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To Herb Wilf on his 80th birthday: He shall be as a CW (Calkin-Wilf) tree
planted by the waters that spreads out its roots by the river, shall not see when
heat comes, its leaf shall remain green, shall not be anxious in the year of drought,
nor shall it cease from bearing fruit (adapted from Jeremiah 17, 8).

What was to be a celebratory volume unfortunately turned into a commemorative
one. Yet the above dedication remains valid, since Herb’s heritage lives on, spreads
its roots and continues to bear rich fruit.

Abstract

Given a subtraction game on two piles of tokens, the usual question is
to characterize its P -positions. These normally split the positive integers
into two complementary sequences. Here we invert the problem: We are
given two sequences, and the challenge is to find appropriate succinct
game rules for a game having the given P -positions. The main additional
challenge in this work is that the given sequences do not split the positive
integers. We present two solutions for a seemingly first such problem, the
second in terms of two exotic numeration systems. Both characterizations
lead to linear-time winning strategies for the game induced by the two
sequences.

1 Prologue

Preliminary Thoughts. Subtraction games, also called take-away games, are
games on m piles of tokens, where each of two players playing alternately, selects
one or more piles and removes from them a number of tokens according to the
specified game rules.1 In this paper we consider impartial subtraction games.

∗fraenkel@wisdom.weizmann.ac.il http://www.wisdom.weizmann.ac.il/~fraenkel
1They can equivalently be modeled as games played on a collection of nonnegative integers,

which are reduced by the players to 0 according to the game rules.
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A game is impartial if for every game position, all moves one player can
do also the opponent can do, unlike the partizan chess, where the black player
cannot touch a white piece and conversely.

A P -position in a game is a position such that the player moving from it
loses whatever his move is; an N -position is a position from which a player
has a winning move. Notice that every move from a P -position lands in an
N -position; from an N position there is a (winning) move to a P -position. In
normal play the player making the last move wins; in misère play the player
making the last move loses. Throughout we are concerned solely with normal
play.

Nim is a subtraction game played on a finite number of tokens. A move
consists of selecting a (nonempty) pile and removing from it any positive number
of tokens, up to and including the entire pile (a Nim move). Wythoff is a
subtraction game played on two piles of tokens. There are two types of moves:
a Nim move or taking the same number of tokens from both piles. The latter
is a Wythoff move.

For m ≥ 2, the P -positions of games typically split the positive integers into
m disjoint sets A1, . . . , Am: ∪m

i=1A
i = Z≥1, A

i ∩ Aj = ∅ for all i ̸= j. Two
of many examples: [3], [6]. There are only a few studies where this splitting
does not hold. In [2] and [8] the Nim move is restricted to taking any positive
multiple of b tokens from a single pile, where b is an a priori given positive integer
parameter (and there is a restricted Wythoff move in [8]). The P -positions there
constitute b pairs of integers and there are omissions and repetitions of integers
in some of the pairs. Sequences that jointly cover every positive integer precisely
m times for any given m ≥ 1 were given by O’Bryant [17] using a generating
function approach; and Graham and O’Bryant [11] used them for generalizing
a conjecture about splitting sets. They were constructed by elementary means
by Larsson and applied there to combinatorial game theory [15]. More recently,
Gurvich [12] considered a generalization of Wythoff’s game where, for m = 2,
A1 ∩ A2 = ∅, but |Z≥1 \ (A1 ∪ A2)| = ∞. In [10] games are analyzed for which
both A1 ∩A2 ̸= ∅ and |Z≥1 \ (A1 ∪A2)| = ∞. But exceptions they are.

In the present paper we consider a case, also for m = 2, apparently a first
of its kind, where the P -positions constitute a single pair (A1, A2) of integers,
|A1 ∩ A2| = ∞, but A1 ∪ A2 = Z≥1. The easy part is to construct A1, A2 with
such properties; the hard part is to formulate appropriate succinct game rules
for a game whose P -positions are such non-complementary sequences. We seek
a question for a given answer!

2 The Game, Main Theorem and Examples

Denote by φ = (1 +
√
5)/2 the golden section. Then φ2 = (3 +

√
5)/2, and

φ−1 + φ−2 = 1. Multiplying by 3/2, we get

α−1 + β−1 = 3/2, (1)
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where

α =
2φ

3
=

1 +
√
5

3
= 1.0786893 . . . , β =

2φ2

3
=

3 +
√
5

3
= 1.745356 . . . ,

and β − α = 2/3. For n ≥ 0, let an = ⌊nα⌋, bn = ⌊nβ⌋. These are Beatty
sequences: the floor of the multiples of a positive number. For α > 0 irrational,
the two Beatty sequences are complementary if and only if α−1 + β−1 = 1.
Complementarity means that every positive integer appears exactly once in
exactly one of the two sequences. Let

A := ∪n≥0an, B := ∪n≥0bn, T := ∪n≥0(an, bn), an ∈ A, bn ∈ B.

We denote by T = Z≥0 \ T the complement of T , that is, all pairs (x, y) ∈
Z≥0 × Z≥0 not in T . The first few terms of A and B are displayed in Table 1.

Table 1. Excerpts of the first few terms of the sequences A and B.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

an 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 28 29

bn 0 1 3 5 6 8 10 12 13 15 17 19 20 22 24 26 27 29 31 33 34 36 38 40 41 43 45 47

n 28 35 36 37 38 39 40 41 49 50 51 52 60 61 62 63 64 65 66 67 68

an 30 37 38 39 40 42 43 44 52 53 55 56 64 65 66 67 69 70 71 72 73

bn 48 61 62 64 66 68 69 71 85 87 89 90 104 106 108 109 111 113 115 116 118

In the game Freak there are two piles of finitely many tokens. We denote
the piles by the number of tokens they contain, i.e.,

(x, y),with 0 ≤ x ≤ y. (2)

Two players alternate in reducing the piles. Play ends when the piles are empty.
Recall that the player first unable to move loses and the opponent wins (normal
play).
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Remark 1. In a move from a position (x, y) subject to (2) where x is unchanged,
but y → y− t with t > 0, we may have x ≤ y− t or y− t < x. To be consistent
with (2) we write (x, y) → (x, y − t) in the former case, and (x, y) → (y − t, x)
in the latter case.

The P -positions of Freak are given, namely P = T . What are succinct
game rules of Freak such that it has precisely these P -positions? We chose
this particular set T since it seems like the simplest case in which the two Beatty
sequences are not complementary.

We claim that at each stage a Freak player has the choice of making one
of the following two types of moves:

(I) (Restricted Wythoff move.) (x, y) → (x− t, y− t) for every t ∈ {1, . . . , x},
except that this move is blocked if t ∈ {1, 2, 3} and x ∈ A and y ∈ B.

(II) (Restricted Nim move.) (a) (x, y) → (x− t, y) for any 0 < t ≤ x; or
(b) (x, y) → (x, y − t) for any 0 < t ≤ y; or
(c) (x, y) → (y − t, x) for any 0 < t ≤ y, except that this move is blocked
if x ∈ A ∩B and y ∈ B.

Theorem 1. For the game Freak, P = T .

Example 1. We refer the reader to Table 1.

• The moves from T to T (4, 6) → (3, 5), (12, 20) → (11, 19) are blocked
because 4, 12 ∈ A and 6, 20 ∈ B ((I), t = 1).

• Similarly, the moves (14, 22) → (12, 20), (28, 45) → (26, 43) are blocked
((I), t = 2).

• Also (14, 22) → (11, 19), (43, 69) → (40, 66) are blocked ((I), t = 3).

• (12, 20) → (7, 12) and (19, 31) → (11, 19) are blocked by (II)(c), since
12 ∈ A ∩B, 19 ∈ A ∩B; and 20, 31 ∈ B.

• For every s > 13, (13, s) → (8, 13) is not blocked by (II)(c), since 13 ̸∈ A.

• Notice that moves from the complement T to T such as (15, 34) → (15, 24),
(15, 22) → (14, 22) or (10, 17), (11, 16) → (8, 13) are not blocked.

It should be clear that a winning strategy for Freak can be effected by
means of the P -positions. Given any game position (x, y) subject to (2), we have
only to find out to which sequence, A or B, x and y belong. The complexity of
the implied computation will be discussed later on.
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3 Preliminaries

For proving Theorem 1, we begin by collecting a few facts about the sequences
A and B.

For any number r ∈ R>0 and n ∈ Z≥0, let ∆⌊nr⌋ = ⌊(n+ 1)r⌋ − ⌊nr⌋.

Lemma 1. (i) Each of the sequences A and B is strictly increasing.
(ii) For every n ≥ 0, ∆⌊nα⌋ = 2 =⇒ ∆⌊nβ⌋ = 2.

Proof. Note that 1 < α < β < 2. These inequalities imply:

∆⌊nα⌋ ∈ {1, 2}, ∆⌊nβ⌋ ∈ {1, 2} for all n ∈ Z≥1. (3)

Also note that ∆⌊nα⌋ = 2 if and only if (n + 1)α = i + 1 + δ1, nα = i − δ2
for some integer i = i(n), and 0 < δ1, δ2 < α − 1 < 0.08. For such n we have,
(n+1)β = (n+1)(α+2/3) = i+1+δ1+2(n+1)/3; nβ = n(α+2/3) = i−δ2+2n/3.
Put n = 3k + i, i ∈ {0, 1, 2}. Then (n + 1)β = i + 1 + δ1 + 2k + 2(i + 1)/3,
nβ = i− δ2 + 2k + 2i/3. We consider three cases:
1. i = 0. Then ∆⌊nβ⌋ = (i+ 2k + 1)− (i− 1 + 2k) = 2.
2. i = 1. Then ∆⌊nβ⌋ = (i+ 2k + 2)− (i+ 2k) = 2.
3. i = 2. Then ∆⌊nβ⌋ = (i+ 2k + 3)− (i+ 2k + 1) = 2.
Thus ∆⌊nα⌋ = 2 =⇒ ∆⌊nβ⌋ = 2. This implies,

⌊nβ⌋ − ⌊nα⌋ is a nondecreasing function of n. (4)

The properties (3) immediately imply (i). Let ⌊nα⌋ = K, ⌊nβ⌋ = L. If ∆⌊nα⌋ =
2, then ⌊(n+ 1)α⌋ = K + 2, ⌊(n+ 1)β⌋ = L+ δ, where δ ∈ {1, 2} by (3). Now
⌊nβ⌋ − ⌊nα⌋ = L − K, ⌊(n + 1)β⌋ − ⌊(n + 1)α⌋ = L − K + δ − 2. By (4),
L−K + δ − 2 ≥ L−K, so δ ≥ 2. By (3), δ = 2, establishing (ii). �

Corollary 1. For every n ≥ 0, ∆⌊nβ⌋ = 1 =⇒ ∆⌊nα⌋ = 1.

Proof. In view of (3), this is the contrapositive statement of Lemma 1(ii). �

Lemma 2. We have,
(i) A ∪B = Z≥0 (every nonnegative integer appears in A ∪B).
(ii) Every nonnegative integer N is assumed at most twice in A ∪ B. If N
appears twice, it appears once in A and once in B.
(iii) bm = an =⇒ m ≤ n.
(iv) |A ∩B| = ∞.

Proof. (i) It is convenient to put ξ1 = α−1, ξ2 = β−1. Consider the sequence
ζ = {α, β, 2α, 2β, 3α, 3β, . . .}. It suffices to show that if M ≥ 1 is any integer
and there are NM members of ζ < M , then NM+1 ≥ NM + 1. The number of
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n > 0 satisfying nα < M is ⌊Mξ1⌋, and the number of n > 0 satisfying nβ < M
is ⌊Mξ2⌋. So NM = ⌊Mξ1⌋+ ⌊Mξ2⌋. Now

Mξ1 − 1 < ⌊Mξ1⌋ < Mξ1, Mξ2 − 1 < ⌊Mξ2⌋ < Mξ2.

Adding, (3M/2)− 2 < NM < 3M/2. If M = 2t is even, then 3t− 2 < NM < 3t,
so NM = 3t− 1, and then 3t− 1/2 < NM+1 < 3t+3/2, so NM+1 ∈ {3t, 3t+1}.
Thus NM+1 −NM ∈ {1, 2}. If M = 2t + 1, M + 1 = 2t + 2, we obviously also
get NM+1 −NM ∈ {1, 2}, proving (i).

(ii) Since each of A and B is strictly increasing, N can appear at most once
in each.

(iii) Follows immediately from the fact that α < β.
(iv) We have to show that NM+1 −NM = 2 is assumed for infinitely many

M ∈ Z≥0. If NM+1 −NM = 1 for all large M then a simple density argument
shows that ξ1 + ξ2 = 1, a contradiction. �

Lemma 3. ∆⌊nβ⌋ = 1 implies

∆⌊(n− 2)β⌋ = ∆⌊(n− 1)β⌋ = ∆⌊(n+ 1)β⌋ = ∆⌊(n+ 2)β⌋ = 2.

Proof. We have ∆⌊nβ⌋ = 1 if and only if N < nβ < N +1 < (n+1)β < N +2
for some N ∈ Z≥0. Since the fractional parts {nβ}n≥1 are dense in the reals
(Kronecker’s Theorem), this inequality holds for infinitely many pairs of integers
(n,N). Since 1.74 < β < 1.75, we then have N + 3 < (n + 2)β < N + 4 <
N +5 < (n+3)β < N +6. Then ∆⌊(n+1)β⌋ = ∆⌊(n+2)β⌋ = 2. We also have
∆⌊nβ⌋ = 1 if and only if N−1 > (n−1)β > N−2 > N−3 > (n−2)β > N−4,
so ∆⌊(n− 2)β⌋ = ∆⌊(n− 1)β⌋ = 2. �

Lemma 4. If ∆⌊nα⌋ = 2, then ∆⌊(n+ i)α⌋ = 1 for at least all i ∈ {1, . . . , 11}.

Proof. Follows from the fact that ⌊{α}−1⌋ = 12, where {x} denotes the frac-
tional part of x. �

Definition 1. For any real number x and any n ∈ Z≥0, ∆⌊nx⌋ is called an
x-difference.

Lemma 5. For n, r ∈ Z≥1, let

⌊(n+ r)β⌋ − ⌊nβ⌋ = ⌊(n+ r)α⌋ − ⌊nα⌋ = t. (5)

Then r ≤ 2, t ≤ 3; and r = 2 with t = 3 is achieved.

Proof. We wish to maximize r. If any two consecutive β-differences are 2, then
the corresponding α-differences cannot be 2 by Lemma 4. So one of the two
consecutive β-differences must be 1. The corresponding α-difference is then also
1 by Corollary 1. The next β-difference is then necessarily 2 (Lemma 3), and
the next α-difference can be 2. Then the next β-difference is still 2, but the
corresponding α-difference is 1. Thus r ≤ 2, t ≤ 3; and r = 2 with t = 3 in (5)
is achieved, for example for n = 11. �
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Lemma 6. Let (an, bn) T . Then (an − t, bn − t) = (am, bm) ∈ T for no t > 3.

Proof. Follows immediately from Lemmas 3, 4 and 5. �

4 Proof of the Main Theorem

We need to show P = T . Since Freak is acyclic, it suffices to show two things:
Any move from any position in T results in a position in T ; and from any
position in T , there exists a move to a position in T .

We precede these two aspects with a notation and a proposition.

Notation 1. For every n ∈ Z≥ 0, let dn := bn − an.

Lemma 7. (i) For every n ∈ Z≥ 0, dn+1 − dn ∈ {0, 1}.
(ii) dn is a nondecreasing function of n.
(iii) ∪n≥0dn = Z≥0.

Proof. (i) We have, dn+1 − dn = ∆⌊nβ⌋ −∆⌊nα⌋. By (3), ∆⌊nα⌋ ∈ {1, 2}. If
∆⌊nα⌋ = 1, then ∆⌊nβ⌋ ∈ {1, 2}. If ∆⌊nα⌋ = 2, then ∆⌊nβ⌋ = 2 by Lemma 1.
(ii) It follows immediately from (i) that dn is nondecreasing.
(iii) The fact that the multiset ∪n≥0dn contains every nonnegative integer also
follows immediately from (i). �

Any move from any position in T results in a position in T . Let (an, bn) ∈ T ,
n ≥ 1. We have to show that (an, bn) → (am, bm) ∈ T for no m ≥ 0. For
t ∈ {1, 2, 3}, (an, bn) → (an − t, bn − t) is blocked by (I). For t > 3, (an − t, bn −
t) → (am, bm) is impossible (Lemma 6). Since A and B are strictly increasing,
a move of type B cannot lead from T to T .

From any position in T , there exists a move to a position in T . Suppose (x, y) ∈
T , 0 ≤ x ≤ y. We first deal with the case x = y := t. For t = 1, (t, t) = (1, 1)
is in T ; (2, 2) → (0, 0) is not blocked since 2 ̸∈ B. Also (3, 3) → (2, 3) ∈ T is
not blocked: it is a move of the form (II)(a). For t > 3, taking (t, t) is never
blocked. Moreover, (0, y) → (0, 0) and (1, y) → (1, 1) are not blocked. We may
thus assume 1 < x < y. Then x = an = bm implies n > m, since β > α, so B
increases at least as fast as A (CF Lemma 2(iii)).

Since A, B cover the nonnegative integers (Lemma 2(i)), we have either
(i) x = an or (ii) x = bn for some n ∈ Z≥0. Of course Lemma 2(iv) implies that
x = an = bm for infinitely many n > m > 1.

(i) x ∈ B, say x = bm.
(i1) x ̸∈ A. Then the Nim move y → am is a non blocked move of the form
(II)(c).
(i2) x ∈ A, say x = an. We have 1 < m < n.
(i21) y > bn. Then do y → bn. This move is of the form (II)(b). It is not
blocked, since bn > x = an.
(i22) y < bn. We consider two cases.
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1. y ∈ B, say y = bk. Then k < n, so can make the (II)(a) move x → ak.
2. y ̸∈ B. Then move y → xm. It is an unblocked move of the form (II)(c).

(ii) x ∈ A, say x = an. The case where also x ∈ B, say x = bm, was dealt
with in (i2) above, so we may assume x ̸∈ B.
(ii1) y > bn. Then move y → bn. This Nim move is not blocked, since bn >
an = x. The move is of the form (II)(b).
(ii2) y < bn. If y ∈ B, say y = bk, then we have k < n, so we can move x → ak,
as in (i22)1. So we may assume y ̸∈ B. We have 1 < an = x < y < bn. Let
d := y − x = y − an < bn − an = dn. By Lemma 7(iii), there exists k < n
such that dk = d, that is, bk − ak = y − an, so y − bk = an − ak := t. Then
the Wythoff move (x, y) → (an − t, y − t) = (ak, bk) ∈ T is not blocked, even if
t ∈ {1, 2, 3}, since y ̸∈ B.

�

5 A Linear Winning Strategy

Given any game position (x, y) of Freak subject to (2), it obviously suffices
to know whether x ∈ A, x ∈ B, y ∈ A, y ∈ B. The proof of Theorem 1 then
enables us to win if (x, y) ∈ T .

Theorem 2. The computations to determine whether or not any of x ∈ A, x ∈
B, y ∈ A, y ∈ B holds is linear in the succinct input size log x+ log y = log xy
of any input game position (x, y), 1 ≤ x ≤ y.

Proof. Since α is irrational and 1 < α < 2,

x = ⌊nα⌋ ⇐⇒ x < nα < x+1 ⇐⇒ x

α
< n <

x+ 1

α
⇐⇒

⌊
x+ 1

α

⌋
=

⌊x
α

⌋
+1.

Therefore either x = ⌊nα⌋ = an, where n = ⌊(x+1)/α⌋, or else, by Lemma 2(i),
x = ⌊nβ⌋ = bn, where n = ⌊(x+ 1)/β⌋.

Since also 1 < β < 2, we can compute the same way whether y = ⌊nβ⌋,
together with the multiplier n and/or whether y = ⌊nα⌋ with its multiplier
n. These computations require that α and β be computed to a precision of
only O(log y) digits. Once we made these linear computations, we make the
appropriate move prescribed in sub-steps of (i) or (ii) of the proof of Theorem 1.
�

6 An Alternate Linear Winning Strategy

We now present a strategy that depends on two exotic numeration systems.
Recall that any positive irrational α can be expanded in a simple continued
fraction:

α = a0 +
1

a1 +
1

a2+
1

a3...

:= [a0, a1, a2, a3 . . .],
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where a0 ∈ Z≥0, ai ∈ Z≥1, i ≥ 1. The convergents of the continued fraction
are the rationals pn/qn = [a0, . . . , an], and they satisfy the recurrences (see e.g.,
[13], ch. 10):

p−1 = 1, p0 = a0, pn = anpn−1 + pn−2 (n ≥ 1),

q−1 = 0, q0 = 1, qn = anqn−1 + qn−2 (n ≥ 1).

For the case a0 = 1 (then 1 < α < 2), one of the numeration systems, the
p-system, is spawned by the numerators of the convergents (see [9], [5]): Every
positive integer N can be written uniquely in the form

N =
∑
i≥0

sipi, 0 ≤ si ≤ ai+1, si+1 = ai+2 =⇒ si = 0 (i ≥ 0).

Denote by S, T , the numeration systems based on the numerators of the
convergents of the simple continued fraction expansion of α, β, respectively.
For any positive integer N , let RS(N), RT (N) denote the representations of
N in the S, T numeration systems, respectively. We say that N is S-vile, T -
vile if RS(N), RT (N) respectively ends in an even number (possibly 0) of 0s.
Analogously, N is S-dopey , T -dopey if RS(N), RT (N) respectively ends in an
odd number of 0s.

Note 1. The names “evil” and “dopey” are inspired by the evil and odious
numbers, those that have an even and an odd number of 1’s in their binary
representation respectively. To indicate that we count 0s rather than 1s, and
only at the tail end, the “ev” and “od” are reversed to “ve” and “do” in “vile”
and “dopey”. “Evil” and “odious” were coined by Elwyn Berlekamp, John
Conway and Richard Guy [1].

We notice that

α = [1, 12, 1, 2, 2, 2, α], β = [1, 1, 2, α].

The periodicities are of course a manifestation of Lagrange’s Theorem ([13],
ch. 10). For α we have p0 = 1, p1 = 13, p2 = 14, p3 = 41, p4 = 96, . . . . For β,
p0 = 1, p1 = 2, p2 = 5, p3 = 7, p4 = 89, . . . . Also s0 ≤ a1 = 1, so s0 ∈ {0, 1} for
both numeration systems. In Table 2 we exhibit RS(N) on the left-hand side
and RT (N) on the right-hand side for the first few positive integers N .

Table 2. Representation of 1 ≤ n ≤ 15 in the S- (left) and T -system (right).
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14 13 1 n 7 5 2 1
0 0 1 1 0 0 0 1
0 0 2 2 0 0 1 0
0 0 3 3 0 0 1 1
0 0 4 4 0 0 2 0
0 0 5 5 0 1 0 0
0 0 6 6 0 1 0 1
0 0 7 7 1 0 0 0
0 0 8 8 1 0 0 1
0 0 9 9 1 0 1 0
0 0 10 10 1 0 1 1
0 0 11 11 1 0 2 0
0 0 12 12 1 1 0 0
0 1 0 13 1 1 0 1
1 0 0 14 2 0 0 0
1 0 1 15 2 0 0 1
1 0 2 16 2 0 1 0
1 0 3 17 2 0 1 1
1 0 4 18 2 0 2 0
1 0 5 19 2 1 0 0
1 0 6 20 2 1 0 1

Comparing Tables 1 and 2, notice that, at least for the range n ∈ [1, 20]:
n ∈ A if and only if n is S-vile; n ∈ B if and only if n is T -vile. This property
holds in general – see [5], sect. 5. It follows immediately that the game rules of
Freak, in terms of the S- and T -numeration systems, can be stated as follows:

(I) (Restricted Wythoff move.) (x, y) → (x− t, y− t) for every t ∈ {1, . . . , x},
except that this move is blocked if the following three conditions hold:
(a) t ∈ {1, 2, 3}, (b) x is S-vile, (c) y is T -vile.

(II) (Restricted Nim move.) (a) (x, y) → (x− t, y) for any 0 < t ≤ x; or
(b) (x, y) → (x, y − t) for any 0 < t ≤ y; or
(c) (x, y) → (y − t, x) for any 0 < t ≤ y except that this move is blocked
if x is both S-vile and T -vile and y is T -vile.

The computation whether x or y is S-vile or T -vile can obviously be done
in linear-time in the input size log xy of any game position (x, y). It follows
that also the winning strategy based on the two numeration systems is linear.
It has the advantage of avoiding the floor function and division, both of which
are needed for our first winning strategy.

7 Epilogue

Preliminary Thoughts. We presented two linear winning strategies for a game
on m = 2 piles of tokens for which the P -positions constitute a single pair of
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integers (A1, A2) (in contrast to [2] and [8]), (A1, A2) satisfy |A1 ∩ A2| = ∞,
but |A1 ∪A2| = Z≥1. It appears to be a first such case.

Freak, the name of the game, derives from fractional Beatty game. The
terminology “vile” and “dopey” is inspired by the evil and odious numbers,
those that have an even and an odd number of 1’s in their binary represen-
tation respectively. To indicate that we count 0s rather than 1s, and only at
the tail end, the “ev” and “od” are reversed to “ve” and “do” in “vile” and
“dopey”. “Evil” and “odious” were coined by Elwyn Berlekamp, John Con-
way and Richard Guy while composing their famous book Winning Ways [1].
Urban Larsson suggested the particular values of α, β used in this work. A
“fractional Beatty theorem” was recently proved by Peter Hegarty [14] (follow-
ing a suggestion of mine). In previous papers we have shown that a judicious
choice of numeration systems can improve the efficiency of winning strategies
of various games, much as data structures in Computer Science. In the present
paper, numeration systems are the tool used uniformly for both formulating and
analyzing Freak.

Further questions.
(1) Extend the above results to an infinite set of fractional Beatty games, for

example, for α = ℓφ/(2k+1), β = ℓφ2/(2k+1), k, ℓ any fixed positive integers.
(2) Are there “simpler” game rules for the same set of P -positions considered

here?
(3) A move R = (r1, . . . , rm) ̸= (0, . . . , 0) in an m-pile subtraction game is

invariant if R can be made from every game position (s1, . . . , sm) for which
si − ri ≥ 0 for i = 1, . . . ,m. An m-pile subtraction game is invariant if all its
moves are invariant. Otherwise the game is variant. The move rules for Freak
are obviously variant. Duchêne and Rigo [4] conjectured that for m = 2, given
any two complementary Beatty sequences A,B, there exists an invariant game
with (A,B) ∪ {(0, 0)} as its P -positions. This conjecture was proved in [16]. Is
there an invariant game with the P -positions presented in sect. 2 above?

(4) More generally, can the invariance theorem proved in [16] be extended in
the following sense: Is there a nontrivial subset of non-complementary Beatty
sequences A,B, for which there always exists an invariant game with (A,B) ∪
{(0, 0)} as its P -positions?

(5) Let r, t ∈ R>0. The equation α−1 + (α + t)−1 = r has the positive
solution α = (2r−1 − t +

√
t2 + 4r−2)/2. For every set of values (r, t) ∈ R2

>0

for which α is irrational one can define, in principle, an (r, t)-Beatty game. So
there is a continuum of such games. If r and t are restricted to be rational we
get a denumerable number of games. (One can even consider such games when
α is rational, see [7].) For example, for r = 3/2, t = 2, α = (

√
13 − 1)/3 (so

2/3 < α < 1), and β = α+ 2 = (
√
13 + 5)/3. It may be of interest to formulate

game rules for a game whose P -positions are ∪n≥0(an, bn), where an = ⌊nα⌋,
bn = ⌊nβ⌋. In this game there are infinitely many integers that are repeated
(at most twice) in {an}n≥0, in addition to |A ∩ B| = ∞. But there is the nice
property that bn = an + 2n for all n ≥ 0, as can be seen in Table 3 below.

Table 3. The first few terms of the P -positions (an, bn).
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

an 0 0 1 2 3 4 5 6 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 19 20 21 22 23

bn 0 2 5 8 11 14 17 20 22 25 28 31 34 37 40 43 45 48 51 54 57 60 63 65 68 71 74 77

(6) Investigate the Sprague-Grundy function of fractional Beatty games in
an attempt to give a poly-time winning strategy for playing them in a sum.

(7) Consider take-away games on m > 2 piles, where the m sequences
A1, . . . , Am constituting the P -positions do not split Z≥1.

(8) Consider partizan take-away games where the P -positions do not split
Z≥1.

(9) Investigate Fractional Beatty games for misère play.

Acknowledgment. Thanks to Urban Larsson, for his useful comments at
the beginning of this work.
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