But ∆CA(m) = ∆BA(m) + 2 ≤
∆BA(n)+1 = a(n)−1 < ∆DC(n) = a2(n), again contradicting move rule III(i).
Thus indeed Dn − p = Dm.

Suppose Cn − p = Cm. Subtracting, ∆DC(n) = ∆DC(m), so a2(n) = a2(m)
which is impossible for m < n since the sequence g2(`) is strictly increasing.
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Suppose Cn − p = Bm = Cm − 2. Then ∆DC(n) = ∆DB(m) = ∆DC(m) + 2
which is possible if and only if p = 5 and m = n− 1. But this case is excluded
by the proviso. Finally, suppose that Cn − p = Am. Then ∆DC(n) = ∆DA(m).
By Lemma 4 this is equivalent to a2(n) = u2(m). This is possible for no m < n
by disjointness.

(B) Let (a1, a2, a3, a4) 6∈ T , 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4. If there is equality in
any of these or a3 − a2 = 1, a move of type I or II leads to T0. So we may
assume 0 < a1 < a2 < a2 + 1 < a3 < a4. By the complementarity of A, B,
C, D, a1 appears in precisely one component of precisely one Tn, n ≥ 1. If
a1 = Dn, move a2 → An, a3 → Bn, a3 → Cn.

So suppose that a1 = Cn.

If a4 ≥ Dn, move a2 → An, a3 → Bn, a4 → Dn. So assume a4 < Dn. Let

t := a4 − a3.

We consider 2 cases.

(a) t 6∈ V2, and (b) t ∈ V2.

(a) t 6∈ V2. We have

0 < t = a4 − a3 < Dn − a3 < Dn − a1 = Dn − Cn = ∆DC(n) = a2(n).

By Lemma 5, there exists m < n such that either (i) t = ∆DC(m), or (ii) t =
∆DB(m), or (iii) t = ∆DA(m).

For case (i), move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:
a1 = Cn > An > Am, and a2 > a1 = Cn > Bn > Bm, a3 > a1 = Cn > Cm,
a4 = a3 + Dm − Cm > Dm, so this move (as well as in the remainder of this
proof) is of the form III.

For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm. This is a legal
move: a1 = Cn > An > Am, a2 > a1 = Cn > Cm, a3 > a1 = Cn > Cm > Bm,
a4 = a3 + Dm −Bm > Dm.

For case (iii), move a1 → Bm, a2 → Cm, a3 → Am, a4 → Dm. This is a legal
move: a1 = Cn > Bn > Bm, a2 > a1 = Cn > Cm, a3 > a1 = Cn > Cm > Am,
a4 = a3 + Dm −Am > Dm.

(b) t ∈ V2. To remind ourselves, t = a4 − a3 and we have a1 = Cn, a4 <
Dn. Now t − 1 ∈ (V2 − 1). Since (V2 − 1) ⊂ G2 (Theorem 1 (h4)), we have
t− 1 = a2(m) for suitable m ∈ Z≥1. Also ∆DC(m) = a2(m) (Lemma 4 (i)). So
we move: (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:

• m < n, since ∆DC(m) = a4 − a3 − 1 < Dn − a1 = Dn − Cn = ∆DC(n).

• a1 = Cn > An > Am, a2 > a1 = Cn > Bn > Bm, a3 > a1 = Cn > Cm,
a4 = a3 + 1 + Dm − Cm > a1 + Dm − Cm = Cn + Dm − Cm > Dm.
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So suppose that a1 = Bn.

If a4 ≥ Dn, then move a2 → An, a3 → Cn, a4 → Dn. This is a legal move,
since a2 > a1 = Bn > An and

a3 ≥ a2 + 1 ≥ a1 + 2 = Bn + 2 = Cn.

Therefore we may assume a4 < Dn. The proof is similar to the above case
a1 = Cn. We have a3 ≥ Cn, and 0 < t− 1 < t = a4 − a3 < Dn − a3 ≤ ∆DC(n).
Hence by Lemma 5 there is m < n such that, for case (a), either (i) t = ∆DC(m),
or (ii) t = ∆DB(m), or (iii) t = ∆DA(m). For case (b) we have t − 1 = a2(m)
for some m ∈ Z≥1.

(a) t 6∈ V2.
For case (i), move a2 → Am, (a3, a4) → (Cm, Dm). This is a legal move:

a2 > a1 = Bn > An > Am, a3 ≥ Cn > Cm,

a4 = a3 + Dm − Cm ≥ Cn + Dm − Cm > Dm.

For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm. This is a
legal move: a1 = Bn > An > Am, a2 ≥ a1 + 1 = Bn + 1 = Cn − 1 ≥ Cm,
a3 > a1 = Bn > Bm, a4 = a3 + Dm −Bm ≥ Cn + Dm −Bm > Dm.

For case (iii), move a1 → Bm, a2 → Cm, a3 → Am, a4 → Dm. This
is a legal move: a1 = Bn > Bm, a2 ≥ a1 + 1 = Bn + 1 = Cn − 1 ≥ Cm,
a3 > a1 = Bn > Bm > Am, a4 = a3 + Dm −Am > Dm.

(b) t ∈ V2. We have t = a4 − a3, a1 = Bn, a4 < Dn. As in case (b) above,
we move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:

• m < n, since ∆DC(m) = a4−a3−1 < Dn−a3−1 ≤ Dn−Cn−1 < ∆DC(n).

• a1 = Bn > An > Am, a2 > a1 = Bn > Bm, a3 ≥ Cn > Cm, a4 =
a3 + 1 + Dm − Cm ≥ Cn + 1 + Dm − Cm > Dm.

Finally, we consider the case a1 = An = h(n).

If a2 < h2(n) − 2 we can move to T0 (rule (II)(iii)). Otherwise, a2 ≥
h2(n)−2 = Bn. Since a3−a2 > 1, we have a3 ≥ Bn +2 = Cn. If a4 ≥ Dn, then
at least one of the inequalities for a2, a3, a4 is strict, since (a1, a2, a3, a4) 6∈ T .
Then move (a1, a2, a3, a4) → (An, Bn, Cn, Dn). If a4 < Dn then for case (a)
there is m < n such that 0 < t = a4 − a3 < ∆DC(n). Hence by Lemma 5,
there is m < n such that either (i) t = ∆DC(m), or (ii) t = ∆DB(m), or
(iii) t = ∆DA(m). For case (b), 0 < t− 1 = a2(m) for some m ∈ Z≥1.

(a) t 6∈ V2. For case (i) move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a
legal move, since m < n implies a1 = An > Am, a2 ≥ Bn > Bm, a3 ≥ Cn > Cm,
Dn > Dm. For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm.
This is a legal move: a1 = An > Am, a2 ≥ Bn = Cn − 2 > Cm, where the
strict inequality follows since Cn − Cm ≥ 3 (Theorem 1 (f4) for k = 3). Also
a3 ≥ Cn > Bn > Bm, a4 = a3 +Dm−Bm > Dm. For case (iii) move a1 → Bm,
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a2 → Cm, a3 → Am, a4 → Dm. We have to prove the legality of this move. We
begin by showing that a1 = An > Bm. Notice that

t = a4 − a3 = ∆DA(m) = u2(m) (Lemma 4)
< ∆DC(n) = a2(n) (Lemma 4)
= h(n)− 1 (Theorem 1 (c)).

Thus h(n) > u2(m)+1. But h(n) = An and u2(m) = a3(m)+1 (by Theorem 1
(d)) = Bm + 1, so indeed An > Bm + 2 > Bm. Next,

a2 ≥ Bn = a3(n) = h2(n)− 2 (Theorem 1 (d))
> h2(n− 1) (Theorem 1 (f4)) = Cn−1 ≥ Cm.

Also a3 ≥ Cn > Cm > Am and a4 = a3 + Dm −Am ≥ Cn + Dm −Am > Dm.

(b) t ∈ V2. We have t = a4−a3, a1 = An, a4 < Dn, t−1 = a2(m) = ∆DC(m)
for some m ∈ Z≥1. As above we move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm).
This is a legal move:

• m < n, since ∆DC(m) = a4 − a3 − 1 < Dn − Cn − 1 < ∆DC(n).

• a1 = An > Am, a2 ≥ Bn > Bm, a3 ≥ Cn > Cm, a4 = a3 +1+Dm−Cm >
Cn + Dm − Cm > Dm. ¥

Theorem 3. The algebraic winning strategy of Flora precipitates a polynomial-
time algorithm for consummating a win.

Proof. Given a position (a1, a2, a3, a4) of Flora with 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4.
Its input size is O(log a1 + log a2 + log a3 + log a4). Whether or not move rules
II(i) or II(ii) apply can be checked trivially. We know (Theorem 1 (a)) that a1

is precisely one of a3(n), h3(n), h2(n), h(n). We have to find out which it is,
and the corresponding value of n.

Suppose first that a1 = a3(n) = bϕbϕbnϕccc. Using the inequality x −
1 < bxc ≤ x, a straightforward computation shows that ba1ϕ

−3c + 1 ≤ n ≤
b(a1 + 1)ϕ−3c + 1. Computing ϕ to O(log a1) places gives the range for the
candidate values of n and for each of them (one or two), we have to compute
a3(n), comparing it with a1. A similar computation can be done for h3(n),
h2(n), h(n). (Notice that there is not necessarily an integer candidate n for
some of these ranges. For example, if we suppose that a1 = h3(n), then we get
ba1ϕ

−4c+ 1 ≤ n ≤ ba1ϕ
−4 + 2ϕ−2c.) The same method also indicates whether

or not a4−a3 ∈ V2, or whether move rule II(iii) applies. All these computations
can be done in linear time in the input size.

Finally, we use a binary search to find m ∈ [0, n] such that if a4 − a3 6∈ V2,
then h3(m) − h2(m) = a4 − a3 or some other difference of the columns in the
m-th row is a4 − a3. Similarly for the case a4 − a3 ∈ V2. ¥
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3.2 Recursive Formulation of the P -positions

Let S $ Z≥1 and S = Z≥1 \ S. The “Minimum EXcludant” of S is defined by

mex S = min S = least positive integer not in S.

In particular, the mex of the empty set is 1. (This somewhat nonstandard
definition of the mex function is needed for §5.)

Let T ′0 = (0, 0, 0, 0), T ′1 = (2, 1, 3, 4). If T ′m := (A′m, B′
m, C ′m, D′

m) has already
been defined for all m < n (n ≥ 2), then let

A′n = mex{A′i, B′
i, C

′
i, D

′
i : 0 ≤ i < n},

B′
n =

{
B′

n−1 + 3 if A′n −A′n−1 = 2
B′

n−1 + 5 otherwise,

C ′n = B′
n + 2,

D′
n =

{
D′

n−1 + 5 if A′n −A′n−1 = 2
D′

n−1 + 8 otherwise.

Let T ′ := ∪∞n=0T
′
n.

Theorem 4. The set T ′ constitutes the set of P -positions of the game Flora.

Proof. We show that for all m ∈ Z≥0, A′m = Am, B′
m = Bm, C ′m = Cm, D′

m =
Dm. Suppose this holds for all m < n (n ≥ 1). Let E = mex{Ai, Bi, Ci, Di :
0 ≤ i < n}. The value E cannot have been assumed in any of the four sequences
for m < n, since A,B, C, D split Z≥1, so E ≥ An. If E > An, then An would
never be assumed since the sequences are strictly increasing, again contradicting
the complementarity of the sequences. Thus An = E = A′n, and the other 3
equalities follow from Theorem 2 (f). ¥

The definition of the set T ′ is straightforward; it doesn’t use the functions
h(n), a(n) used for defining T . Thus the recursive computation of T ′ looks
easier than that of the set T . Moreover, the proof of Theorem 4 is very short,
and that of Theorem 2 is long.

However, the proof of Theorem 4 leans heavily on Theorems 2 and 1. If
the initial position of the game is (a1, a2, a3, a4), the input size is log a1 +
log a2 + log a3 + log a4. The time needed to compute whether the position
is a P -position or not, seems to be proportional to a1 + a2 + a3 + a4, because
the unwieldy mex function appears to require scanning previous entries of the
sequences An, Bn, Cn, Dn. However, a new method [12] shows that actually also
the algorithm implied by Theorem 4 is polynomial.
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3.3 Arithmetic Formulation of the P -positions

For N ∈ Z≥1, let R(N) = (dm, . . . , d0) be the representation of N in the Fi-
bonacci numeration system (recall Notation 2). Then (dm, . . . , d0, 0) is the left
shift of R(N).

Theorem 5. R(A) is the set of all representations that end in an odd number
of 0-bits in the Fibonacci numeration system, R(B) the set of all representa-
tions that end in 001, R(C) the set of all representations that end in a positive
even number of 0-bits, and R(D) the set of all representations that end in 101.
Moreover, for every n ∈ Z≥1, R(Cn) is the left shift of R(An).

See Table 3.3 for an example.

Table 3.3: Representation of the P -positions in the Fibonacci numeration sys-
tem.

21 13 8 5 3 2 1 An n Bn 34 21 13 8 5 3 2 1
1 0 2 1 1 1

1 0 0 0 5 2 6 1 0 0 1
1 0 1 0 7 3 9 1 0 0 0 1

1 0 0 1 0 10 4 14 1 0 0 0 0 1
1 0 0 0 0 0 13 5 19 1 0 1 0 0 1
1 0 0 0 1 0 15 6 22 1 0 0 0 0 0 1
1 0 1 0 0 0 18 7 27 1 0 0 1 0 0 1
1 0 1 0 1 0 20 8 30 1 0 1 0 0 0 1

1 0 0 0 0 1 0 23 9 35 1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 26 10 40 1 0 0 0 1 0 0 1

34 21 13 8 5 3 2 1 Cn n Dn 55 34 21 13 8 5 3 2 1
1 0 0 3 1 4 1 0 1

1 0 0 0 0 8 2 12 1 0 1 0 1
1 0 1 0 0 11 3 17 1 0 0 1 0 1

1 0 0 1 0 0 16 4 25 1 0 0 0 1 0 1
1 0 0 0 0 0 0 21 5 33 1 0 1 0 1 0 1
1 0 0 0 1 0 0 24 6 38 1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 29 7 46 1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 32 8 51 1 0 1 0 0 1 0 1

1 0 0 0 0 1 0 0 37 9 59 1 0 0 0 0 0 1 0 1
1 0 0 1 0 0 0 0 42 10 67 1 0 0 0 1 0 1 0 1

Proof. The proof is similar to that of Theorem 3 of [8]. For every m ∈ Z≥1,
R(bmϕc) ends in an even number of 0-bits (including 0 0-bits), and R(bmϕ2c)
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ends in an odd number of 0-bits ([5], §4). Hence R(A) is the set of all num-
bers that end in an odd number of 0-bits in the Fibonacci numeration system,
whereas each of the other 3 representations ends in an even number of 0-bits.
Now R(C) is the set of all numbers that end in a positive even number of 0-bits
([8]), hence R(B) and R(D) each end in a 1-bit. Recall that Cn = Bn + 2. If
R(B) would contain a number with representation ending in 101, then adding 2
to it would end in 1 (since 2+3=5 is the next Fibonacci number), contradicting
the form of R(Cn). Therefore R(B) is the set of all numbers ending in 001. By
complementarity, R(D) is therefore the set of all numbers ending in 101.

Since R(A) is the set of all representations ending in an odd number of 0-
bits, and R(C) is the set of all representations ending in a positive even number
of 0-bits, the latter is the left shift of the former. Suppose that R(Cm) is the
left shift of R(Am) for every m < n. If R(Cn) would not be the left shift of
R(An), then it would be assumed later on (by complementarity), contradicting
the strict increase of C. ¥

This formulation of the P -positions is also easily seen to lead to a polynomial-
time winning strategy.

4 The Word-mapping Approach

In this section we show how to construct Gk recursively by a word-map for every
k ∈ Z≥1. Similar methods can be used to construct other functions defined in
§2. We also present our fourth, word-mapping, formulation of the P -positions
of the game Flora. The length of any (sub)word w is denoted by |w|.

4.1 Word-mapping for Gk

Define the morphism 1 → 10, 0 → 1. Its fixed point is the word: F =
1011010110110 . . . , also known as the Fibonacci word. For k ≥ 1, the char-
acteristic function χk of Gk is defined by

χk(m) =
{

1 if ∃ n s.t. ak(n) = m
0 otherwise.

Definition 1. Given a binary word W . A run of 0s is any (possibly empty)
subword of W consisting solely of 0s, flanked on the left and right by a 1-bit. A
block is any subword consisting of a 1-bit followed by a run of 0s.

Theorem 6. For every k ≥ 1, the word-mapping for producing the character-
istic function χk of Gk, beginning with 10Fk−1−1, is:

10Fk−1−1 → 10Fk−1, 0Fk−2 → 10Fk−1−1.

Proof. Notice that for G1, the word-mapping is simply the well-known mor-
phism 1 → 10, 0 → 1, which produces F . Moreover, χ1 = F . See e.g., [1], ch. 9
and [11].
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The word-map is well-defined. Indeed, the initial block of length Fk−1 is
mapped into a block B1 of length Fk. In the second iteration, the prefix of
length Fk−1 of B1 is again mapped into B1. The remaining abutting suffix of
B1 consists of Fk−2 0s, so it is mapped into a block B2 of length Fk−1. In the
third iteration, B1 and B2 are generated again, and then the block B2 of length
Fk−1 generates a block B1. Thus for all subsequent iterations only blocks of the
form B1 and B2 are generated, and there is never any parsing conflict.

Since χ1 = 1011010110110 . . . , Theorem 1(f) implies that χ2 = 10010100100
1010010100 . . . , where we inserted into χ1 F1 − F0 = 1 zero to each run of
F0 − 1 = 0 zeros (i.e., one 0 between every consecutive 1s), and F2 − F1 = 1
zero to each run of F1 − 1 = 1 zeros. Doing this yields distances between
consecutive 1s in χ2 of F1 and F2, precisely at the locations where the dis-
tances between consecutive 1s of χ1 are F0 and F1 respectively. Similarly,
χ3 = 1000010010000100001001000010010000 . . . , where we inserted into χ2

F2 − F1 = 1 zero to each run of F1 − 1 = 1 zero, and F3 − F2 = 2 zeros to each
run of F2 − 1 = 2 zeros.

In general, for producing χk+1 from χk, we add to χk Fk − Fk−1 = Fk−2

zeros to each run of Fk−1 − 1 zeros and Fk+1 − Fk = Fk−1 zeros to each run of
Fk zeros. This yields blocks of sizes Fk and Fk+1 respectively, at the locations
specified by Theorem 1(f).

Assume inductively that the word-mapping

10Fk−1−1 → 10Fk−1, 0Fk−2 → 10Fk−1−1

produces χk, so it generates distances between consecutive 1s of Fk−1 and Fk

at the locations specified by Theorem 1(f). Then the word-mapping

10Fk−1 → 10Fk+1−1, 0Fk−1 → 10Fk−1

produces χk+1, since it adds Fk+1 − Fk to the Fk 0s of the long 0-runs of χk,
and Fk − Fk−1 0s to the Fk−1 short 0-runs of χk. ¥

4.2 Word-mapping Formulation of of the P -positions

Denote terms of An, Bn, Cn, Dn by a, b, c, d respectively.

Theorem 7. The word-mapping

bac → bacda, da → bac,

beginning with bac, generates the characteristic function of the P -positions of
the Flora game.

Proof. The proof is rather similar to that of Theorem 6, and is therefore
omitted. ¥

This theorem also leads to a polynomial-time winning strategy, since induc-
tion shows that for every k ∈ Z≥1, the k-th application of the word-mapping
generates a word of length Fk+2.
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Notice that if we replace bac by 1 and da by 0, we get back our old morphic
friend 1 → 10, 0 → 1.

4.3 Characterization of the Sequences G, H, by the Fi-
bonacci Numeration System

We know from Lemma II and §3.3, that R(a(n)) ends in an even number of 0s,
R(h(n)) in an odd number of 0s, R(h2(n)) in an even positive number of 0s,
R(h3(n)) in 101, and R(g3(n)) in 10s1, s ≥ 2. What’s the general pattern?

Theorem 8. (i) R(G1) is the set of all representations that end in an even
number of 0s, R(H1) is the set of all representations that end in an odd number
of 0s, R(G2) is the set of all representations that end in a 1-bit, and R(H2) is
the set of all representations that end in an even positive number of 0s.
(ii) For every n ∈ Z≥1, R(h(n)) is the left shift of R(a(n)); and R(h2(n)) is the
left shift of R(h(n)).
(iii) For every k ∈ Z≥3 and all n ∈ Z≥1, R(Gk) is the set of all representa-
tions that end in the word 10s1 for all s ≥ k − 1, and R(Hk) is the set of all
representations that end in the word 10k−21 (left 1-bit in position k − 1).

Proof. Items (i) and (ii) are already known from Theorem 5 and Lemma II,
and are included here only for the sake of completeness. We only have to point
out the statement about R(G2), which follows from the fact that G2,H2, H1

split the positive integers (see also [8], Theorem 3).
(iii) Induction on k. The base case k = 3 was proved in Theorem 5. For

k ≥ 3, suppose that we already proved that R(Gk) is the set of all representations
that end in 10s1 for all s ≥ k − 1, and R(Hk) is the set of all representations
that end in 10k−21. It clearly remains only to show that R(Gk+1) is the set
of all representations that end in 10s1 for all s ≥ k, and R(Hk+1) is the set
of all representations that end in the word 10k−11. Recall Theorem 1 (c):
hk(n) = gk+1(n) + Fk−1. If R(Gk+1) would contain a number, say ak+1(n),
with representation ending in 10k−11 (with leftmost 1-bit in position k), then
adding Fk−1 to it would result in a word with representation ending in 0k1
because Fk−1 + Fk = Fk+1 is the next Fibonacci number. But then R(hk(n))
would end in 10s1 for some s ≥ k, contradicting the induction hypothesis.
Thus R(Hk+1) is the set of all representations that end in the word 10k−11.
Since Gk+1,Hk+1,Hk, . . . , H2,H1 split the integers, R(Hk+1) is the set of all
representations that end in the word 10k−11. ¥

Notes. (1) The general pattern of the representation of the suffixes of Hk for
k ≥ 3 is quite different from that of H1 and H2, and both of these are different
from each other. The same holds for Gk, k ≥ 3 and G1 and G2. Therefore the
induction proof could not have begun with k = 1 or 2.
(2) The statement in (i) about R(G1) and R(H1) is Theorem 9.1.15 (see also
Corollary 9.1.14) in [1], credited there to [10]. (It is also Lemma II above.) The
proof method of [1] follows [3].
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Membership Problem. Fix some k ∈ Z≥1. Given N ∈ Z≥1. Then N is in
precisely one of Gk, Hk, Hk−1,. . . ,H2, H1 (Theorem 1 (a)). Can the following
problem be solved in polynomial time?

Problem. Determine the set in which N lies.

Corollary 1. For every k ∈ Z≥1, the membership problem can be solved in
linear time.

Proof. This can be proved by generalizing the method for computing n in the
proof of Theorem 3 to the case of arbitrary k. But a more “elegant” method
is to compute the Fibonacci representation of N , which can be done in linear
time in the input size Θ(log N). Theorem 8 then implies that the membership
problem can be solved by scanning the suffix of R(N), at most all of its Θ(log N)
bits. ¥

5 Infinite Complementary Arrays

The doubly infinite Stolarsky Array A with entries A(i, j), i, j ≥ 1 [22], is
defined as follows: For every m ≥ 1, A(m, 1) = mex{A(i, j) : i < m, j ≥ 1},
A(m, 2) = bϕA(m, 1) + 1/2c, and for all i ≥ 1, j ≥ 3, A(i, j), A(i, j) =
A(i, j − 1) + A(i, j − 2). Then every positive integer appears precisely once in
A. A beginning portion is exhibited in Table 2. Many variations, interspersions
and dispersions have since been given, see e.g., [16], [19]. All are doubly infinite,
limj→∞(A(i, j + 1) − A(i, j)) = ∞ for every i ≥ 1, and every positive integer
appears precisely once in A.

Table 2: The Stolarsky array

1 2 3 5 8 13 . . .
4 6 10 16 26 42 . . .
7 11 18 29 47 76 . . .
9 15 24 39 63 102 . . .
...

...
...

...
...

...

For every k ≥ 1, define the Flora-Array LK with the k+1 rows H1,H2, . . . ,Hk, Gk.
This array has a different character. By Theorem 1(a), this singly-infinite array
also has the property that every positive integer appears precisely once. More-
over, A(i, j +1)−A(i, j) ∈ {Fi, Fi+1} is bounded for every fixed i and all j ≥ 1,
but limi→∞(A(i, j +1)−A(i, j)) = ∞. Table 3 depicts the case k = 6. The two
bottom lines, below the horizontal line, illustrate the fact that G7, H7 split G6,
so replacing G6 by H7 and G7 constitutes L7.
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Table 3: A complementary Flora array L6 with 7 rows

n 1 2 3 4 5 6 7 8 9 10 11 12 13
H1 2 5 7 10 13 15 18 20 23 26 28 31 34
H2 3 8 11 16 21 24 29 32 37 42 45 50 55
H3 4 12 17 25 33 38 46 51 59 67 72 80 88
H4 6 19 27 40 53 61 74 82 95 108 116 129 142
H5 9 30 43 64 85 98 119 132 153 174 187 208 229
H6 14 48 69 103 137 158 192 213 247 281 302 336 370
G6 1 22 35 56 77 90 111 124 145 166 179 200 221
H7 22 77 111 166 221 255 310 344 · · ·
G7 1 35 56 90 124 145 179 200 234 268 289 323 · · ·

6 Epilogue

We have generated sequences consisting of nested arbitrary applications of the
floor function to ϕ and ϕ2, established many identities and relationships in-
volving them and then applied them to formulate an algebraic winning strategy
to the game Flora. We also presented recursive, arithmetic and word-mapping
formulations of the winning strategy. In addition, we characterized the main
sequences by means of the Fibonacci numeration system, and generated infinite
complementary arrays of the sequences.

Can some of the relationships of the iterated floor functions be generalized
to reals other than ϕ and ϕ2? As a first step, we could interchange ϕ with ϕ2,
studying the ensuing sequences and the games implied by them. Specifically,
define g′(n) = bnϕ2c, h′(n) = bnϕc, and for k ≥ 2, g′k(n) = bϕ2g′k−1(n)c,
h′k(n) = bϕ2g′k−1(n)c. If we define G′i, H

′
i in the obvious way, it’s straight-

forward to see that then the first item of Theorem 1, is preserved, namely
G′k,H ′

k,H ′
k−1, . . . , H

′
2,H

′
1 partition Z≥1. What games can be spawned from

this partition?
More generally, it would be well to investigate which of the above results

hold for which classes of positive reals beyond ϕ. For example, Lemma 1 and
Theorem 1(a) clearly hold if we replace ϕ by any irrational α ∈ (1, 2) and ϕ2 by
β = α/(α−1). Perhaps large parts of Theorem 1 can be generalized for the case
where α = (2− t +

√
t2 + 4)/2, β = α + t, where t is any given positive integer,

since then the simple continued fraction of α is [1, t, t, t, . . .], so the numeration
system arguments used in the proof of (c) and (d) of Theorem 1 carry over in
a simple way. What games are induced by these relationships?

The notion of arbitrary iterations of the floor function appeared in [21] and
[15]. In the former, the iterations are with rational numbers whose sizes depend
on the iteration depth; in the latter, the aim is to represent the positive integers
in the form of iterated floor functions involving ϕ and ϕ2. These are quite
different from our iterations of the floor function. However, in [18] iterations of
the form considered here were studied as pointed out above. See also [17].
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The Raleigh game [8] is a 3-pile extension — not generalization — of Wyt-
hoff’s game. Flora is an extension of Raleigh. Although Flora appears not to be
decomposable into sums of more elementary games, we were able to formulate
for it three polynomial-time winning strategies. The one based on the Fibonacci
numeration system is of particular interest. It demonstrates once again that nu-
meration systems can make strategies of games in PrimGame efficient, similarly
to appropriate data structures — see [20].

We can also define a 5-pile extension of Flora, but in the sequence of games
with increasing number of piles, both the definition of the games and the validity
proof of their strategies seem to become more difficult. For example, whereas the
union of the differences ∆ between the 3 columns of theP -positions of Raleigh
covers all of Z≥1, the same union for the four columns of the P -positions of
Flora leaves out V2. But perhaps a pattern for these games will emerge. This
possibility may not be so far-fetched, since, as we saw, e.g., in §4.3, the general
behavior begins only with k = 3 (corresponding to a game with 4 piles).

Acknowledgment. Thanks to Herb Wilf, who had written to me that
he defined the sequence ak(n) for solving part (a) of AMM problem 11238
(113 Aug-Sept 2006, 655; Sol. 115 Aug-Sept 2008, 667), and conjectured that
∆ak(n) assumes only two values for every fixed k, n ∈ Z≥1. His communication
and earlier work of mine – including joint work with Eric Duchêne, Richard
Nowakowski and Michel Rigo, to appear in JCT-A – motivated this paper.
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[4] E. Duchêne and M. Rigo [2008], A morphic approach to combinatorial
games: the Tribonacci case, Theor. Inform. Appl. 42, 375–393.

[5] A.S. Fraenkel [1982], How to beat your Wythoff games’ opponent on three
fronts, Amer. Math. Monthly 89, 353–361.

[6] A.S. Fraenkel [1985], Systems of numeration, Amer. Math. Monthly 92,
105–114.

[7] A.S. Fraenkel [2004], Complexity, appeal and challenges of combinatorial
games, Theoret. Comput. Sci. 313, 393–415.

22



[8] A.S. Fraenkel [2007], The Raleigh game, in: Combinatorial Number The-
ory , Proc. Integers Conference 2005, in celebration of the 70th birthday of
Ronald Graham, Carrollton, Georgia, Oct. 27-30, 2005; B. Landman, M.
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