Theory of Combinatorial Games

Aviezri S. Fraenkel Robert A. Hearn Aaron N. Siegel
February 12, 2014

fraenkel @wisdom.weizmann.ac.il
http://www.wisdom.weizmann.ac.il/~ fraenkel
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science
Rehovot 76100, Israel

bob@hearn.to
H3 Labs LLC, Palo Alto, CA, USA

aaron.n.siegel@gmail.com
Twitter, San Francisco, CA, USA

Aim: To present a systematic development of the theory of combinatorial
games from the ground up. Approach: Computational complexity. Combi-
natorial games are completely determined; the questions of interest are effi-
ciencies of strategies. Methodology: Divide and conquer. Ascend from Nim
to CHESS and GO in small strides at a gradient that’s not too steep. Pre-
sentation: Mostly informal; examples of combinatorial games sampled from
various strategic viewing points along scenic mountain trails illustrate the
theory. Add-on: A taste of constraint logic, a new tool to prove intractabili-
ties of games.



1 Motivation and an Ancient Roman War-Game
Strategy

The current mainstream of the family of combinatorial games consists of
two-person games with perfect information (unlike some card games where
information is hidden), without chance moves (no dice), and outcome re-
stricted to (lose, win), (tie, tie) and (draw, draw) for the two players who
move alternately (no passing).

Instead of the long terminology “combinatorial game(s)”, we shall usually
simply write “game(s)”. In normal play, to win a game means to make the
last move in it. This is the main concern of game theory, covered in sections
2-5. But in section 6, we expose the modern theory of misére play, where the
player making the last move loses. A tie is an end position with no winner
and no loser, as may occur in tic-tac-toe, for example. A draw is a “dynamic
tie”, i.e., a non-end position such that neither player can force a win, but each
can find a next non-losing move. (In “noncombinatorial” game theory, each
player receives a payoff at the end of the game. For combinatorial games it
is natural to assign a payoff of 4+1 to the winner, —1 to the loser and 0 for
tying or drawing: once play is in a draw cycle it is abrogated. Our games
are zero-sum games in this sense.)

The modern theory of combinatorial games is portrayed in the ground-
breaking work of Conway |Con01|, the encyclopedic compilation of Berlekamp,
Conway and Guy [BCGO04], the attractive textbook by Albert, Nowakowski
and Wolfe [ANWO7], and the authoritative graduate-level book of Siegel
[Siel3] that studies the modern theory of partizan games and misére play.

The primeval and simplest combinatorial game is NiM: Given m piles
of finitely many tokens, a move consists of selecting a single non-empty pile
and removing from it a positive number of tokens, that is, at least one, and
up to and including the entire pile. The player first unable to move loses,
the opponent wins (normal play). For m = 1, player I can win if the pile
is nonempty, simply by removing it entirely. For m = 2, player I can win
if the piles are of unequal size, by a move that equalizes their size, followed
by imitating on one pile what player II does on the other. For m > 2,
the winning strategy, first given in [Bou02]|, is quite surprising, yet simple:
compute the XOR, (eXclusive OR) of the binary representation of the pile
sizes. If the resulting binary nim-sum is non-zero, the nezt player (player I)
has a move making it zero (a winning move). If it is zero, every move will



make it non-zero (a losing move). This is shown in section 2 in the more
general setting of “NiM-type” games. Thus for m = 3 and pile sizes 1, 2, 3,
a simple case analysis shows that the previous player (player II) can win.
Indeed, the nim-sum 1 ¢ 26 3 is 0.

As an exercise, can you win by beginning to play in a game of NIM with
4 piles of sizes 2, 3,5, 77 If so, do you have a unique winning strategy?

The family of combinatorial games contains simple games such as NiM,
as well as seemingly complex games such as CHECKERS, CHESS and GoO.
The fundamental question that arises naturally is why some games, such as
NiMm, are easy to solve, whereas others in the family, such as GO, seem so
complex? The quest for answers to this problem motivates this survey.

For throwing some light on the question, a Roman Casars’ motto is
adopted:

DIVIDE AND CONQUER .

There are several mathematical differences between NiM-type and CHESS-
type games. After identifying them, a concentrated attack is launched on
each of them separately, which seems to have a better chance of success than
trying in vain to scale the sheer cliff separating NiM from CHESS. Thus, we
ascend from NIM towards CHESS and GO at a moderate gradient, by grad-
ually introducing into NIM more and more complications in a natural order
of increasing complexity. The adventures occurring on the way comprise the
story of this chapter.

In section 2 we review the classical theory of acyclic games, sum of games
and the Sprague-Grundy function, which is the main tool for solving acyclic
games. We also show that complexities of games are normally much higher
than those encountered in optimization problems such as the Traveling Sales-
person Problem.

An “apparent” difference between NiM and CHESS is the board which
exists for the latter but not for the former. However, Figure 1 shows that
also NIM can be considered as a board game: a; indicates a nim-heap of size
7, and the directed edges indicate the permissible moves. Thus placing a
token on each of the vertices a;, a; and as and moving them along directed
edges, where any number of tokens may reside on any vertex, is isomorphic
to NiM with pile sizes 1, 2, 3. Conclusion: this “apparent” difference is not
really a mathematical difference.

Here are some more substantive differences:



E—®

@)
@)
@)

Figure 1: NiM as a board game.
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e Cycles. NiM-type games are finite and “acyclic”, i.e., there is an under-
lying “well-ordering principle” which guarantees that no position is assumed
twice. This is not the case for CHESS-type games. Applying the Divide And
Conquer Principle, we deal with such “cyclic” games separately in section 3,
where it is shown that cycles indeed destroy the classical theory. A general-
ized theory is developed there which recovers a polynomial strategy for cyclic
games.

e Token Interactions. Another difference is that in NIM-type games,
considered as board games, tokens coexist peacefully on the same vertex
(board square), whereas they interact in various ways such as jumping, de-
flecting, capturing, etc., in CHESS-type games. Many of these interactions
cause the games to become PSPACE-hard (notion explained near the end of
section 2) even in simplified form, e.g., when played on planar or acyclic
or bipartite graphs. However, if both tokens disappear on impact, a “just
barely polynomial” strategy can be given for general cyclic digraphs (directed
graphs). This topic is studied in section 4.

e Partizanship. A game is impartial if the set of options (positions
reached in a single move) of every position is the same for the two players.
If this doesn’t necessarily hold, the game is partizan. NiM-type games are
impartial, whereas CHESS-type games are partizan (the “black” player cannot
move a white piece and vice versa). Note that the set of impartial games
is a subset of the set of partizan games. It turns out that partizan games,
taken up in section 5, are in general PSPACE-hard even on acyclic digraphs;



see Yedwab |Yed85|, Morris [Mor81]. See also Pultr and Morris [PM84].

e Termination Set. Another difference concerns the conventions for
ending the play of the game, i.e., the termination set 7. Roughly, the com-
plexity of the strategy seems to increase with the size |7| of 7. The simplest
games are those played on a digraph G, where 7 is the set of leaves of G (ver-
tices of outdegree 0), followed by those in which 7 consists of all positions
whose only options are leaves — such as in misére play: the player making
the last move loses — to cases where 7 is even larger, such as in CHESS and
GoO. A theory for general 7 has yet to be developed, but we treat misére play
in section 6.

As we progress from the easy games to the more complex ones, we will
develop some understanding for the poset of tractabilities and efficiencies of
game strategies: in the realm of existential questions, tractabilities and effi-
ciencies are, by and large, linearly ordered, from polynomial to exponential.
However, as explained near the end of section 2, game problems are formu-
lated by an — often unbounded — number of alternating quantifiers. For such
problems the notion of a “tractable”, “polynomial” or “efficient” computation
— defined formally in Definition 1, section 2 — is much more complex.(Which
is more tractable: a game that ends after four moves, but it’s undecidable
who wins [Rab57], or a game requiring an Ackermann function of moves to
finish but the winner can play randomly, having to pay attention only near
the end |[FLNS88|, |[FN85] 7) Since we are concerned with game complexi-
ties, we present, in section 7, a modern tool for proving game intractabilities
conveniently and efficiently. In section 8, the Conclusion, we briefly illumi-
nate our ascent from NIM to CHESS and Go, and indicate possible further
directions of combinatorial game theory.

2 The Classical Theory, Sum of Games, Com-
plexity

In this section we will see how to play “arbitrary” finite acyclic games such
as BEAT DouG (Figure 2). (DouG — “DAG”, Directed Acyclic Graph.)
Place one token on each of the four starred vertices. A move consists
of selecting a token and moving it, along a directed edge, to a neighboring
vertex on this acyclic digraph. As usual we consider normal play, so the
player making the last move wins. Tokens can coexist peacefully on the



Figure 2: Beat DOUG on this DAG (directed acyclic graph).

same vertex. For the given position, how much time does it take to:

(a) compute who can win;
(b) compute an optimal next move;

(c) consummate the win, that is, actually make the last move?

Denote by N and N* the set of all nonnegative integers and the set of all
positive integers respectively. Following the divide and conquer methodology,
let’s begin with a more structured digraph, rather than solving immediately
the “arbitrary” BEAT DOUG. Given n € NT (the initial score) and ¢t € NT
(the maximal step size), a move in the game SCORING consists of selecting
i € {1,...,t} and subtracting ¢ from the current score, initially n, to generate
the new score. Play ends when the score 0 is reached. The player reaching 0
wins (normal play). Notice that NIM is the special case t = co of SCORING.

The digraph G = (V, E) for SCORING is shown in Figure 3 for n = 8 and
t = 3: it is an acyclic digraph, where V' is the set of game positions, and
(u,v) € E if and only if there is a move from u to v (then v is an option
of u). A position (vertex) u € V is labeled N (for Next player win) if the
player moving from u can win; otherwise it’s a P-position (Previous player
win). Denote by P the set of all P-positions, by A the set of all N-positions,
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and by F'(u) the set of all options of any vertex u. For any acyclic game, the
partition of the vertex-set into , A exists uniquely and satisfies,

weP ifandonlyif F(u) CN, (1)

weN ifandonlyif F(u)NP #0. (2)

In words: u is a P-position if and only if all its options (direct followers)
are N-positions; and v is an N-position if and only if it has an option in P.

As suggested by Figure 3, we have P = {k(t+1): k € N7}, so N =
{{0,...,n} \P}. The winning strategy consists of dividing n by ¢+ 1. Then
n € P if and only if the remainder r is zero. If » > 0, the unique winning
move is from n ton —r.

OO CSCR0SCSCROR0

Figure 3: The digraph for SCORING, with initial score n = 8 and maximal step
t = 3. Positions marked N are wins and P are losses for the player moving from
those positions.

Is this a tractable strategy? (“Tractable” — see Definition 1.)

INPUT s1ZE: O(logn) (succinct input).
STRATEGY COMPUTATION: O(logn) (division of n by t).
LENGTH OF PLAY: [n/(t+1)].

Thus the computation time is linear in the input size, but the length of
play is exponential!

To the “run-of-the-mill-algorithmicians” the latter fact dooms the game
as intractable. It may be quite a surprise to them that it does not prevent the
strategy from being tractable: whereas we dislike computing in more than
polynomial time, we observe that at least some members of the human race
relish to see some of its members being tormented for an exponential length
of time, from before the era of the Spanish matadors and inquisition, through
soccer and tennis, to CHESS and GO! But there are other requirements for
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making a strategy polynomial as we will see presently, so at present let’s say
that the strategy is tractable.

Recapping our story up to now, we have made some progress: we got a
tractable strategy for winning in SCORING. But what about the case when
we have k scores ny,...,n; € NT and ¢ € NT7 A move consists of selecting
one of the current scores and subtracting from it some 7 € {1,...,t}. Play
ends when all the scores are zero. Figure 4 shows an example (k = 4). This
is a sum of SCORING games, itself also a SCORING game. The notion of sum
often permits us to simplify the strategy analysis, if the components of the
game are disjoint. For example, NIM is the sum of its piles. It’s easy to see
that the game of Figure 4 is equivalent to the game played on the digraph of
Figure 5, with tokens on vertices 5, 6, 7 and 8. A move consists of selecting a
token and moving it right by not more than ¢t = 3 places. Tokens can coexist
on the same vertex. Play ends when all tokens reside on 0. What’s a winning

strategy?

xﬁa\
AN AN AN

Figure 4: A SCORING game consisting of a sum of four SCORING games. Here
k=4,n =8 ny=7,n3=6,n4=>5,and t = 3.

n,=n,

FON
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We hit two snags when trying to answer this question:

(i) Though the sum of P-positions is in P, the sum of N-positions is in
P UN. Thus a game of two tokens, one on each of 5 and 7, is seen to be
an N-position (the move 7 — 5 clearly results in a P-position), whereas the
sum of a token on 3 and 7 is seen, by inspection, to be a P-position. So
the simple P-, N-strategy breaks down for sums, which arise frequently in
combinatorial game theory.



(ii) The game-graph has exponential size in the input size Q(3F_; log n;)
of the “regular” digraph G = (V, E) (with |V| = n+1, where n = max; n;) on
which the game is played with & tokens (Figure 5 in our case). However, G is
not the game-graph of the game: each tuple of k tokens on G corresponds to
a single vertex of the game-graph, whose vertex-set thus has size (k:") — the
number of k-combinations of n+1 distinct objects with at least k repetitions.
For k = n this gives (27?) = O(4"/+/n), which is doubly exponential in the
input size!

TR

Figure 5: A game on a graph, but not a game-graph.

The main contribution of the classical theory is to provide a polynomial
strategy for sums despite the exponential size of the game-graph. On G,
label each vertex u with the least nonnegative integer not among the labels
of the options of u (see top of Figure 5). These labels are called the Sprague—
Grundy function values of the game on G, or the g-function for short [Spr36|,
|Gru39]. It is a function from the vertices of a digraph into the nonnegative
integers, defined recursively by

9(u) = mex g(F(u)),
where for any subset S C N,
mex S =minN\ S

is the least nonnegative integer not in S. Notice that g of the empty set is
0. The function g exists uniquely on every finite acyclic digraph.

For u = (uy,...,ux), a vertex of the game-graph (whose very construction
entails exponential effort), we have

g(u) = g(uw)®---Dg(ur),  P={u:gu)=0}, N ={u:g(u)>0},

where & denotes nim-sum (summation over GF(2), also known as ezclusive
or, which we already met in section 1). To compute a winning move from an
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N-position, note that there is some i for which g(u;) has a 1-bit at the binary
position where g(u) has its leftmost 1-bit. Reducing g(u;) appropriately
makes the NiM-sum 0, and there is a corresponding move with the i-th token.
For the example of Figure 5 we have

gb)®g6)®g(7)DgB)=1020300=0,

a P-position, so every move from this position is losing.

Is this Sprague-Grundy strategy polynomial? For SCORING, the remain-
ders ri, ..., 7, of dividing ny, ..., ng by t+1 are the g-values, as suggested by
Figure 5. The computation of each r; has size O(logn), where n = maxn,.
Since klogn < (k +logn)?, the strategy computation (items (a) and (b) at
the beginning of this section) is polynomial in the input size (k is a constant).
The length of play remains exponential.

Since the strategy for SCORING is tractable for a single game as well
as for a sum, we may say that SCORING has a polynomial strategy (see
Definition 1 below).

Now consider a general nonsuccinct acyclic digraph G = (V, E), that is,
the input size is not logarithmic: If the graph has |V| = n vertices and
|E| = m edges, the input size is O((m + n)logn) (each vertex is represented
by its index of size logn, and each edge by a pair of indices), and g can be
computed in O((m+n)logn) steps (by a “depth-first” search; each g-value is
at most n, of size at most logn). For a sum of &k tokens on the input digraph,
the input size is O((k + m + n)logn), and the strategy computation for the
sum can be carried out in O((k+m+n)logn) steps (nim-adding £ summands
of g-values). Note also that for a nonsuccinct digraph the length of play is
only linear rather than exponential, in contrast to a succinct (logarithmic
input size) digraph.

Our original BEAT DOUG problem is now also solved with a polynomial
strategy. Figure 6 depicts the original digraph of Figure 2 with the g-values
added in (we’ll see later how to compute g). Since 2@ 3@ 3 ® 4 = 6, the
given position is in A/. Moving 4 — 2 is a unique winning move. The winner
can consummate a win in polynomial time. Also notice that the strategy for
NiM is a special case of the Sprague-Grundy strategy.

However, the strategy of classical games is not very robust: slight per-
turbations in various directions can make the analysis considerably more
difficult. Thus the theory for WELTER, which amounts to NiMm with all piles
of distinct size, is rather complicated [Con01] (ch. 13).
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Figure 6: The beaten Doug.

We point out that there is an important difference between the strategies
of BEAT DouG and SCORING. In both, the g-function plays a key role.
But for the latter, some further property is needed to yield a strategy that’s
polynomial, since the input graph is (logarithmically) succinct. In this case
the extra ingredient is the periodicity modulo (£ + 1) of g, which was easy to
establish. For other succinct games, it may be harder to prove polynomiality,
such as for general octal games [BCGO04], Vol. 1.

2.1 Complexity, Hardness and Completeness

What, then, are tractable, polynomial and efficient games? We abstract some
of the properties of N1M, since it has a simple strategy, and it is the sum of
its piles.

Definition 1. Let ¢ > 1 denote arbitrary constants and denote by n the
size of a sufficiently succinct encoding of a digraph G = (V, E). A subset
T of combinatorial games with a polynomial strategy has the following
properties. For normal play of every G = (V, E) € T, and every position u
of G:

(a) The P-, N-, D- and tie-label of u can be computed in time O(n°)
(polynomial time; D denotes draw — see next section).
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(b) An optimal next move from any N- to a P-position and from any D-
to a D-position and from any non-end tie- to a tie-position can be
computed in time O(n¢) (polynomial time).

(¢) The winner can consummate a win in at most O(¢") moves (exponential
time).

(d) The subset 7" is closed under summation, i.e., Gy, Gy € T implies G +
Go € T. (Thus (a), (b), (¢) hold for Gy + G, for every independently
chosen position of G; and for every independently chosen position of

GQ.)

A subset 77 C T for which (a)-(d) hold also for misére play — the player
making the last move loses — is a subset of games with an efficient strategy.

A superset T' O T for which (a)—(c) hold is a superset of games with a
tractable strategy.

A game in some such T or T} or T is called polynomial or efficient or
tractable, respectively.

A decidable game! which has no polynomial (tractable) strategy is called
nonpolynomial (intractable).

Strictly speaking, in view of (c), the terminology “polynomial” ought to be
replaced by something else, such as “adequate”. But “polynomial” is so uni-
versally used for problems that are computationally reasonable, that “poly-
nomial” is preferred. Ramifications in several directions of Definition 1 are
considered in |Fra04].

To prove that a problem is tractable, polynomial or efficient, the normal
procedure is to construct an algorithm that has those properties. But how
do we show that, no matter how hard we try, a problem doesn’t have a
good solution?” We explain briefly a next best way to do something in this
direction.

Roughly, NP consists of all problems whose solution can be verified — not
necessarily found, only verified — using an amount of time that’s polynomial
in a succinct input size of the problem. It’s NP-complete if it’s among the
hardest problems in NP. It’s NP-hard if it’s NP-complete, except that it
needs at least a polynomial amount of time. PSPACE consists of all problems

LA problem is decidable if there exists an algorithm to solve all its instances. Otherwise
it is undecidable.
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that can be solved using a polynomial amount of space (hence of time), and
EXPTIME — all problems that can be solved in an exponential amount of
time. Hardness and completeness are defined analogously to the respective
definitions of NP. NP-complete problems share the following idiosyncrasies:

e [f any NP-complete problem will be shown to have a polynomial-time
algorithm, then all of them are polynomial, and if any is shown to have
a lower non-polynomial bound, then all of them are non-polynomial.

e [t is widely believed that NP-complete problems are non-polynomial.

e Completeness results are asymptotic. With any NP-complete problem
there is associated some parameter n, and the result holds for large n.
For games, n is typically the size of a side of the board.

Analogous results hold a-fortiori for PSPACE-complete problems. But EX-
PTIME-completeness is an unconditional provable intractability: any EXP-
TIME-complete problem has a lower exponential time bound for its solution,
asymptotically.

Optimization problems, such as TSP (Traveling Salesperson Problem)
are typically NP-complete, since there is a single existential quantifier (does
there exist a tour of cost < C'7). In a two-person game, the question whether
player I can win involves an alternating number of existential and universal
quantifiers: does player I have a move such that for every move of player II
there exists a move of player I --- such that player I wins? If the number of
alternating quantifiers is bounded, the game tends to be PSPACE-complete,
such as HEX |Rei81]; if their number is unbounded, it is typically EXPTIME-
complete, such as CHESS [FL81].

We do not know of any PSPACE-complete or EXPTIME-complete game
problem that has a known polynomial solution for finite boards as encoun-
tered in practice, such as 8 x 8 or 19 x 19. Thus, though completeness and
hardness are asymptotic properties, in practice they seem to say something
also about actual games.

3 Introducing Draws

In this section we learn how to beat Craig (Cyclic dIGRAph) efficiently.
The four starred vertices in Figure 7 contain one token each. The moves
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are identical to those of BEAT DOUG; tokens can coexist peacefully on any
vertex. The only difference is that now the digraph G = (V, E') may have
cycles and loops (the latter correspond to passing a move), or may be infinite.
In addition to the P- and N-positions, which satisfy (1) and (2), we now may
have also Draw-positions, D.

Definition 2. Given a game I', with game-graph G = (V, F'), where G may
be finite or infinite, acyclic or cyclic. Denote by O the set of all nonnegative
ordinals not exceeding |V'|. By recursion on n € O define the multisets,

P,={ueV, n=min m:F(u)QUN,},

<m

N,={u eV, n=min m: F(u)N (UR) # (}.
<m
Finally, let
7D:LJne(’)f)”7 N:UneONn7 D:V\(PUN)u
where D is the set of all D-positions.

The definition implies
weD ifandonly if F(u)NP=0and Flu)ND #0 .

Introducing cycles causes several problems:

e Moving a token from an N-position such as vertex 4 in Figure 8 to a
P-position such as vertex 5 is a nonlosing move, but doesn’t necessarily
lead to a win. A win is achieved only if the token is moved to the leaf
3. The digraph might be embedded inside a large digraph, and it may
not be clear to which P-option to move in order to realize a win.

e The partition of V into P, N and D is not unique, as it is for P and
N in the classical case. For example, vertices 1 and 2 in Figure 8,
if labeled P and N, would still satisfy (1) and (2), and likewise for
vertices 8 and 9 (either can be labeled P and the other N).

Both of these shortcomings can be remedied by introducing a suitable
counter function J — see [FY86].

For handling sums, we would like to use the g-function (Sprague-Grundy
function), but there are two problems:

14



Figure 7: Beat CRAIG in this Cyclic dIGRAph.

oo(() oo(() 0 1 0
C) (D=
oo() oo(1) 1 0 o0(0) o0 (0)
OO0 OO O
0
(9)
P

Figure 8: P-, N-, D- and 7-values for simple digraphs.

e The question of the existence of g on a digraph G with cycles or loops
is NP-complete, even if GG is planar and its degrees are < 3, with each
indegree < 2 and each outdegree < 2 [Fra81|. (NP-completeness with-
out these restrictions, or less restrictions, has been proved in [Chv73]|,
[vL76]|, [FYT79].)
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e The strategy of a cyclic game isn’t always determined by the g-function,
even if it exists.

This is one of those rare cases where two failures are better than one!
The second failure opens up the possibility that perhaps there’s another
tool that always works, and if we are optimistic, we might even hope that
it is also polynomial. There is indeed such a generalized g-function ~. It
was introduced by Smith [Smi66|; an improved version was (re)discovered in
|[FP75]; see also |[Con01] (ch. 11), [FY86|.

The ~-function is defined the same way as the g-function, except that
it can assume not only values in N, but in N U {oco}, where the symbol co
denotes a value bigger than every natural number. We also use the notation
v(u) = 0o(K), where K is the set of finite vy-values of the options of u. We
have y(u) = oo(K), if there is v € F(u) with y(v) = oo, and v has no
option w with y(w) equal to the least nonnegative integer not in K. The
formal definition is given in [FY86]. Figure 8 depicts y-values for some simple
digraphs. Every finite digraph with n vertices and m edges has a unique
v-function that can be computed in O(mnlogn) steps. This is a polynomial-
time computation, though bigger than the g-values computation.

To get a strategy for sums, define the generalized nim-sum as the
ordinary nim-sum augmented by:

a®oo(L)=c0(L)®a=00(LBa)=oc0c(a® L), ooK)&oo(L)=o0(),

where a € Nand L@ a = {l@a: 1 € L}. For a sum of k tokens on a digraph
G = (V,E), let u= (uy,...,u;). We then have y(u) = v(u1) & - - - & y(ug),
and

P = {uin(w) =0},
N = {u: 0<v(u) <oo}U{u: y(u) =co(K) and 0 € K},  (3)
D = {u:vy(u)=00(K) and 0 ¢ K}.

Thus a sum consisting of a token on vertex 4 and one on 8 in Figure 8 has
vy-value 1 & oo(1) = oo(1 & 1) = 00(0), which is an N-position (the move
8 — 7 results in a P-position). Also one token on 11 or else on 12 is an
N-position. But a token on both 11 and 12; or on 8 and 12 is a D-position
of their sum, with v-value oco(()). Also a token on 7 and 12 is a D-position,
since 00(0) &1 = 00(0® 1) = 0o(1). A token on 4 and 7 is a P-position of
the sum.
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With £ tokens on a digraph, the strategy for the sum can be computed in
O((k4+mn)logn) steps. It is polynomial in the input size ©((k+m+n)logn),
since k + mn < (k +m +n)? Also, for certain succinct “linear” graphs, v
provides a polynomial strategy. See [FT75].

Beat Craig is now also solved with a polynomial strategy. From the -
values of Figure 9 we see that the position given in Figure 7 has vy-value
061626 00(2,3) =3® 00(2,3) = 00(1,0), so by (3) it’s an N-position,
and the unique winning move is 0o(2,3) — 3. Again the winner can force a
win in polynomial time.

Figure 9: Craig has also been beaten.

As an exercise, beat an even bigger Craig: compute the labels P, N, D for
the digraph of Figure 10 with tokens placed on vertices A — F, or for various
other initial token placements.

We end this section with the Fundamental Theorem of Combinatorial
Game Theory for impartial games which may be cyclic.

Theorem 1. Let T' be a two-person cyclic game with perfect information
whose game-graph may be infinite, without chance moves and without ties.
Then for every position of 1" there either exists a winning move for precisely
one of the two players, or else, both players can maintain a draw.

Proof. Every position has at least one label from among {P, N, D}. Indeed,
for any position u which is neither in P nor in AV, Definition 2 implies u € D.
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Figure 10: Beat an even bigger Craig.

So suppose that there exists ug € (P NN). Then ug € (P, N Ny, ) for some
ordinals ko, mg € O. It then follows that F(ug) C N, F(ug) NP # (. By
Definition 2, there thus is u; € F'(ug) with uy € (P,,, N Ny, ), where k; < my,
my < k. Hence F(uy) C N, F(u;) NP # (. Thus there is uy € F(uq)
with us € (P, N Ni,), where ky < my, my < ki. This leads to two infinite
sequences kg > mq > ko > mg > ... and mg > ki > mo > k3 > ..., such
that u; € (P, N Ng,) for all i € N. This contradicts the well-ordering of the
ordinals. Hence (P NN) = 0.

By the definition of D in Definition 2, NND = PND = (). We have shown
that every position of I' gets a unique label from among {P, N, D}. O
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4 Adding Interactions between Tokens

Here we learn how to beat Anne (Annihilation). On the five-component
digraph depicted in Figure 11, place tokens at arbitrary locations, but at
most one token per vertex. A move is defined as in the previous games, but
if a token is moved onto an occupied vertex, both tokens are annihilated
(removed). The digraph has cycles, and could also have loops (passing posi-
tions). Note that the three components with z-vertices are identical, as are
the two y-components. The only difference between a z- and a y- component
is in the orientation of the top horizontal edge. With tokens on the twelve
starred vertices, can the first player win or at least draw, and if so, what’s
an optimal move? How “good” is the strategy? The indicated position may

Figure 11: Beat Anne in this ANNihilation game.

be a bit complicated as a starter. So consider first a position consisting of
four tokens only: one on z; and the other on z; in two of the z-components.
Secondly, consider the position also consisting of four tokens: a single token
on each of yy and y in each y-component. It’s clear that in both of these
games player Il can at least draw, simply by imitating on one component
what player [ does on the other. Can player Il actually win in one or both
of these games?

Annihilation games were proposed by John Conway. It’s easy to see that
on a finite acyclic digraph, annihilation can affect the length of play, but the
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strategy is the same as for the classical games: Since g(u) @ g(u) = 0, the
winner doesn’t need to use annihilation, and the loser cannot be helped by it.
But the situation is quite different in the presence of cycles. In Figure 12(a),
a token on each of the vertices z; and z3 is clearly a D-position for the
nonannihilation case, but it’s a P-position when played with annihilation
(the second move is a winning annihilation move). In Figure 12(b), with
annihilation, a token on each of z; and 25 is an N-position, whereas a token
on each of z; and 23 is a D-position. The theory of annihilation games
is discussed in depth in [FY82]; see also [Fra74|, [FY76], [FY79], [FTYT7S].
Misére annihilation play was analyzed by Ferguson [Fer84].

Z Z3 Z

Z;
Z4 .43

(a) (b)
Figure 12: Annihilation on simple cyclic digraphs.

The annihilation graph is a certain game-graph of an annihilation
game. The annihilation graph of the annihilation game played on the digraph
of Figure 12(a) consists of two components. One is depicted in Figure 13(b),
namely, the component G° = (V°, E°) with 8 vertices and an even number of
tokens. The “odd” component G also has 8 vertices. In general, a digraph
G = (V, E) with |V| = n vertices has an annihilation graph G = (V, E') with
|V| = 2™ vertices, namely all n-dimensional binary vectors. The ~-function
on G determines whether any given position isin P, N or D, according to (3);
and v, together with its associated counter function, determines an optimal
next move from an N- or D-position.

The only problem is the exponential size of G. We can recover an O(nb)
strategy by computing an extended ~-function ¢ on an induced subgraph
of G of size O(n*), namely, on all vectors of weight < 4 (at most four 1-bits).
In Figure 14, the numbers inside the vertices are the o-values, computed by
Gaussian elimination over GF(2) of an n x O(n*) matrix. This computation
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0000 0011

(a) (b)

Figure 13: (b) depicts the “even” component G of the annihilation graph G of
the digraph (a).

also yields the values ¢t = 2 for Figure 14(a) and ¢t = 1 for Figure 14(b): If
o(u) > 2!, then vy(u) = oo, whereas o(u) < 2' implies v(u) = o(u).

(a) (b)
Figure 14: The o-function.

Thus for Figure 14(a) we have o(zp, 22) = 5B 7 =2 < 4, so (20, 22) = 2.
Hence two such copies constitute a P-position (22 = 0). (How can player II
consummate a win?) In Figure 14(b) we have o(yo,y2) =3@&4 =7 > 2, so
(Yo, y2) = 00, in fact, 0o(0, 1), so two such copies constitute a D-position.
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(How can the two players maintain the draw?) We have thus answered the
two questions posed in the second paragraph of the present section.

The position given in Figure 11 is repeated in Figure 15, together with
the o-values. From left to right we have: for the z-components, v =3® 0 &
2 = 1; and for the y-components, 0o(0,1) & 0 = oo(0,1), so the y-value is
00(0,1) & 1 = 00(0, 1). Hence the position is an N-position by (3). There is,
in fact, a unique winning move, namely yy — y» in the first component from
the left. Any other move leads to drawing or losing. We have learned how
to beat Anne.

Figure 15: Poor beaten Anne. (Gray circles show initial token positions.)

For small digraphs, a counter function ¢ is not necessary, but for larger
ones it is needed for consummating a win. There is a problem in computing
c¢: our polynomial algorithm produces v and c only for an O(n?) portion of
G. Whereas v can then be extended easily to all of GG, this does not seem to
be the case for c. There is a way out involving a broad strategy.

A strategy is narrow if it uses only the present position u for deciding
whether v is a P-, N-, or D-position, and for computing a next optimal
move. It is broad |Fra91] if the computation involves any of the possible
predecessors of u, whether actually encountered or not. It is wide if it
uses any ancestor that was actually encountered in the play of the game.
Wide strategies were defined by Kalmar [Kal28| and Smith [Smi66], but then
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both authors immediately reverted back to narrow strategies, since both
authors remarked that the former do not seem to have any advantage over
the latter. Yet for annihilation games, only a broad strategy was found that
is polynomial. For details see [FY82].

For certain (Chinese) variations of GO, for CHESS and some other games,
there are rules that forbid certain repetitions of positions, or modify the
outcome in the presence of such repetitions. Now if all the history is included
in the definition of a move, then every strategy is narrow. But the way [Kal28§|
and [Smi66] defined a move — much the same as the intuitive meaning —
there is a difference between a narrow and wide strategy for these games.

As an exercise, compute the label € {P, N, D} of the stellar configuration
marked by letters in “Interstellar encounter with Jupiter” (Figure 16), where
J is Jupiter, the other letters are various fragments of the Shoemaker-Levy
comet, and all the vertices are “space-stations”. A move consists of selecting
Jupiter or a fragment, and moving it to a neighboring space-station along a
directed trajectory. Any two bodies colliding on a space-station explode and
vanish in a cloud of interstellar dust. Whereas in “Beat Anne” there is no
leaf, here there are six “black holes”, where a body is absorbed and cannot
escape. Both players are viciously bent on making the final move to destroy
this solar subsystem. Is the given position a win for player I or for player 117
Or is it a draw, so that a part of this subsystem will exist forever? And if
so, can it be arranged for Jupiter to survive as well? (An encounter of the
Shoemaker-Levy comet with Jupiter took place in mid-July, 1994.)

Various impartial and partizan variations of annihilation games were
shown to be NP-hard, PSPACE-complete or EXPTIME-complete [GR95], [FG8T7|,
[GR95]. We mention here only briefly an interaction related to annihilation.
Electrons and positrons are positioned on vertices of the game MATTER AND
ANTIMATTER (Figure 17). A move consists of moving a particle along a di-
rected trajectory to an adjacent station — if not occupied by a particle of
the same kind, since two electrons (and two positrons) repel each other. If
there is a resident particle, and the incoming particle is of the opposite type,
they annihilate each other, and both disappear from the play. It is not very
hard to determine the label of any position on the given digraph. But what
can be said about a general digraph? About succinct digraphs? Note that
the special case where all the particles are of the same type, is the general-
ization of WELTER played on the given digraph. WELTER is NIM with the
restriction that no two piles have the same size. It has a polynomial strategy,
but its validity proof is rather intricate [Con01] (ch. 13).
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5 Partizan Games

In a partizan combinatorial game there are two players, Left and Right,
who have distinct sets of moves available from each position. A game G is
short if it meets both of the following conditions:

e (7 is finite: it has just finitely many distinct subpositions; and
e (Gis acyclic: there is no infinite sequence of moves proceeding from G.

Formally, a short partizan game G can be represented as an ordered pair
(9L, 91, where 91 and 9% are sets of “simpler” games (that is, games with
strictly fewer subpositions). Elements of 47 (respectively ¥%) are called
Left (respectively Right) options of G. We'll sometimes write

G = {%L } gR},
though we’ll usually list the options of G explicitly:
G={G{,Gy,...,GL | GI',GY,....GI}
or abuse notation and write simply
G = {GL ‘ GR}

to indicate that G* and G range over all the Left and Right options of G.
The simplest game is the empty game 0, from which there are no options
for either player:

0={1}

Then we define the set of short games G by

Go=1{0};: G = {{gL | 9" gt gk Gn}; & =JGn
n>0

The theory of partizan games was introduced by Berlekamp, Conway and
Guy in the 1970s and early 1980s. The classical texts Winning Ways for Your
Mathematical Plays [BCGO04] and On Numbers and Games [Con01| remain
excellent introductions.
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Figure 18: (a) A HACKENBUSH position; (b) A typical opening move for
Left; (¢) The resulting position after Left’s move.

5.1 Two Examples: HACKENBUSH and DOMINEERING

HACKENBUSH is played on a finite undirected graph with colored edges,
such as the one in Figure 18(a). The solid horizontal line in Figure 18(a)
represents a single vertex of the graph, the ground. On her turn, Left may
remove any bLue (soLid) edge; Right may remove any Red (paRallel) one.
GrEen (dottEd) edges may be removed by either player. After each move,
any edges no longer connected to the ground are also removed from play.
HACKENBUSH follows the same normal-play convention as NIM: whoever
makes the last move wins.

DOMINEERING is played on an m x n checkboard, typically 8 x 8. Left and
Right alternately place dominoes on the board. Each domino must cover ex-
actly two adjacent squares, and dominoes may never overlap. Moreover, Left
must place vertical.ly-oriented dominoes, and Right must place hoRizontally-
oriented ones. Eventually, the players will run out of moves (since the board
will fill up with dominoes), and whoever makes the last move wins. (Notice
that making the last move coincides with placing the most dominoes, with
ties broken in favor of the second player.)

Figure 19(a) shows a typical position after each player has made one
move: Left made an opening move in the northeast corner of the board,
and Right responded in the southeast. Figure 19(b) shows the first fourteen
moves of a game played between David Wolfe and Dan Calistrate, in the
finals of the first (and last) World Domineering Championship. Left 13 was
a fatal mistake, and after Right 14 Calistrate went on to win the match and
the tournament. A description of the Wolfe—Calistrate DOMINEERING match
can be found in |Wes96].
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Figure 19: (a) A typical DOMINEERING opening; (b) The first fourteen moves
of Wolfe—Calistrate 1994, Round 3.

Notice that the position in Figure 19(b) can be subdivided into six sepa-
rate territories, and no single move can affect more than one such component.
Subsequent play on the four components labelled +3, 42, —2 and —3 is en-
tirely predictable: Left will place exactly n dominoes on each +n component,
and Right will place n dominoes on each —n component. The remaining two
regions are more exciting; their resolutions depend on who plays first on
which territory. Assigning meaningful mathematical values to such compo-
nents, and describing their combinatorial interactions, is a central goal of the
partizan theory.

5.2 Outcomes and Sums

If G is a short partizan game, then G belongs to one of four outcome classes:
A first player (the Next player) can force a win;
& second player (the Previous player) can force a win.

<  Left can force a win, no matter who moves first;

Z%  Right can force a win, no matter who moves first;

The proof that every game belongs to one of these four classes is a trivial
generalization of Theorem 1, the Fundamental Theorem for impartial games.
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Figure 20: Four HACKENBUSH positions with distinct outcome classes.

We denote by o(G) the outcome class of G. Figure 20 gives examples of
HACKENBUSH positions representing all four classes.

The disjunctive sum G + H is formed as follows: Place copies of G
and H side-by-side; on her turn, a player must move in ezactly one of the
two components. Formally, we may write

G+H={G'+H, G+H"|GR+H, G+H"}. (f)

Here G* ranges over all Left options of G, and H’ ranges over all Left options
of H, so that the Left options of G + H are given by the union

(X+H: Xeg"u{G+Y Y en"}. (1)

The notation in the equation marked (}) is generally clearer and more suc-
cinct than set notation (I), and we’ll use it throughout this article without
further comment.

Each game G also has a negative —G, obtained by interchanging the
roles of Left and Right:

6= {-a" | 6"}

We write G — H as shorthand for G + (—H).

The definition of disjunctive sum is motivated by examples such as DoMm-
INEERING, in which endgame positions decompose naturally into sums. The
position in Figure 19(b), for example, can be written as the sum of six inde-
pendent territories. Likewise, positions in NIM and KAYLES can be written
as the disjunctive sum of single piles.

This modularity is central to combinatorial game theory. Given a sum of
games

G=G +Gy+-+ Gy,

it is often impractical to undertake a brute-force analysis of G itself. Instead,
we study the components GG; individually, and attempt to extract information
that can be pieced back together to determine o(G). In Section 2, this
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“information” took the form of nim values; in the context of partizan games,
a more general notion of game value is needed.

Observe that it’s not always sufficient to know the outcomes of each
component. For example, let G and H be the following simple HACKENBUSH

positions:
Q I

G = H = .
Then o(G) = o(H) = A": either player can win immediately (on either game,
played in isolation) by chopping the unique green edge, moving to 0. Also
o(G 4+ G) = £, by the obvious symmetry argument. However on the sum

Left can win no matter who moves first, since she can arrange that Right is
always first to chop a green edge. So o(G + H) = %, and this shows that G
and H have unequal values.

G+H=

5.3 Values

If G and H are partizan games, then we write
G=H if oG+ X)=o0(H+ X) for all X.

Here X ranges over all short partizan games (that is, all elements of G). In
particular, suppose G and H are HACKENBUSH positions. Then X ranges
over all HACKENBUSH positions, but also over games that are not necessarily
representable in HACKENBUSH. This is deliberate: the universal quantifier
is essential in order to get a good theory, and as we’ll see in a moment it
provides a common language for identifying shared structure in combinatorial
games.

The game value of G is its equivalence class modulo equality. The idea
is that the given an arbitrary sum

G=G +Gy+-+ Gy,

the value, and hence the outcome, of G can be computed from the values of
each G;. The set of game values is denoted by G.
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Figure 21: A nontrivial identity between HACKENBUSH and DOMINEERING.

Figure 21 gives a nontrivial example of two games with the same value.
The outcome classes are naturally partially-ordered by favorability to Left:

£
7\
P N
NS
X
This induces a partial order of G:

G>H if oG+ X)>o(H+ X) for every all X.

If G > H, then Left will be satisfied to replace the component H with G, in
any conceivable sum of games. The basic theorems are as follows:

Theorem 2. o(G) > & if and only if G > 0, for all short games G.

Theorem 3. G is a partially-ordered Abelian group under disjunctive sum,
with identity 0.

Note that o(G) > & if and only if Left can force a win on G as second
player. So Theorem 2 implies that every second-player win is equal to 0.
This directly generalizes the impartial theory, in which every second-player
win has nim value 0.

We'll also write G = H to mean that G and H are identical (isomorphic)
games. Certainly G = H implies G = H, but G = H does not imply G = H
(since in particular, if G is any second-player win, then G = 0).
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5.4 Simplest Forms

The central result of the partizan theory is the Simplest Form Theorem:
every game value has a unique simplest representative. The Simplest Form
Theorem is obtained through the following explicit construction.

For a given GG, we identify several types of “extraneous” options:

e A Left option G* is dominated (by G*?) if G2 > G for some other
Left option G*2.

e A Right option G is dominated (by G™2) if G2 < G for some
other Right option G,

e A Left option G* is reversible (through G™%1) if Gl < @ for
some Right option G*1fi,

e A Right option G* is reversible (through Gf11) if Gl > @G for
some Left option GF1E1,

Dominated options can be removed from G without affecting its value: in
any sum G + X from which Left would like to move to G* + X (with G
dominated by G*2), she is equally satisfied to play G2 + X instead.

Reversible options are a bit more subtle. If G** is reversible through G*1f1
then GI* can be replaced with the set of all GL1fil | without affecting the
value of G. Symbolically:

G = {GLlRlL’ GL’

G"},

with G* ranging over all Left options of G exzcept G**. This operation is
known as bypassing the reversible move G (through GL1fv).

Any game G can be simplified by repeatedly eliminating dominated op-
tions and bypassing reversible ones. Each such operation strictly reduces the
number of edges in the game tree of GG, so this process necessarily produces
a game K with no dominated or reversible options, and such that K = G.
Such K is called the canonical form or simplest form of G, and the
following theorem shows that it is unique.

Theorem 4 (Simplest Form Theorem). Suppose that G = H, and neither
G nor H has any dominated or reversible options. Then G = H.

The Simplest Form Theorem follows immediately by inductive application
of the following lemma:
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Lemma 1. Suppose that G = H, and neither G nor H has any dominated
or reversible options. Then for every HY, there is a G such that GF = H*,
and vice versa; and likewise for Right options.

Proof. Consider a Left option H”. Since G — H > 0, Left must have a
winning response to Right’s opening move G — H*. In particular, either
GF — HY > 0 for some GT, or else G — H*® > 0 for some H*®. But the

latter would imply
H=G>HM",

contradicting the assumption that H has no reversible options. So necessarily
G* > H! for some G*. An identical argument now shows that HY > G*
for some HY'| so that

HY > Gt > H".
But H has no dominated options, so none of the inequalities can be strict,
and in particular G¥ = H%. Proofs of the other cases are the same. O

5.5 Numbers

Consider a single blue HACKENBUSH stalk, from which Left can move to 0,
and Right has no move at all:

L -{___[}-0n

This game is denoted by 1, since it behaves like one spare move for Left. Since
1 > 0, it generates a subgroup of G isomorphic to Z, and it is customary to
identify this subgroup with Z. In particular we have

2=1+1={1]}, 3=2+1={2] },

and in general n +1={n| },and —(n+1)={ | —n}.
In Figure 22 we see various other numbers, for example

o}

- -{ [ }eom

The identity % + % = 1 is easily verified by showing that the difference game

1 1
1+i-1
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Figure 23: The Number Tree (with birthdays labeled on the right).
is a second-player win. Larger denominators can be similarly constructed:

1 1
2n+1 - {O 2_n}

and such numbers generate a subgroup of G isomorphic to I, the group of
dyadic rationals:

D:{qu:Q"quforsomenEO}.

The canonical form of m/2" (in lowest terms) is given by

m _ fm—1|m+1
v | 2» 2n [
The inductive structure of numbers is neatly visualized in Figure 23. For
each n > 0, there are 2" numbers with birthday exactly n.

Now if x is a number, then it is a disadvantage to move on z, in the sense
that

ot <z < af

33



for every ' and xf. Remarkably, this criterion characterizes the dyadic
rationals.

Theorem 5. Let x be a short game, and suppose that y© < y <yt for every
subposition y of x and every y* and y*. Then z € D.

This observation has several fundamental consequences.

Theorem 6 (Number Avoidance Theorem). Suppose that x is equal to a
number but G is not. If Left (resp. Right) has a winning move on G + z,
then she can win by playing on G.

Theorem 7 (Number Translation Theorem). Suppose that x is equal to a
number but G is not. Then

G+ao={G" +z|G"+ax}.

5.6 Infinitesimals

Numbers provide a natural metric against which other games can be cali-
brated. In particular, there is a vast hierarchy of games that are infinitesi-
mal in the sense that

>G> —=x

for all positive numbers x.
The simplest nonzero infinitesimal is the game * (pronounced “star”), from
which either player can move to 0:

«={0]0} =

It’s easily checked that * is an infinitesimal, since on the sum

——O

Left can win easily by playing preferentially on *, independent of the value
of n.
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Note that * is isomorphic to a nim-heap of size 1. In the partizan context,
a nim-heap of size m is denoted by *m (pronounced “star m”). Symbolically:

sm = {0, %, %2, ... x(m—1) | 0,%,%2,...,%(m—1)}.

Each sm (for m > 1) is a first-player win, and so is confused with 0. The
simplest signed infinitesimals are

+=1{0|%} (“up”) and | =—-1={x|0} (“down”)

Certainly 1 > 0, since Left can win no matter who moves first. But 1 is
infinitesimal, by the same argument used for x: on | + 27" (say), Left can
win by playing preferentially on |.

5.7 Stops and the Mean Value
If G is not a number, then its confusion interval is given by
C(G)={zeD:G £z}
The reader is invited to check the following examples:
o C(x) = {O}, a singleton.
c(r) =
C({3 | —3}) is the closed interval [—3, 3].
C(

{3+ x| —3}) is the half-open interval [—3, 3).

The endpoints of C(G) are fundamental invariants of G, known as the Left
stop L(G) and Right stop R(G) of G. Between them lies a third invariant,
the mean value m(G), which has the following remarkable properties:

m(G+ H) =m(G) + m(H) forall G and H;
and for all G, the difference
(n-G) = (n-m(Q))

is bounded by a constant independent of n. Therefore m(G) is a number
that closely approximates the limiting behavior of many copies of G.

One can think of G as vibrating between its Left and Right stops in such
a way that its “center of gravity” lies at m(G).
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6 Misére Play

We now return to the subject of impartial games, but considered under the
misére play convention, in which the player who makes the last move loses.
The misére theory was introduced by Plambeck and Siegel [Pla05, PS08]; see
[Siel3] for a concise overview.

The Fundamental Theorem works in misére play too, with the same proof,
so that every impartial game G has a misére outcome (.4 or &) in addition
to its normal outcome. The misére outcome of G is denoted by o~ (G).

The motivating question in misére impartial games is this: What is the
misére analogue of the Sprague-Grundy Theory? There are several reason-
able answers to this question, each relevant in a different set of circumstances.

6.1 Misére Nim Value

Let G be a NIM position, with heaps of sizes a1, ..., a;. Recall that o(G) = &
if and only if a1 @ ---® ap = 0. A similar rule works in misére play, but it is
slightly more complicated.

Theorem 8 (Bouton). The NIM position G with heaps aq, . .., ay is a misére
P -position if and only if

a D Dap =0,
unless every a; = 0 or 1. In that case, G is a & -position if and only if
0,1@"'@0,k:1.

In particular, note that * is a misére &2-position, but xm is an .4 -position
for all m # 1. This motivates the following misére analogue of nim values.
Recall that the (normal) nim value of G is given recursively by

0 it G = 0;
9(G) = mex 4(G")  otherwise.
G'ed
The misére nim value is similarly defined, but with a different base case:
B 1 it G = 0;
9(G) = mex ¥ (G') otherwise.
G'eG

The misére nim value of G determines its outcome. In fact we can say
something slightly stronger:
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Theorem 9. ¥4~ (G) is the unique value of m such that o= (G + *m) = Z.
In particular, G is a misere &-position if and only if ¢~ (G) = 0.

The problem with misére nim values is that they’re not well-behaved in
sums. For example, let G = *x and H = %2 + 2. Then G and H are both
Z-positions (by Theorem 8), so

9 (G)=9"(H)=0.
However it’s not hard to show (using Theorem 9, say) that
G (G+%2)=3, but ¥ (H+=x2)=2.

So the misére nim value of a sum of games can’t be determined from the nim
values of its components.

6.2 Genus Theory

The genus of G (plural genera), denoted by ¥*(G), is obtained by conjoin-
ing its normal and misére nim values:

G=(G) = (9(6),9(G)).

For brevity it’s customary to write 9%(G) = a’ in place of ¥*(G) = (a, b).

Remarkably, genus values are well-behaved in sums, but only for a par-
ticular class of games known as tame games. First note that one can easily
classify all the genera that arise in misére NIM:

e If G has no heaps of size > 2, then ¥*(G) = 0' or 1°, depending on
the parity of the number of heaps of size 1.

e Otherwise, 9*(G) = a*, where a = ¢(G). (This follows from Theorems
8 and 9.)

So the only genera in misére NIM are 0, 1°, and those of the form a® for
some a > 0. An arbitrary game G is tame if all its subpositions have genus
values drawn from this ensemble.

The nim-addition operator & extends to tame genera according to the
following addition table:

0'®0'=0" a® @0 =a”
01@10:10 aa@loz(a@l)GEBl
10@10:01 aa@bb :(aeab)a@b

The main theorem is the following:
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Theorem 10 (Conway). If G and H are tame, then so is G + H, and
moreover

GEG + H) = 9%(G) @ 9= (H).

This provides a reasonably straightforward extension of the theory of
miseére NIM to arbitrary tame games. In particular, any tame game can be
treated as a NIM position in sums involving other tame games.

For example, let G = % and H = %2+ %2. We noted above that ¥~ (G) =
G~ (H) =0, but G + %2 and H + #2 have distinct misére nim values. This
is explained by the fact that ¥*(G) = 1°, but ¥*(H) = 0°. There are two
fundamentally different types of tame games with ¢~ -value 0, corresponding
to the two cases in the statement of Theorem 8.

Likewise, consider J = x2 and K = %2 + %2 + 2. Here we have ¥*(J) =
4*+(K) = 22. Since J and K have the same genus, Theorem 10 implies that
o (J+ X)=0 (K + X) for any tame X. However, consider the game

X ={0, %2+ %3}

whose options are 0 and *2 + *3. X is not tame (since its genus is 2°), and
indeed it’s not hard to check that

o (J+X)=, whereas o (K+ X)= 2.

So even though J and K are both tame and have the same genus, they
nonetheless behave differently in sums with a suitable wild game. The ques-
tion of how best to extend the genus theory to wild games is an ongoing
research problem; the rest of this section will describe the (considerable)
advances that have been made in this direction.

6.3 Misére Canonical Form

The most straightforward idea is simply to define misére equality for impartial
games, the same way we defined equality for partizan games in Section 5:

G=H if o(G+X)=0 (H+ X) for all X,

with X ranging over all impartial games. Then the misére game value
of GG is its equivalence class modulo misére equality. This obviously works, in
the sense that misére game value is automatically well-behaved in sums. The
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central problem with misére nim values (and genus values for wild games) is
therefore definitionally circumvented.

But misére game values suffer from a different problem, which is that
there are rather a lot of them. If G is an impartial game, then an option
G’ € G is said to be (misére) reversible if there is some G” € G’ such that
G" = G. Obviously if G is misére reversible, then it is equal to a simpler
game, namely G”, so this is a sort of analogue of partizan reversible moves
from Section 5. The following theorem of Conway is one of the crowning
results of the misére theory.

Theorem 11 (Conway). Suppose that G = H, and neither G nor H has
any reversible moves. Then G = H.

Theorem 11 says that reversible moves are only type of reduction available
for impartial games. This is true in both normal and misére play: the “="
sign in Theorem 11 can be interpreted to mean either normal or misére
equality (provided the corresponding notion of “reversible” is also used). In
normal play, it’s essentially a restatement of the Sprague-Grundy Theorem,
so here we have a quite clear analogue of the normal-play theory.

Sadly, reversible moves in misére play are exceedingly rare. Consider the
set of game values with birthday < 6. In normal play, there are just seven of
them:

0,%,%2, ..., %6.

Conversely, in misére play Conway has shown that there are more than
2HTITTO - Tn this sense misére game values spectacularly fail to yield a co-
herent theory.

6.4 Misére Quotients

The above results suggest that genus values preserve too little information,
whereas misére game values preserve too much. The theory of misere quo-
tients offers a third approach: rather than aim for a single, fully general
extension of the Sprague-Grundy theory, we instead accept a multiplicity of
local analogues.

Recall the definition of misére equality:

G=H if o(G+X)=0 (H+ X) for all X.
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In defining misére game values, we allowed X to range over all impartial
games. If instead G, H and X are restricted to range over tame games, then
the resulting equivalence classes correspond one-to-one with genus values
(and in fact this is just a restatement of the genus theory). So genus values
can be viewed as the structure obtained when misére equivalence is localized
to the set of tame games.

Along these lines, let @7 be any nonempty set of impartial games that is
closed in the following sense:

o If G.H € o/, then G+ H € &/ (additive closure); and
e If G € o and G’ € G, then G’ € & (hereditary closure).
Then define

G=H (mod&) if o (G+X)=0 (H+X)forall X € &.

Let Q be the corresponding set of equivalence classes. The closure assump-
tions on 7 imply that Q is a commutative monoid, and there is a surjective
homomorphism

b — 0.
Denote by P C Q the subset corresponding to &-positions from o7:

P={2(G):Ged, o (G)=2}.

The structure (Q, P) is the misére quotient of <7, and is denoted by Q(7).
It serves as a localized analogue of the Sprague-Grundy theory, in the follow-
ing sense. Suppose that we wish to study a game G € & that decomposes
in of:

G=G1+Gy+---+G, eachG; €.

Given the ®-values of each G, say z; = ®(G;), then we can multiply them
out in the arithmetic of Q to determine ®(G):

O(G)=x=uz129 - T}

and then check whether x € P. So far we haven’t said anything terribly
profound. What’s surprising (and what makes misére quotients so powerful)
is that the monoid O often turns out to be finite, even when .o/ is infinite,
and even when o/ contains some wild games. In such cases, the problem
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Q= (a,b,c,dye, f,g|a®>=1, b =b, bc2=0b, ¢ =c, bd= b,
cd =b, d®> =d, be = be, ce = b,
e? =de, bf = ab, cf = ab’c, d*f = f,
fr=0 g=g, cg=g, dg=cy,
eg =cg, fg=ag, g° =)

P = {a,b? ac,ac? d,ad?, e, ade,adf }

Figure 24: The misére quotient of KAYLES.

of determining the outcome of the sum G reduces to a small number of
operations on the finite multiplication table Q.

For a simple example, let 7 consist of all sums involving % and *2. Then
every element of o is tame, so the elements of Q correspond to genera of
games in 7, which are restricted to the six possibilities

0!, 19 0° 1% 22 33

The structure of the corresponding monoid follows directly from the addition
table for genus values:

Q= {a,b:a®>=1, b’ =0b),

with P = {a, b*}, corresponding to genera 1° and 0°.

A fairly typical misére quotient is shown in Figure 24. It’s the quotient of
the set of positions in the game KAYLES, and therefore succinctly describes
the winning strategy for misére KAYLES. It’s worth noting that the original
solution to misére KAYLES ran forty-three pages long. A streamlined proof in
Winning Ways reduced this to “just” five pages. That the entire proof can be
encoded by the succinct monoid presentation in Figure 24 nicely illustrates
the power of the quotient theory.

7 Constraint Logic
While combinatorial game theory seeks efficient algorithms for games, often
no efficient algorithm exists. Then, we seek instead to show hardness. In re-

cent years a new tool has emerged for proving hardness of games: constraint
logic [DH08, HD09]. With constraint logic, the games we consider are both
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more specialized and more general than what is traditionally addressed by
classical game theory. More specialized, because we are concerned only with
determining the winner of a game, and not with other issues such as max-
imizing payoff, cooperative strategies, etc. More general, because classical
game theory is concerned only with the interactions of two or more players,
whereas constraint logic addresses, in addition, games with only one player
(puzzles) and even with no players at all (simulations). Constraint logic of-
fers, for a variety of types of game, a simple path to hardness reductions;
generally a small number of constraint logic “gadgets” must be built out of
components of the target game.

The starting point of constraint logic is the perspective that games model
computation. Different types of game model different types of computation.
For example, the idea of nondeterministic computation nicely matches the
feature of puzzles that a player must choose a sequence of moves or piece
placements to satisfy some global property. Thus, puzzles are often NP-
complete (see section 2.1). Even more striking is the correspondence between
alternation, the natural extension to nondeterminism, and two-player games.
Constraint logic is a family of games (played on directed graphs) which model
computation ranging from that of monotone Boolean circuits (P-complete)
all the way to unrestricted Turing machines (undecidable). For any game to
be analyzed, the category of game will suggest a potential complexity, which
may be proved by a reduction from the corresponding type of constraint
logic. The entire range of constraint-logic games and complexities is shown
in Table 1.

The chief advantage in showing a game hard by a reduction from con-
straint logic, rather than from a standard problem such as SAT or QBF, is
that constraint logic is very similar in nature to many actual games, often
making reductions extremely simple. For example, essentially the entire proof
that sliding-block puzzles are PSPACE-complete is contained in Figure 30
[HDO5]. This problem, originally posed by Martin Gardner [Gar64|, had

Unbounded
length PSPACE PSPACE EXPTIME Undecidable
Bounded P NP PSPACE NEXPTIME
length

Zero player ~ One player Two player Team,imperfect
(simulation) (puzzle) information

Table 1: Game categories and their natural complexities. Constraint Logic
is complete in each class.
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been open for nearly 40 years. Other games and puzzles shown hard via con-
straint logic include TIPOVER |Hea06a|, SLIDING TOKENS (a dynamic ver-
sion of INDEPENDENT SET) [HD05|, RIVER CROSSING |Hea04], TRIANGU-
LAR RUSH HoOuRr [HD09|, Pusu-2-F [DHH02|, AMAZONS [Hea09|, KONANE
[Hea09], CROSs PURPOSES [Hea09|, HiTORI [HD09|, and WRIGGLE PUZ-
ZLES |Max07]. Some games and puzzles with existing hardness proofs have
also been shown hard via constraint logic, with simpler constructions (in some
cases, also strengthening the existing results), including SOKOBAN [HDO5],
RusH Hour [HDO05|, and THE WAREHOUSEMAN’S PROBLEM [HDO5|. Fi-
nally, constraint logic has also been applied to several problems outside the
domain of games proper, including showing undecidability of some decision
problems for multi-port finite-state machines [Hiel0].

7.1 The Constraint-Logic Framework

The general model of games we develop is based on the idea of a constraint
graph; the rules defining legal moves on such graphs are called constraint
logic. In later sections the graphs and the rules will be specialized to produce
one-player, two-player, etc. games.? A game played on a constraint graph is
a computation of a sort, and simultaneously serves as a useful problem to
reduce to other games to show their hardness.

A constraint graph is a directed graph with edge weights among {1, 2}.
An edge is then called red or blue, respectively. The inflow at each vertex
is the sum of the weights on inward-directed edges. Each vertex has a non-
negative minimum inflow. A legal configuration of a constraint graph
has an inflow of at least the minimum inflow at each vertex; these are the
constraints. A legal move on a constraint graph is the reversal of the
direction of a single edge that results in a legal configuration. Generally, in
any game, the goal will be to reverse a given edge by executing a sequence of
(legal) moves. In multiplayer games, each edge is controlled by an individual
player, and each player has his own goal edge. In deterministic games, a
unique sequence of moves is forced. For the bounded games, each edge may
only reverse once.

It is natural to view a game played on a constraint graph as a com-
putation. Depending on the nature of the game, it can be a deterministic

2In the interest of space, we omit some of the definitions—and all discussion of zero-
player games (DETERMINISTIC CONSTRAINT LOGIC)— and refer the reader to [Hea0O6b],
[DHO08], or [HDO09].
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C C
A B A B

(a) AND vertex. Edge C may be directed (b) OR vertex. Edge C may be directed
outward if and only if edges A and B are outward if and only if either edge A or
both directed inward. edge B is directed inward.

Figure 25: AND and OR vertices. Red (light gray, thinner) edges have weight
1, blue (dark gray, thicker) edges have weight 2, and vertices have a minimum
in-flow constraint of 2.

computation, or a nondeterministic computation, or an alternating compu-
tation, etc. The constraint graph then accepts the computation just when
the game can be won.

AND/OR Constraint Graphs; Planarity. Certain vertex configurations
in constraint graphs are of particular interest. An AND vertex (Figure 25(a))
has minimum inflow constraint 2 and incident edge weights of 1, 1, and 2.
It behaves as a logical AND in the following sense: the weight-2 (blue) edge
may be directed outward if and only if both weight-1 (red) edges are directed
inward. Otherwise, the minimum inflow constraint of 2 would not be met.
An OR vertex (Figure 25(b)) has minimum inflow constraint 2 and incident
edge weights of 2, 2, and 2. It behaves as a logical OR: a given edge may be
directed outward if and only if at least one of the other two edges is directed
inward.

It turns out that for all the game categories, it will suffice to consider
constraint graphs containing only AND and OR vertices. For some of the
game categories, there can be many subtypes of AND and OR vertex, be-
cause each edge may have a distinguishing initial orientation (in the case of
bounded games), and a distinct controlling player (when there is more than
one player). In some cases there are alternate vertex “basis sets” that enable
simpler reductions to other problems than do the complete set of ANDs and
ORs.

For all but the bounded zero-player case, it also suffices to only consider
planar constraint graphs. In practice this makes for much easier hardness
reductions; often, crossover gadgets are the most difficult pieces of a reduction
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to construct. With constraint logic, we get them for free. The most common
problem used to show NP-hardness is 3SAT, but in many instances this
planarity property makes constraint logic reductions simpler.

Directionality; Fanout. As implied above, although it is natural to think
of AND and OR vertices as having inputs and outputs, there is nothing enforc-
ing this interpretation. A sequence of edge reversals could first direct both
red edges into an AND vertex, and then direct its blue edge outward; in this
case, we could say that its “inputs” have “activated”, enabling its “output” to
“activate”. But the reverse sequence could equally well occur. In this case
we could view the AND vertex as a splitter, or FANOUT gate: directing the
blue edge inward allows both red edges to be directed outward, effectively
splitting a signal.

In the case of OR vertices, again, we can speak of an active input enabling
an output to activate. However, here the choice of input and output is entirely
arbitrary, because OR vertices are symmetric.

7.2 One-Player Games

The one-player version of constraint logic is called NONDETERMINISTIC CON-
STRAINT LOGIC (NCL). The rules are simply that on a turn the player re-
verses a single edge that results in a legal configuration. The goal is to reverse
a particular edge.

7.2.1 Bounded Games

BOUNDED NONDETERMINISTIC CONSTRAINT LOGIC (BOUNDED NCL) is
formally defined as follows:

BOUNDED NONDETERMINISTIC CONSTRAINT

LOGIC (BOUNDED NCL)

INSTANCE: Constraint graph G, edge e in G.

QUESTION: Is there a sequence of moves on G that eventually
reverses e, such that each edge is reversed at most once?

BOUNDED NCL is NP-complete (reduction from 3SAT). It remains NP-
complete when the graph G is required to be a planar graph which uses
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(a) CHOICE (b) AND (¢) FANOUT (d) OR

Figure 26: Basis vertices for Bounded NCL.

only the vertex types shown in Figure 26.3 It also turns out to be useful
to reduce from graphs that have the property that only a single edge can
initially reverse; this problem is also NP-complete.

A related problem is CONSTRAINT GRAPH SATISFIABILITY:

CONSTRAINT GRAPH SATISFIABILITY

INSTANCE: Unoriented planar constraint graph GG using only AND
and OR vertices.

QUESTION: Does G have a configuration that satisfies all the con-
straints?

Properly, this problem is not a constraint-logic game, because the moves
(assignments of edge orientations) are not reversals from one legal configu-
ration to another. But it is similar in spirit, and can prove useful for re-
ductions. CONSTRAINT GRAPH SATISFIABILITY is NP-complete (reduction
from 3SAT). Note that for CONSTRAINT GRAPH SATISFIABILITY, unlike
proper BOUNDED NCL, only two types of vertex are needed.

Sample Application: HITORI. HITORI was popularized by Japanese
publisher Nikoli, along with its more-famous sibling SUDOKU, and several
other “pencil-and-paper” puzzles. In HITORI, we are given a grid with each
square labeled with an integer, and the goal is to paint a subset of the squares
so that (1) no row or column has a repeated unpainted label (similar to SU-
DOKU), (2) painted squares are never adjacent, and (3) the unpainted squares
are all connected. A simple HITORI puzzle and its solution are shown in Fig-
ure 27. We give a reduction from CONSTRAINT GRAPH SATISFIABILITY

3Here we show the initial, “inactivated” orientation of the edges. In an AND, the blue
edge may reverse if the red edges first reverse; in a FANOUT, the red edges may reverse
if the blue edge first reverses.
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211131
111142
21412|3
(a) Puzzle (b) Solution

Figure 27: A simple HITORI puzzle and its solution.

clc|d|d c :
b o .
b alale|b|b alclb
a d a b
a d .
d
(a) Wire, turn (b) OR, parity (¢) AND

Figure 28: HITORI gadgets.

(Section 7.2) showing that it is NP-complete to determine whether a given
n X n HITORI puzzle has a solution [HD09|.

Wiring. We represent graph edge orientation with wires, or strings of adja-
cent squares, consisting of integers xy,x1, X2, To, ..., Tyn_1, Tn_1, Tpn, Tp, Where
the z; are distinct. If the first 1 is unpainted, then the next must be painted
(by rule 1 above), forcing the first xo to be unpainted (by rule 2), etc.; thus
the last z,, must be painted. If the first z; is painted, the last x,, may be
painted or unpainted: we could (for example) have the second x; and the
first x5 both unpainted without violating the rules.

Wires may be turned, as in Figure 28(a): if the bottom a is unpainted,
then the right d must be painted. (We assume that the unlabeled squares all
contain distinct integers not otherwise used in the gadgets.)

OR Vertex / Parity Gadget. In Figure 28(b), first consider the ds. At
most one can be unpainted, but no two adjacent may be painted. Therefore,
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both the lower and the upper one must be painted, and e must be unpainted.

If both the left @ and the right b are unpainted, then the right a and the
left b must be painted. As an unpainted square, e must be connected to the
other unpainted squares (rule 3); the lower ¢ is the only way out. Therefore,
the lower ¢ is unpainted, and the upper one painted. But if either the left
a or the right b is painted, then the other a or b will be unpainted, allowing
another way out for e. Then the lower ¢ may be painted, and the upper ¢
unpainted. These are the same constraints an OR vertex has, again with an
unpainted “port” square (left a, right b, top ¢) corresponding to an outward-
directed edge, and a painted port square corresponding to an inward-directed
edge.

This gadget can also serve to alter the positional parity in wiring, so that
the various gadgets can be connected arbitrarily, by using only one input,
and blocking the other one (for example, by adding another b to the right of
the right one).

AND Vertex. Similar but simpler reasoning as above shows that the gadget
in Figure 28(c) satisfies the same constraints as an AND vertex, with the lower
a and b (“inputs”) corresponding to the red edges, and the upper ¢ (“output”)
to the blue edge: the output square may be unpainted if and only if both
input squares are painted.

Assembly. Given a planar AND / OR constraint graph, we construct a
HITORI puzzle by connecting together AND and OR vertex gadgets with wires,
adjusting positional parity as needed. If the graph has a legal configuration,
then every wire can be painted so as to satisfy all the HITORI constraints, as
described. Similarly, if the HITORI puzzle can be solved, then a legal graph
configuration can be read off the wires.

7.2.2 Unbounded Games

NONDETERMINISTIC CONSTRAINT LOGIC (NCL) is the canonical form of
constraint logic:

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

INSTANCE: Constraint graph G, edge e in G.

QUESTION: Is there a sequence of moves on G that eventually
reverses €7
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(a) AND (b) OR

Figure 30: Constraint-logic gadgets showing PSPACE-completeness of SLID-
ING BLOCKS.

NCL is PSPACE-complete (reduction from QBF'), and remains PSPACE-
complete when the graph G is required to be a planar graph which uses only
AND and OR vertices (Figure 25). NCL reductions are often very straightfor-
ward, for two reasons. First, only two gadgets must be constructed. Second,
one-player games (puzzles) are generally easier to reduce to than multi-player
games. For these reasons, and because there is a large supply of candidate
puzzles to analyze, NCL reductions form the largest set of existing constraint-
logic reductions.

Sample Application: SLIDING BLOCKS. In
the usual kind of sliding-block puzzle, one is given
a box containing a set of rectangular pieces, and
the goal is to slide the blocks around so that a
particular piece winds up in a particular place. A
popular example is Dad’s Puzzle, shown in Fig-
ure 29; it takes 59 moves to slide the large square
to the bottom left. We outline a reduction from
NONDETERMINISTIC CONSTRAINT LOGIC (Sec- Figure 29: Dad’s Puzzle.
tion 7.2) showing that it is PSPACE-complete to determine whether a given
sliding-block puzzle in an n x n box has a solution. For a formal proof (which
is also stronger, using only 1 x 2 blocks), see [HD05] or [HD09|.

AND Vertex. The gadget shown in Figure 30(a) satisfies the same con-
straints as an AND vertex. Assume that the outer, dark-colored “wall” blocks
are fixed. Then, the only way the top “signal” (light-colored) block may slide
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Figure 31: Sliding-block gadget assembly.

down is if the left signal block first slides left, and bottom signal block slides
down. This allows the other signal blocks to move out of the way.

OR Vertex. Similarly, the gadget shown in Figure 30(b) satisfies the same
constraints as an OR vertex—the top signal block may slide down if and only
if either the left or the right signal block first slides out.

Assembly. To use these gadgets to represent arbitrary planar AND / OR
constraint graphs, we assemble them as shown in Figure 31. The wall blocks
are shared between adjacent vertices, as are the signal blocks that act as
graph edges. We put a grid of the gadgets inside a box. This keeps the wall
blocks from moving, as required. The goal is to slide the particular signal
block that corresponds to the target edge in the input constraint graph.
Then, the puzzle can be solved just when the constraint-logic problem is
solvable.

7.3 Two-Player Games

The two-player version of constraint logic, TWO-PLAYER CONSTRAINT LOGIC
(2CL), is defined as follows. To create different moves for the two players,
Black and White, we label each constraint graph edge as either Black or
White. (This is independent of the red/blue coloration, which is simply a
shorthand for edge weight.) Black (White) is allowed to reverse only Black
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(a) CHOICE (b) AND ) FANOUT ) VARIABLE

Figure 32: Basis vertices for BOUNDED 2CL.

(White) edges. As before, a move must reverse exactly one edge and result in
a valid configuration. Each player has a target edge he is trying to reverse.*
(We omit the formal definitions here.)

Bounded games. The bounded case permits each edge to reverse at most
once. BOUNDED 2CL is PSPACE-complete (reduction from G,.s(POS CNF),
a variant of QBF [Sch78]). It remains PSPACE-complete when the constraint
graph is a planar graph using only the vertex types shown in Figure 32.
Indeed, the actual reduction showing BOUNDED 2CL PSPACE-complete is
almost trivial, and the main benefit of using BOUNDED 2CL for game reduc-
tions, rather than simply using one of the many QBF variants, is that when
reducing from BOUNDED 2CL one does not have to build a crossover gad-
get. The complexity of AMAZONS remained open for several years, despite
some effort by the game-complexity community; its constraint-logic reduction
showing PSPACE-completeness is straightforward [HDO09].

The vertex set in Figure 32 is actually almost the same as that for
BoUNDED NCL (Figure 26); the only addition is a single vertex type allowing
for player interaction. Most of the gadgets can be single-player constructions.

Unbounded games. The unbounded case simply removes the restriction
of edges reversing at most once. 2CL is EXPTIME-complete (reduction from
(g, one of the several Boolean formula games shown EXPTIME-complete by

“In combinatorial game theory, it is normal to define the loser as the first player unable
to move. This definition would work perfectly well for 2CL, rather than using target
edges to determine the winner; the hardness reduction would not be substantially altered.
However, the given definition is more consistent with the other varieties of constraint logic:
always, the goal is to reverse a given edge.

ol



PPN

(a) White AND ) White OR ) Black AND
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d) Multiplayer AND 1 e) Multiplayer AND 2 (f) Black-White

Figure 33: Basis vertices for 2CL.

[SC79]). 2CL remains EXPTIME-complete when the graph is a planar graph
using only the vertices shown in Figure 33. In principle, this should enable
much simpler reductions to actual games than the standard reductions from
Boolean formula games. The existing CHESS [FL81|, CHECKERS [Rob84b],
and GO |Rob83| hardness results are all quite complicated; there could be
simpler reductions from 2CL. However, such reductions have not yet been
found. Enforcing the necessary constraints in a two-player game gadget is
much more difficult than in a one-player game.

7.4 Team Games

The natural team private-information constraint logic (TPCL) assigns to
each player a set of edges he can reverse, and a set of edges whose orientation
he can see, in addition to the target edge he aims to reverse. There are two
teams, Black and White; a team wins when a player on that team reverses
his target edge. (We omit the formal definitions here.)

Bounded games. As usual for bounded games, with BOUNDED TEAM
PRIVATE CONSTRAINT LOGIC we allow each edge to reverse at most once.
BouNDED TPCL is NEXPTIME-complete (reduction from the DEPENDENCY
QBF problem introduced in [PR79]). It remains NEXPTIME-complete, even
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for planar graphs which use only AND and OR vertices, and when there is only
one Black player and two White players. (Unlike other forms of constraint
logic, here we don’t enumerate a specific smaller set of basis vertices; note
that there are several different types of AND and OR vertices, depending on
controlling player, initial edge orientation, and edge visibility.)

Unbounded games. To enable a simpler reduction to an unbounded form
of team constraint logic, we allow each player to reverse up to some given
constant k edges on his turn, rather than just one, and leave the case of k = 1
as an open problem. TPCL is undecidable (shown by a series of reductions
beginning with acceptance of a Turing machine on an empty input). It
remains undecidable even for planar graphs which use only AND and OR
vertices. As with BOUNDED TPCL, several different AND- and OR-subtypes
are used in the reduction, which we do not enumerate.

The undecidability here is rather striking, given that this is a game played
with a finite number of positions! Essentially, this means that the games with
a bounded amount of state can simulate any unbounded Turing computation.

The ability for a player to reverse multiple edges on a turn, and the lack of
a small set of basis vertices, would seem to make TPCL a challenging problem
to reduce from to show other problems undecidable. However, TPCL has
already been applied to show some decision problems for multi-port finite-
state machines undecidable [Hiel0].

8 Conclusion

We have now forged a trail from NiMm to CHESS and GO. In section 2 we
dealt with classical acyclic impartial games. We then presented a polynomial
theory of cyclic games in section 3. In section 4 we added interactions between
tokens. Next we tackled partizan games in section 5, and misére play in
section 6. All of these — cycles, token interactions, misére play — are absent
from NIM but very much present in CHESS and GO. This trail is still rather
thin: token interaction was restricted to annihilation. Most of the other
interactions lead to intractable games. Similarly for partizan games. Misére
play was portrayed in the Introduction as a special case of “Termination Set”,
general cases of which occur in CHESS and GO. In this sense we listed misére
play as a road step towards CHESS and GoO.
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Game intractability results, besides their intrinsic value, serve as trail
guides: They indicate the boundary beyond which polynomial strategies are
unlikely to exist, where we have to resort to analysis of restricted or special
cases. Section 7 provides a modern convenient tool for proving intractabil-
ity, though it doesn’t seem to work for all cases. Intractable games, in the
technical meaning of intractability, though it’s only an asymptotic result —
for n x n boards as n goes to infinity — are rather unlikely to have a tractable
strategy for a finite actual board. In fact, we do not know of any such case.
Therefore only special cases are likely to be analysable. For misére play this
was done by restricting the universe of the games. For CHESS and GO it was
done by treating endgames.

Thus we have arrived at CHESS and GO from two directions: The for-
mer has been showed to be EXPTIME-complete [FL81|, which is a prov-
able intractability, and the latter even EXPSPACE-complete, under certain
game-rules of GO [Rob84a|; and there are some constructive results for their
endgames. Elkies |E1k96|, |EIk06] has some results about CHESS endgames,
and Berlekamp and his students have some spectacular results about GoO
endgames |Ber91|, [BW94|. GO play tends to break up into almost indepen-
dent subgames at the end, so the strong tool of game-sums can be unleashed
to attack them. This is not quite the case for CHESS, partly because some of
the pieces are so strong that they dominate much of the entire board, rather
than only locally.

How can we broaden this still rather thin trail? One direction could be to
extend the misére play theory to more general termination sets, as exist for
CHESS and GO. Another is to broaden the fledgling theory of scoring games,
where scores are accumulated during play. These were and are indepen-
dently studied by John Milnor, Mark Ettinger, Fraser Stewart, Will Johnson
and Carlos Santos. Related avenues include competitive auctions, incentives
(Elwyn Berlekamp), bidding games (Sam Payne) and, more generally, con-
nections between combinatorial games and classical games with applications
to economics. In quite a different direction, the yearned for emergence of
quantum and biological computing are potential brute force tools to bridge
the complexity gap between polynomial and non-polynomial games.

Acknowledgment. We thank an anonymous referee whose remarks
made us explain better concepts from Combinatorial Game Theory to Clas-
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