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Aim: To present a systemati
 development of the theory of 
ombinatorial

games from the ground up. Approa
h: Computational 
omplexity. Combi-

natorial games are 
ompletely determined; the questions of interest are e�-


ien
ies of strategies. Methodology: Divide and 
onquer. As
end from Nim

to Chess and Go in small strides at a gradient that's not too steep. Pre-

sentation: Mostly informal; examples of 
ombinatorial games sampled from

various strategi
 viewing points along s
eni
 mountain trails illustrate the

theory. Add-on: A taste of 
onstraint logi
, a new tool to prove intra
tabili-

ties of games.

1



1 Motivation and an An
ient RomanWar-Game

Strategy

The 
urrent mainstream of the family of 
ombinatorial games 
onsists of

two-person games with perfe
t information (unlike some 
ard games where

information is hidden), without 
han
e moves (no di
e), and out
ome re-

stri
ted to (lose, win), (tie, tie) and (draw, draw) for the two players who

move alternately (no passing).

Instead of the long terminology �
ombinatorial game(s)�, we shall usually

simply write �game(s)�. In normal play, to win a game means to make the

last move in it. This is the main 
on
ern of game theory, 
overed in se
tions

2-5. But in se
tion 6, we expose the modern theory of misère play, where the

player making the last move loses. A tie is an end position with no winner

and no loser, as may o

ur in ti
-ta
-toe, for example. A draw is a �dynami


tie�, i.e., a non-end position su
h that neither player 
an for
e a win, but ea
h


an �nd a next non-losing move. (In �non
ombinatorial� game theory, ea
h

player re
eives a payo� at the end of the game. For 
ombinatorial games it

is natural to assign a payo� of +1 to the winner, −1 to the loser and 0 for

tying or drawing: on
e play is in a draw 
y
le it is abrogated. Our games

are zero-sum games in this sense.)

The modern theory of 
ombinatorial games is portrayed in the ground-

breaking work of Conway [Con01℄, the en
y
lopedi
 
ompilation of Berlekamp,

Conway and Guy [BCG04℄, the attra
tive textbook by Albert, Nowakowski

and Wolfe [ANW07℄, and the authoritative graduate-level book of Siegel

[Sie13℄ that studies the modern theory of partizan games and misère play.

The primeval and simplest 
ombinatorial game is Nim: Given m piles

of �nitely many tokens, a move 
onsists of sele
ting a single non-empty pile

and removing from it a positive number of tokens, that is, at least one, and

up to and in
luding the entire pile. The player �rst unable to move loses,

the opponent wins (normal play). For m = 1, player I 
an win if the pile

is nonempty, simply by removing it entirely. For m = 2, player I 
an win

if the piles are of unequal size, by a move that equalizes their size, followed

by imitating on one pile what player II does on the other. For m > 2,
the winning strategy, �rst given in [Bou02℄, is quite surprising, yet simple:


ompute the XOR (eX
lusive OR) of the binary representation of the pile

sizes. If the resulting binary nim-sum is non-zero, the next player (player I)

has a move making it zero (a winning move). If it is zero, every move will
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make it non-zero (a losing move). This is shown in se
tion 2 in the more

general setting of �Nim-type� games. Thus for m = 3 and pile sizes 1, 2, 3,
a simple 
ase analysis shows that the previous player (player II) 
an win.

Indeed, the nim-sum 1⊕ 2⊕ 3 is 0.

As an exer
ise, 
an you win by beginning to play in a game of Nim with

4 piles of sizes 2, 3, 5, 7? If so, do you have a unique winning strategy?

The family of 
ombinatorial games 
ontains simple games su
h as Nim,

as well as seemingly 
omplex games su
h as Che
kers, Chess and Go.

The fundamental question that arises naturally is why some games, su
h as

Nim, are easy to solve, whereas others in the family, su
h as Go, seem so


omplex? The quest for answers to this problem motivates this survey.

For throwing some light on the question, a Roman Cæsars' motto is

adopted:

DIVIDE AND CONQUER .

There are several mathemati
al di�eren
es between Nim-type and Chess-

type games. After identifying them, a 
on
entrated atta
k is laun
hed on

ea
h of them separately, whi
h seems to have a better 
han
e of su

ess than

trying in vain to s
ale the sheer 
li� separating Nim from Chess. Thus, we

as
end from Nim towards Chess and Go at a moderate gradient, by grad-

ually introdu
ing into Nim more and more 
ompli
ations in a natural order

of in
reasing 
omplexity. The adventures o

urring on the way 
omprise the

story of this 
hapter.

In se
tion 2 we review the 
lassi
al theory of a
y
li
 games, sum of games

and the Sprague-Grundy fun
tion, whi
h is the main tool for solving a
y
li


games. We also show that 
omplexities of games are normally mu
h higher

than those en
ountered in optimization problems su
h as the Traveling Sales-

person Problem.

An �apparent� di�eren
e between Nim and Chess is the board whi
h

exists for the latter but not for the former. However, Figure 1 shows that

also Nim 
an be 
onsidered as a board game: ai indi
ates a nim-heap of size

i, and the dire
ted edges indi
ate the permissible moves. Thus pla
ing a

token on ea
h of the verti
es a1, a2 and a3 and moving them along dire
ted

edges, where any number of tokens may reside on any vertex, is isomorphi


to Nim with pile sizes 1, 2, 3. Con
lusion: this �apparent� di�eren
e is not

really a mathemati
al di�eren
e.

Here are some more substantive di�eren
es:
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Figure 1: Nim as a board game.

• Cy
les. Nim-type games are �nite and �a
y
li
�, i.e., there is an under-

lying �well-ordering prin
iple� whi
h guarantees that no position is assumed

twi
e. This is not the 
ase for Chess-type games. Applying the Divide And

Conquer Prin
iple, we deal with su
h �
y
li
� games separately in se
tion 3,

where it is shown that 
y
les indeed destroy the 
lassi
al theory. A general-

ized theory is developed there whi
h re
overs a polynomial strategy for 
y
li


games.

• Token Intera
tions. Another di�eren
e is that in Nim-type games,


onsidered as board games, tokens 
oexist pea
efully on the same vertex

(board square), whereas they intera
t in various ways su
h as jumping, de-

�e
ting, 
apturing, et
., in Chess-type games. Many of these intera
tions


ause the games to be
ome PSPACE-hard (notion explained near the end of

se
tion 2) even in simpli�ed form, e.g., when played on planar or a
y
li


or bipartite graphs. However, if both tokens disappear on impa
t, a �just

barely polynomial� strategy 
an be given for general 
y
li
 digraphs (dire
ted

graphs). This topi
 is studied in se
tion 4.

• Partizanship. A game is impartial if the set of options (positions

rea
hed in a single move) of every position is the same for the two players.

If this doesn't ne
essarily hold, the game is partizan. Nim-type games are

impartial, whereas Chess-type games are partizan (the �bla
k� player 
annot

move a white pie
e and vi
e versa). Note that the set of impartial games

is a subset of the set of partizan games. It turns out that partizan games,

taken up in se
tion 5, are in general PSPACE-hard even on a
y
li
 digraphs;
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see Yedwab [Yed85℄, Morris [Mor81℄. See also Pultr and Morris [PM84℄.

• Termination Set. Another di�eren
e 
on
erns the 
onventions for

ending the play of the game, i.e., the termination set τ . Roughly, the 
om-

plexity of the strategy seems to in
rease with the size |τ | of τ . The simplest

games are those played on a digraph G, where τ is the set of leaves of G (ver-

ti
es of outdegree 0), followed by those in whi
h τ 
onsists of all positions

whose only options are leaves � su
h as in misère play: the player making

the last move loses � to 
ases where τ is even larger, su
h as in Chess and

Go. A theory for general τ has yet to be developed, but we treat misère play

in se
tion 6.

As we progress from the easy games to the more 
omplex ones, we will

develop some understanding for the poset of tra
tabilities and e�
ien
ies of

game strategies: in the realm of existential questions, tra
tabilities and e�-


ien
ies are, by and large, linearly ordered, from polynomial to exponential.

However, as explained near the end of se
tion 2, game problems are formu-

lated by an � often unbounded � number of alternating quanti�ers. For su
h

problems the notion of a �tra
table�, �polynomial� or �e�
ient� 
omputation

� de�ned formally in De�nition 1, se
tion 2 � is mu
h more 
omplex.(Whi
h

is more tra
table: a game that ends after four moves, but it's unde
idable

who wins [Rab57℄, or a game requiring an A
kermann fun
tion of moves to

�nish but the winner 
an play randomly, having to pay attention only near

the end [FLN88℄, [FN85℄ ?) Sin
e we are 
on
erned with game 
omplexi-

ties, we present, in se
tion 7, a modern tool for proving game intra
tabilities


onveniently and e�
iently. In se
tion 8, the Con
lusion, we brie�y illumi-

nate our as
ent from Nim to Chess and Go, and indi
ate possible further

dire
tions of 
ombinatorial game theory.

2 The Classi
al Theory, Sum of Games, Com-

plexity

In this se
tion we will see how to play �arbitrary� �nite a
y
li
 games su
h

as Beat Doug (Figure 2). (Doug � �DAG�, Dire
ted A
y
li
 Graph.)

Pla
e one token on ea
h of the four starred verti
es. A move 
onsists

of sele
ting a token and moving it, along a dire
ted edge, to a neighboring

vertex on this a
y
li
 digraph. As usual we 
onsider normal play, so the

player making the last move wins. Tokens 
an 
oexist pea
efully on the
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*

Figure 2: Beat DOUG on this DAG (dire
ted a
y
li
 graph).

same vertex. For the given position, how mu
h time does it take to:

(a) 
ompute who 
an win;

(b) 
ompute an optimal next move;

(
) 
onsummate the win, that is, a
tually make the last move?

Denote by N and N+
the set of all nonnegative integers and the set of all

positive integers respe
tively. Following the divide and 
onquer methodology,

let's begin with a more stru
tured digraph, rather than solving immediately

the �arbitrary� Beat Doug. Given n ∈ N+
(the initial s
ore) and t ∈ N+

(the maximal step size), a move in the game S
oring 
onsists of sele
ting

i ∈ {1, . . . , t} and subtra
ting i from the 
urrent s
ore, initially n, to generate
the new s
ore. Play ends when the s
ore 0 is rea
hed. The player rea
hing 0
wins (normal play). Noti
e that Nim is the spe
ial 
ase t = ∞ of S
oring.

The digraph G = (V,E) for S
oring is shown in Figure 3 for n = 8 and

t = 3: it is an a
y
li
 digraph, where V is the set of game positions, and

(u, v) ∈ E if and only if there is a move from u to v (then v is an option

of u). A position (vertex) u ∈ V is labeled N (for Next player win) if the

player moving from u 
an win; otherwise it's a P -position (Previous player

win). Denote by P the set of all P -positions, by N the set of all N-positions,
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and by F (u) the set of all options of any vertex u. For any a
y
li
 game, the

partition of the vertex-set into , N exists uniquely and satis�es,

u ∈ P if and only if F (u) ⊆ N , (1)

u ∈ N if and only if F (u) ∩ P 6= ∅ . (2)

In words: u is a P -position if and only if all its options (dire
t followers)

are N-positions; and u is an N-position if and only if it has an option in P.
As suggested by Figure 3, we have P = {k(t + 1): k ∈ N+}, so N =

{{0, . . . , n} \P}. The winning strategy 
onsists of dividing n by t+1. Then
n ∈ P if and only if the remainder r is zero. If r > 0, the unique winning

move is from n to n− r.

013 245678

N N NPN N PNP

Figure 3: The digraph for S
oring, with initial s
ore n = 8 and maximal step

t = 3. Positions marked N are wins and P are losses for the player moving from

those positions.

Is this a tra
table strategy? (�Tra
table� � see De�nition 1.)

Input size: Θ(logn) (su

in
t input).
Strategy 
omputation: O(logn) (division of n by t).
Length of play: ⌈n/(t + 1)⌉.

Thus the 
omputation time is linear in the input size, but the length of

play is exponential!

To the �run-of-the-mill-algorithmi
ians� the latter fa
t dooms the game

as intra
table. It may be quite a surprise to them that it does not prevent the

strategy from being tra
table: whereas we dislike 
omputing in more than

polynomial time, we observe that at least some members of the human ra
e

relish to see some of its members being tormented for an exponential length

of time, from before the era of the Spanish matadors and inquisition, through

so

er and tennis, to Chess and Go! But there are other requirements for
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making a strategy polynomial as we will see presently, so at present let's say

that the strategy is tra
table.

Re
apping our story up to now, we have made some progress: we got a

tra
table strategy for winning in S
oring. But what about the 
ase when

we have k s
ores n1, . . . , nk ∈ N+
and t ∈ N+

? A move 
onsists of sele
ting

one of the 
urrent s
ores and subtra
ting from it some i ∈ {1, . . . , t}. Play

ends when all the s
ores are zero. Figure 4 shows an example (k = 4). This
is a sum of S
oring games, itself also a S
oring game. The notion of sum

often permits us to simplify the strategy analysis, if the 
omponents of the

game are disjoint. For example, Nim is the sum of its piles. It's easy to see

that the game of Figure 4 is equivalent to the game played on the digraph of

Figure 5, with tokens on verti
es 5, 6, 7 and 8. A move 
onsists of sele
ting a

token and moving it right by not more than t = 3 pla
es. Tokens 
an 
oexist

on the same vertex. Play ends when all tokens reside on 0. What's a winning

strategy?

0 0

1 1

0 0

1 1

8

7

7 6

6 5

5

4

n2 n3 n4=nkn1

Figure 4: A S
oring game 
onsisting of a sum of four S
oring games. Here

k = 4, n1 = 8, n2 = 7, n3 = 6, n4 = 5, and t = 3.

We hit two snags when trying to answer this question:

(i) Though the sum of P -positions is in P, the sum of N-positions is in

P ∪ N . Thus a game of two tokens, one on ea
h of 5 and 7, is seen to be

an N-position (the move 7 → 5 
learly results in a P -position), whereas the
sum of a token on 3 and 7 is seen, by inspe
tion, to be a P -position. So

the simple P -, N-strategy breaks down for sums, whi
h arise frequently in


ombinatorial game theory.
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(ii) The game-graph has exponential size in the input size Ω(Σk
i=1 logni)

of the �regular� digraph G = (V,E) (with |V | = n+1, where n = maxi ni) on

whi
h the game is played with k tokens (Figure 5 in our 
ase). However, G is

not the game-graph of the game: ea
h tuple of k tokens on G 
orresponds to

a single vertex of the game-graph, whose vertex-set thus has size

(

k+n

n

)

� the

number of k-
ombinations of n+1 distin
t obje
ts with at least k repetitions.

For k = n this gives

(

2n

n

)

= Θ(4n/
√
n), whi
h is doubly exponential in the

input size!

013 245678

0 0 01 12 23

* * **

3

Figure 5: A game on a graph, but not a game-graph.

The main 
ontribution of the 
lassi
al theory is to provide a polynomial

strategy for sums despite the exponential size of the game-graph. On G,
label ea
h vertex u with the least nonnegative integer not among the labels

of the options of u (see top of Figure 5). These labels are 
alled the Sprague�
Grundy fun
tion values of the game onG, or the g-fun
tion for short [Spr36℄,
[Gru39℄. It is a fun
tion from the verti
es of a digraph into the nonnegative

integers, de�ned re
ursively by

g(u) = mex g(F (u)),

where for any subset S ( N,

mexS = minN \ S

is the least nonnegative integer not in S. Noti
e that g of the empty set is

0. The fun
tion g exists uniquely on every �nite a
y
li
 digraph.

For u = (u1, . . . , uk), a vertex of the game-graph (whose very 
onstru
tion

entails exponential e�ort), we have

g(u) = g(u1)⊕· · ·⊕g(uk) , P = {u : g(u) = 0} , N = {u : g(u) > 0} ,

where ⊕ denotes nim-sum (summation over GF(2), also known as ex
lusive

or , whi
h we already met in se
tion 1). To 
ompute a winning move from an
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N-position, note that there is some i for whi
h g(ui) has a 1-bit at the binary
position where g(u) has its leftmost 1-bit. Redu
ing g(ui) appropriately

makes the Nim-sum 0, and there is a 
orresponding move with the i-th token.
For the example of Figure 5 we have

g(5)⊕ g(6)⊕ g(7)⊕ g(8) = 1⊕ 2⊕ 3⊕ 0 = 0 ,

a P -position, so every move from this position is losing.

Is this Sprague�Grundy strategy polynomial? For S
oring, the remain-

ders r1, . . . , rk of dividing n1, . . . , nk by t+1 are the g-values, as suggested by

Figure 5. The 
omputation of ea
h rj has size O(logn), where n = maxni.

Sin
e k logn < (k + log n)2, the strategy 
omputation (items (a) and (b) at

the beginning of this se
tion) is polynomial in the input size (k is a 
onstant).

The length of play remains exponential.

Sin
e the strategy for S
oring is tra
table for a single game as well

as for a sum, we may say that S
oring has a polynomial strategy (see

De�nition 1 below).

Now 
onsider a general nonsu

in
t a
y
li
 digraph G = (V,E), that is,
the input size is not logarithmi
: If the graph has |V | = n verti
es and

|E| = m edges, the input size is Θ((m+ n) log n) (ea
h vertex is represented

by its index of size log n, and ea
h edge by a pair of indi
es), and g 
an be


omputed in O((m+n) logn) steps (by a �depth-�rst� sear
h; ea
h g-value is
at most n, of size at most logn). For a sum of k tokens on the input digraph,

the input size is Θ((k +m+ n) logn), and the strategy 
omputation for the

sum 
an be 
arried out in O((k+m+n) logn) steps (nim-adding k summands

of g-values). Note also that for a nonsu

in
t digraph the length of play is

only linear rather than exponential, in 
ontrast to a su

in
t (logarithmi


input size) digraph.

Our original Beat Doug problem is now also solved with a polynomial

strategy. Figure 6 depi
ts the original digraph of Figure 2 with the g-values
added in (we'll see later how to 
ompute g). Sin
e 2 ⊕ 3 ⊕ 3 ⊕ 4 = 6, the
given position is in N . Moving 4 → 2 is a unique winning move. The winner


an 
onsummate a win in polynomial time. Also noti
e that the strategy for

Nim is a spe
ial 
ase of the Sprague-Grundy strategy.

However, the strategy of 
lassi
al games is not very robust: slight per-

turbations in various dire
tions 
an make the analysis 
onsiderably more

di�
ult. Thus the theory forWelter, whi
h amounts to Nim with all piles

of distin
t size, is rather 
ompli
ated [Con01℄ (
h. 13).
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Figure 6: The beaten Doug.

We point out that there is an important di�eren
e between the strategies

of Beat Doug and S
oring. In both, the g-fun
tion plays a key role.

But for the latter, some further property is needed to yield a strategy that's

polynomial, sin
e the input graph is (logarithmi
ally) su

in
t. In this 
ase

the extra ingredient is the periodi
ity modulo (t+1) of g, whi
h was easy to

establish. For other su

in
t games, it may be harder to prove polynomiality,

su
h as for general o
tal games [BCG04℄, Vol. 1.

2.1 Complexity, Hardness and Completeness

What, then, are tra
table, polynomial and e�
ient games? We abstra
t some

of the properties of Nim, sin
e it has a simple strategy, and it is the sum of

its piles.

De�nition 1. Let c > 1 denote arbitrary 
onstants and denote by n the

size of a su�
iently su

in
t en
oding of a digraph G = (V,E). A subset

T of 
ombinatorial games with a polynomial strategy has the following

properties. For normal play of every G = (V,E) ∈ T , and every position u
of G:

(a) The P -, N-, D- and tie-label of u 
an be 
omputed in time O(nc)
(polynomial time; D denotes draw � see next se
tion).
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(b) An optimal next move from any N- to a P -position and from any D-

to a D-position and from any non-end tie- to a tie-position 
an be


omputed in time O(nc) (polynomial time).

(
) The winner 
an 
onsummate a win in at mostO(cn)moves (exponential

time).

(d) The subset T is 
losed under summation, i.e., G1, G2 ∈ T implies G1+
G2 ∈ T . (Thus (a), (b), (
) hold for G1 + G2 for every independently


hosen position of G1 and for every independently 
hosen position of

G2.)

A subset T1 ⊆ T for whi
h (a)�(d) hold also for misère play � the player

making the last move loses � is a subset of games with an e�
ient strategy.

A superset T 1 ⊇ T for whi
h (a)�(
) hold is a superset of games with a

tra
table strategy.

A game in some su
h T or T1 or T
1
is 
alled polynomial or e�
ient or

tra
table, respe
tively.

A de
idable game

1

whi
h has no polynomial (tra
table) strategy is 
alled

nonpolynomial (intra
table).

Stri
tly speaking, in view of (
), the terminology �polynomial� ought to be

repla
ed by something else, su
h as �adequate�. But �polynomial� is so uni-

versally used for problems that are 
omputationally reasonable, that �poly-

nomial� is preferred. Rami�
ations in several dire
tions of De�nition 1 are


onsidered in [Fra04℄.

To prove that a problem is tra
table, polynomial or e�
ient, the normal

pro
edure is to 
onstru
t an algorithm that has those properties. But how

do we show that, no matter how hard we try, a problem doesn't have a

good solution? We explain brie�y a next best way to do something in this

dire
tion.

Roughly, NP 
onsists of all problems whose solution 
an be veri�ed � not

ne
essarily found , only veri�ed � using an amount of time that's polynomial

in a su

in
t input size of the problem. It's NP-
omplete if it's among the

hardest problems in NP. It's NP-hard if it's NP-
omplete, ex
ept that it

needs at least a polynomial amount of time. PSPACE 
onsists of all problems

1

A problem is de
idable if there exists an algorithm to solve all its instan
es. Otherwise

it is unde
idable.
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that 
an be solved using a polynomial amount of spa
e (hen
e of time), and

EXPTIME � all problems that 
an be solved in an exponential amount of

time. Hardness and 
ompleteness are de�ned analogously to the respe
tive

de�nitions of NP. NP-
omplete problems share the following idiosyn
rasies:

� If any NP-
omplete problem will be shown to have a polynomial-time

algorithm, then all of them are polynomial, and if any is shown to have

a lower non-polynomial bound, then all of them are non-polynomial.

� It is widely believed that NP-
omplete problems are non-polynomial.

� Completeness results are asymptoti
. With any NP-
omplete problem

there is asso
iated some parameter n, and the result holds for large n.
For games, n is typi
ally the size of a side of the board.

Analogous results hold a-fortiori for PSPACE-
omplete problems. But EX-

PTIME-
ompleteness is an un
onditional provable intra
tability: any EXP-

TIME-
omplete problem has a lower exponential time bound for its solution,

asymptoti
ally.

Optimization problems, su
h as TSP (Traveling Salesperson Problem)

are typi
ally NP-
omplete, sin
e there is a single existential quanti�er (does

there exist a tour of 
ost < C?). In a two-person game, the question whether

player I 
an win involves an alternating number of existential and universal

quanti�ers: does player I have a move su
h that for every move of player II

there exists a move of player I · · · su
h that player I wins? If the number of

alternating quanti�ers is bounded, the game tends to be PSPACE-
omplete,

su
h as Hex [Rei81℄; if their number is unbounded, it is typi
ally EXPTIME-


omplete, su
h as Chess [FL81℄.

We do not know of any PSPACE-
omplete or EXPTIME-
omplete game

problem that has a known polynomial solution for �nite boards as en
oun-

tered in pra
ti
e, su
h as 8 × 8 or 19 × 19. Thus, though 
ompleteness and

hardness are asymptoti
 properties, in pra
ti
e they seem to say something

also about a
tual games.

3 Introdu
ing Draws

In this se
tion we learn how to beat Craig (Cy
li
 dIGRAph) e�
iently.

The four starred verti
es in Figure 7 
ontain one token ea
h. The moves

13



are identi
al to those of Beat Doug; tokens 
an 
oexist pea
efully on any

vertex. The only di�eren
e is that now the digraph G = (V,E) may have


y
les and loops (the latter 
orrespond to passing a move), or may be in�nite.

In addition to the P - and N-positions, whi
h satisfy (1) and (2), we now may

have also Draw-positions, D.

De�nition 2. Given a game Γ, with game-graph G = (V,E), where G may

be �nite or in�nite, a
y
li
 or 
y
li
. Denote by O the set of all nonnegative

ordinals not ex
eeding |V |. By re
ursion on n ∈ O de�ne the multisets,

Pn = {u ∈ V, n = min m : F (u) ⊆
⋃

i<m

Ni},

Nn = {u ∈ V, n = min m : F (u) ∩
(

⋃

i<m

Pi

)

6= ∅}.

Finally, let

P =
⋃

n∈O Pn, N =
⋃

n∈O Nn, D = V \ (P ∪ N ),
where D is the set of all D-positions.

The de�nition implies

u ∈ D if and only if F (u) ∩ P = ∅ and F (u) ∩ D 6= ∅ .

Introdu
ing 
y
les 
auses several problems:

� Moving a token from an N-position su
h as vertex 4 in Figure 8 to a

P -position su
h as vertex 5 is a nonlosing move, but doesn't ne
essarily

lead to a win. A win is a
hieved only if the token is moved to the leaf

3. The digraph might be embedded inside a large digraph, and it may

not be 
lear to whi
h P -option to move in order to realize a win.

� The partition of V into P,N and D is not unique, as it is for P and

N in the 
lassi
al 
ase. For example, verti
es 1 and 2 in Figure 8,

if labeled P and N , would still satisfy (1) and (2), and likewise for

verti
es 8 and 9 (either 
an be labeled P and the other N).

Both of these short
omings 
an be remedied by introdu
ing a suitable


ounter fun
tion J � see [FY86℄.

For handling sums, we would like to use the g-fun
tion (Sprague-Grundy

fun
tion), but there are two problems:

14
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Figure 7: Beat CRAIG in this Cy
li
 dIGRAph.
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P

P

N

N N N

Figure 8: P -, N -, D- and γ-values for simple digraphs.

� The question of the existen
e of g on a digraph G with 
y
les or loops

is NP-
omplete, even if G is planar and its degrees are ≤ 3, with ea
h

indegree ≤ 2 and ea
h outdegree ≤ 2 [Fra81℄. (NP-
ompleteness with-

out these restri
tions, or less restri
tions, has been proved in [Chv73℄,

[vL76℄, [FY79℄.)
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� The strategy of a 
y
li
 game isn't always determined by the g-fun
tion,
even if it exists.

This is one of those rare 
ases where two failures are better than one!

The se
ond failure opens up the possibility that perhaps there's another

tool that always works, and if we are optimisti
, we might even hope that

it is also polynomial. There is indeed su
h a generalized g-fun
tion γ. It

was introdu
ed by Smith [Smi66℄; an improved version was (re)dis
overed in

[FP75℄; see also [Con01℄ (
h. 11), [FY86℄.

The γ-fun
tion is de�ned the same way as the g-fun
tion, ex
ept that

it 
an assume not only values in N, but in N ∪ {∞}, where the symbol ∞
denotes a value bigger than every natural number. We also use the notation

γ(u) = ∞(K), where K is the set of �nite γ-values of the options of u. We

have γ(u) = ∞(K), if there is v ∈ F (u) with γ(v) = ∞, and v has no

option w with γ(w) equal to the least nonnegative integer not in K. The

formal de�nition is given in [FY86℄. Figure 8 depi
ts γ-values for some simple

digraphs. Every �nite digraph with n verti
es and m edges has a unique

γ-fun
tion that 
an be 
omputed in O(mn logn) steps. This is a polynomial-

time 
omputation, though bigger than the g-values 
omputation.

To get a strategy for sums, de�ne the generalized nim-sum as the

ordinary nim-sum augmented by:

a⊕∞(L) = ∞(L)⊕ a = ∞(L⊕ a) = ∞(a⊕ L), ∞(K)⊕∞(L) = ∞(∅),

where a ∈ N and L⊕ a = {l⊕ a : l ∈ L}. For a sum of k tokens on a digraph

G = (V,E), let u = (u1, . . . , uk). We then have γ(u) = γ(u1)⊕ · · · ⊕ γ(uk),
and

P = {u : γ(u) = 0} ,
N = {u : 0 < γ(u) < ∞} ∪ {u : γ(u) = ∞(K) and 0 ∈ K} , (3)

D = {u : γ(u) = ∞(K) and 0 /∈ K} .

Thus a sum 
onsisting of a token on vertex 4 and one on 8 in Figure 8 has

γ-value 1 ⊕ ∞(1) = ∞(1 ⊕ 1) = ∞(0), whi
h is an N-position (the move

8 → 7 results in a P -position). Also one token on 11 or else on 12 is an

N-position. But a token on both 11 and 12; or on 8 and 12 is a D-position

of their sum, with γ-value ∞(∅). Also a token on 7 and 12 is a D-position,

sin
e ∞(0)⊕ 1 = ∞(0 ⊕ 1) = ∞(1). A token on 4 and 7 is a P -position of

the sum.

16



With k tokens on a digraph, the strategy for the sum 
an be 
omputed in

O((k+mn) logn) steps. It is polynomial in the input size Θ((k+m+n) logn),
sin
e k + mn ≤ (k + m + n)2. Also, for 
ertain su

in
t �linear� graphs, γ
provides a polynomial strategy. See [FT75℄.

Beat Craig is now also solved with a polynomial strategy. From the γ-
values of Figure 9 we see that the position given in Figure 7 has γ-value
0 ⊕ 1 ⊕ 2 ⊕ ∞(2, 3) = 3 ⊕ ∞(2, 3) = ∞(1, 0), so by (3) it's an N-position,

and the unique winning move is ∞(2, 3) → 3. Again the winner 
an for
e a

win in polynomial time.

0

0

0

1

1

1

2

2

3

∞

∞

∞

∞(2,3)

∞ (1,2)

(2)

*

*

* *

2

Figure 9: Craig has also been beaten.

As an exer
ise, beat an even bigger Craig: 
ompute the labels P,N,D for

the digraph of Figure 10 with tokens pla
ed on verti
es A−E, or for various
other initial token pla
ements.

We end this se
tion with the Fundamental Theorem of Combinatorial

Game Theory for impartial games whi
h may be 
y
li
.

Theorem 1. Let Γ be a two-person 
y
li
 game with perfe
t information

whose game-graph may be in�nite, without 
han
e moves and without ties.

Then for every position of Γ there either exists a winning move for pre
isely

one of the two players, or else, both players 
an maintain a draw.

Proof. Every position has at least one label from among {P,N ,D}. Indeed,
for any position u whi
h is neither in P nor in N , De�nition 2 implies u ∈ D.
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Figure 10: Beat an even bigger Craig.

So suppose that there exists u0 ∈ (P ∩N ). Then u0 ∈ (Pm0
∩Nk0) for some

ordinals k0, m0 ∈ O. It then follows that F (u0) ⊆ N , F (u0) ∩ P 6= ∅. By

De�nition 2, there thus is u1 ∈ F (u0) with u1 ∈ (Pm1
∩Nk1), where k1 < m0,

m1 < k0. Hen
e F (u1) ⊆ N , F (u1) ∩ P 6= ∅. Thus there is u2 ∈ F (u1)
with u2 ∈ (Pm2

∩ Nk2), where k2 < m1, m2 < k1. This leads to two in�nite

sequen
es k0 > m1 > k2 > m3 > . . . and m0 > k1 > m2 > k3 > . . . , su
h
that ui ∈ (Pmi

∩Nki) for all i ∈ N. This 
ontradi
ts the well-ordering of the

ordinals. Hen
e (P ∩ N ) = ∅.
By the de�nition of D in De�nition 2, N∩D = P∩D = ∅. We have shown

that every position of Γ gets a unique label from among {P,N,D}.
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4 Adding Intera
tions between Tokens

Here we learn how to beat Anne (Annihilation). On the �ve-
omponent

digraph depi
ted in Figure 11, pla
e tokens at arbitrary lo
ations, but at

most one token per vertex. A move is de�ned as in the previous games, but

if a token is moved onto an o

upied vertex, both tokens are annihilated

(removed). The digraph has 
y
les, and 
ould also have loops (passing posi-

tions). Note that the three 
omponents with z-verti
es are identi
al, as are
the two y-
omponents. The only di�eren
e between a z- and a y- 
omponent

is in the orientation of the top horizontal edge. With tokens on the twelve

starred verti
es, 
an the �rst player win or at least draw, and if so, what's

an optimal move? How �good� is the strategy? The indi
ated position may

z0 z0 z0

z1 z1 z1

z2z2 z2z3 z3 z3

z4 z4 z4
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y
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y
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y
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2

y
1

y
1

y
0

y
0

*

*

*

*

*

*

*

*

* *

* *

Figure 11: Beat Anne in this ANNihilation game.

be a bit 
ompli
ated as a starter. So 
onsider �rst a position 
onsisting of

four tokens only: one on z0 and the other on z2 in two of the z-
omponents.

Se
ondly, 
onsider the position also 
onsisting of four tokens: a single token

on ea
h of y0 and y2 in ea
h y-
omponent. It's 
lear that in both of these

games player II 
an at least draw, simply by imitating on one 
omponent

what player I does on the other. Can player II a
tually win in one or both

of these games?

Annihilation games were proposed by John Conway. It's easy to see that

on a �nite a
y
li
 digraph, annihilation 
an a�e
t the length of play, but the
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strategy is the same as for the 
lassi
al games: Sin
e g(u) ⊕ g(u) = 0, the
winner doesn't need to use annihilation, and the loser 
annot be helped by it.

But the situation is quite di�erent in the presen
e of 
y
les. In Figure 12(a),

a token on ea
h of the verti
es z1 and z3 is 
learly a D-position for the

nonannihilation 
ase, but it's a P -position when played with annihilation

(the se
ond move is a winning annihilation move). In Figure 12(b), with

annihilation, a token on ea
h of z1 and z2 is an N-position, whereas a token

on ea
h of z1 and z3 is a D-position. The theory of annihilation games

is dis
ussed in depth in [FY82℄; see also [Fra74℄, [FY76℄, [FY79℄, [FTY78℄.

Misère annihilation play was analyzed by Ferguson [Fer84℄.

(a) (b)

z0 z0

z1

z1

z2

z2

z3

z4

z3

Figure 12: Annihilation on simple 
y
li
 digraphs.

The annihilation graph is a 
ertain game-graph of an annihilation

game. The annihilation graph of the annihilation game played on the digraph

of Figure 12(a) 
onsists of two 
omponents. One is depi
ted in Figure 13(b),

namely, the 
omponent G0 = (V 0, E0) with 8 verti
es and an even number of

tokens. The �odd� 
omponent G1
also has 8 verti
es. In general, a digraph

G = (V,E) with |V | = n verti
es has an annihilation graph G = (V,E) with
|V | = 2n verti
es, namely all n-dimensional binary ve
tors. The γ-fun
tion
on G determines whether any given position is in P, N orD, a

ording to (3);

and γ, together with its asso
iated 
ounter fun
tion, determines an optimal

next move from an N- or D-position.

The only problem is the exponential size of G. We 
an re
over an O(n6)
strategy by 
omputing an extended γ-fun
tion σ on an indu
ed subgraph

of G of size O(n4), namely, on all ve
tors of weight ≤ 4 (at most four 1-bits).

In Figure 14, the numbers inside the verti
es are the σ-values, 
omputed by

Gaussian elimination over GF(2) of an n×O(n4) matrix. This 
omputation
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Figure 13: (b) depi
ts the �even� 
omponent G0
of the annihilation graph G of

the digraph (a).

also yields the values t = 2 for Figure 14(a) and t = 1 for Figure 14(b): If

σ(u) ≥ 2t, then γ(u) = ∞, whereas σ(u) < 2t implies γ(u) = σ(u).
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t=2 t=1
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Figure 14: The σ-fun
tion.

Thus for Figure 14(a) we have σ(z0, z2) = 5⊕ 7 = 2 < 4, so γ(z0, z2) = 2.
Hen
e two su
h 
opies 
onstitute a P -position (2⊕2 = 0). (How 
an player II


onsummate a win?) In Figure 14(b) we have σ(y0, y2) = 3 ⊕ 4 = 7 > 2, so
γ(y0, y2) = ∞, in fa
t, ∞(0, 1), so two su
h 
opies 
onstitute a D-position.
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(How 
an the two players maintain the draw?) We have thus answered the

two questions posed in the se
ond paragraph of the present se
tion.

The position given in Figure 11 is repeated in Figure 15, together with

the σ-values. From left to right we have: for the z-
omponents, γ = 3⊕ 0⊕
2 = 1; and for the y-
omponents, ∞(0, 1) ⊕ 0 = ∞(0, 1), so the γ-value is
∞(0, 1)⊕ 1 = ∞(0, 1). Hen
e the position is an N-position by (3). There is,

in fa
t, a unique winning move, namely y0 → y2 in the �rst 
omponent from

the left. Any other move leads to drawing or losing. We have learned how

to beat Anne.
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Figure 15: Poor beaten Anne. (Gray 
ir
les show initial token positions.)

For small digraphs, a 
ounter fun
tion c is not ne
essary, but for larger
ones it is needed for 
onsummating a win. There is a problem in 
omputing

c: our polynomial algorithm produ
es γ and c only for an O(n4) portion of

G. Whereas γ 
an then be extended easily to all of G, this does not seem to

be the 
ase for c. There is a way out involving a broad strategy.

A strategy is narrow if it uses only the present position u for de
iding

whether u is a P -, N-, or D-position, and for 
omputing a next optimal

move. It is broad [Fra91℄ if the 
omputation involves any of the possible

prede
essors of u, whether a
tually en
ountered or not. It is wide if it

uses any an
estor that was a
tually en
ountered in the play of the game.

Wide strategies were de�ned by Kalmár [Kal28℄ and Smith [Smi66℄, but then
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both authors immediately reverted ba
k to narrow strategies, sin
e both

authors remarked that the former do not seem to have any advantage over

the latter. Yet for annihilation games, only a broad strategy was found that

is polynomial. For details see [FY82℄.

For 
ertain (Chinese) variations of Go, for Chess and some other games,

there are rules that forbid 
ertain repetitions of positions, or modify the

out
ome in the presen
e of su
h repetitions. Now if all the history is in
luded

in the de�nition of a move, then every strategy is narrow. But the way [Kal28℄

and [Smi66℄ de�ned a move � mu
h the same as the intuitive meaning �

there is a di�eren
e between a narrow and wide strategy for these games.

As an exer
ise, 
ompute the label ∈ {P,N,D} of the stellar 
on�guration
marked by letters in �Interstellar en
ounter with Jupiter� (Figure 16), where

J is Jupiter, the other letters are various fragments of the Shoemaker�Levy


omet, and all the verti
es are �spa
e-stations�. A move 
onsists of sele
ting

Jupiter or a fragment, and moving it to a neighboring spa
e-station along a

dire
ted traje
tory. Any two bodies 
olliding on a spa
e-station explode and

vanish in a 
loud of interstellar dust. Whereas in �Beat Anne� there is no

leaf, here there are six �bla
k holes�, where a body is absorbed and 
annot

es
ape. Both players are vi
iously bent on making the �nal move to destroy

this solar subsystem. Is the given position a win for player I or for player II?

Or is it a draw, so that a part of this subsystem will exist forever? And if

so, 
an it be arranged for Jupiter to survive as well? (An en
ounter of the

Shoemaker�Levy 
omet with Jupiter took pla
e in mid-July, 1994.)

Various impartial and partizan variations of annihilation games were

shown to be NP-hard, PSPACE-
omplete or EXPTIME-
omplete [GR95℄, [FG87℄,

[GR95℄. We mention here only brie�y an intera
tion related to annihilation.

Ele
trons and positrons are positioned on verti
es of the gameMatter and

Antimatter (Figure 17). A move 
onsists of moving a parti
le along a di-

re
ted traje
tory to an adja
ent station � if not o

upied by a parti
le of

the same kind, sin
e two ele
trons (and two positrons) repel ea
h other. If

there is a resident parti
le, and the in
oming parti
le is of the opposite type,

they annihilate ea
h other, and both disappear from the play. It is not very

hard to determine the label of any position on the given digraph. But what


an be said about a general digraph? About su

in
t digraphs? Note that

the spe
ial 
ase where all the parti
les are of the same type, is the general-

ization of Welter played on the given digraph. Welter is Nim with the

restri
tion that no two piles have the same size. It has a polynomial strategy,

but its validity proof is rather intri
ate [Con01℄ (
h. 13).
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Figure 16: Interstellar en
ounter with Jupiter.

Figure 17: Matter and antimatter.
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5 Partizan Games

In a partizan 
ombinatorial game there are two players, Left and Right,

who have distin
t sets of moves available from ea
h position. A game G is

short if it meets both of the following 
onditions:

� G is �nite: it has just �nitely many distin
t subpositions; and

� G is a
y
li
: there is no in�nite sequen
e of moves pro
eeding from G.

Formally, a short partizan game G 
an be represented as an ordered pair

(G L,G R), where G L
and G R

are sets of �simpler� games (that is, games with

stri
tly fewer subpositions). Elements of G L
(respe
tively G R

) are 
alled

Left (respe
tively Right) options of G. We'll sometimes write

G =
{

G
L
∣

∣ G
R
}

,

though we'll usually list the options of G expli
itly:

G =
{

GL
1 , G

L
2 , . . . , G

L
m

∣

∣ GR
1 , G

R
2 , . . . , G

R
n

}

or abuse notation and write simply

G =
{

GL
∣

∣ GR
}

to indi
ate that GL
and GR

range over all the Left and Right options of G.
The simplest game is the empty game 0, from whi
h there are no options

for either player:

0 = { | }.
Then we de�ne the set of short games G̃ by

G̃0 = {0}; G̃n+1 =
{

{

G
L
∣

∣ G
R
}

: G
L,G R ⊂ G̃n

}

; G̃ =
⋃

n≥0

G̃n.

The theory of partizan games was introdu
ed by Berlekamp, Conway and

Guy in the 1970s and early 1980s. The 
lassi
al textsWinning Ways for Your

Mathemati
al Plays [BCG04℄ and On Numbers and Games [Con01℄ remain

ex
ellent introdu
tions.
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Figure 18: (a) A Ha
kenbush position; (b) A typi
al opening move for

Left; (
) The resulting position after Left's move.

5.1 Two Examples: Ha
kenbush and Domineering

Ha
kenbush is played on a �nite undire
ted graph with 
olored edges,

su
h as the one in Figure 18(a). The solid horizontal line in Figure 18(a)

represents a single vertex of the graph, the ground. On her turn, Left may

remove any bLue (soLid) edge; Right may remove any Red (paRallel) one.

GrEen (dottEd) edges may be removed by either player. After ea
h move,

any edges no longer 
onne
ted to the ground are also removed from play.

Ha
kenbush follows the same normal-play 
onvention as Nim: whoever

makes the last move wins.

Domineering is played on an m× n 
he
kboard, typi
ally 8× 8. Left and
Right alternately pla
e dominoes on the board. Ea
h domino must 
over ex-

a
tly two adja
ent squares, and dominoes may never overlap. Moreover, Left

must pla
e verti
aLly-oriented dominoes, and Right must pla
e hoRizontally-

oriented ones. Eventually, the players will run out of moves (sin
e the board

will �ll up with dominoes), and whoever makes the last move wins. (Noti
e

that making the last move 
oin
ides with pla
ing the most dominoes, with

ties broken in favor of the se
ond player.)

Figure 19(a) shows a typi
al position after ea
h player has made one

move: Left made an opening move in the northeast 
orner of the board,

and Right responded in the southeast. Figure 19(b) shows the �rst fourteen

moves of a game played between David Wolfe and Dan Calistrate, in the

�nals of the �rst (and last) World Domineering Championship. Left 13 was

a fatal mistake, and after Right 14 Calistrate went on to win the mat
h and

the tournament. A des
ription of the Wolfe�CalistrateDomineering mat
h


an be found in [Wes96℄.
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Figure 19: (a) A typi
alDomineering opening; (b) The �rst fourteen moves

of Wolfe�Calistrate 1994, Round 3.

Noti
e that the position in Figure 19(b) 
an be subdivided into six sepa-

rate territories, and no single move 
an a�e
t more than one su
h 
omponent.

Subsequent play on the four 
omponents labelled +3, +2, −2 and −3 is en-

tirely predi
table: Left will pla
e exa
tly n dominoes on ea
h +n 
omponent,

and Right will pla
e n dominoes on ea
h −n 
omponent. The remaining two

regions are more ex
iting; their resolutions depend on who plays �rst on

whi
h territory. Assigning meaningful mathemati
al values to su
h 
ompo-

nents, and des
ribing their 
ombinatorial intera
tions, is a 
entral goal of the

partizan theory.

5.2 Out
omes and Sums

IfG is a short partizan game, thenG belongs to one of four out
ome 
lasses:

N �rst player (the N ext player) 
an for
e a win;

P se
ond player (the Previous player) 
an for
e a win.

L Left 
an for
e a win, no matter who moves �rst;

R Right 
an for
e a win, no matter who moves �rst;

The proof that every game belongs to one of these four 
lasses is a trivial

generalization of Theorem 1, the Fundamental Theorem for impartial games.
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◦ ◦ ◦

L R N P

Figure 20: Four Ha
kenbush positions with distin
t out
ome 
lasses.

We denote by o(G) the out
ome 
lass of G. Figure 20 gives examples of

Ha
kenbush positions representing all four 
lasses.

The disjun
tive sum G + H is formed as follows: Pla
e 
opies of G
and H side-by-side; on her turn, a player must move in exa
tly one of the

two 
omponents. Formally, we may write

G +H =
{

GL +H, G+HL
∣

∣ GR +H, G +HR
}

. (�)

Here GL
ranges over all Left options of G, andHL

ranges over all Left options

of H , so that the Left options of G +H are given by the union

{

X +H : X ∈ G
L
}

∪
{

G+ Y : Y ∈ H
L
}

. (�)

The notation in the equation marked (�) is generally 
learer and more su
-


in
t than set notation (�), and we'll use it throughout this arti
le without

further 
omment.

Ea
h game G also has a negative −G, obtained by inter
hanging the

roles of Left and Right:

−G =
{

−GR
∣

∣ −GL
}

We write G−H as shorthand for G+ (−H).
The de�nition of disjun
tive sum is motivated by examples su
h as Dom-

ineering, in whi
h endgame positions de
ompose naturally into sums. The

position in Figure 19(b), for example, 
an be written as the sum of six inde-

pendent territories. Likewise, positions in Nim and Kayles 
an be written

as the disjun
tive sum of single piles.

This modularity is 
entral to 
ombinatorial game theory. Given a sum of

games

G = G1 +G2 + · · ·+Gk,

it is often impra
ti
al to undertake a brute-for
e analysis of G itself. Instead,

we study the 
omponents Gi individually, and attempt to extra
t information

that 
an be pie
ed ba
k together to determine o(G). In Se
tion 2, this
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�information� took the form of nim values; in the 
ontext of partizan games,

a more general notion of game value is needed.

Observe that it's not always su�
ient to know the out
omes of ea
h


omponent. For example, let G and H be the following simple Ha
kenbush

positions:

G =
◦

H =
◦
◦

Then o(G) = o(H) = N : either player 
an win immediately (on either game,

played in isolation) by 
hopping the unique green edge, moving to 0. Also

o(G+G) = P, by the obvious symmetry argument. However on the sum

G+H =
◦ ◦

◦

Left 
an win no matter who moves �rst, sin
e she 
an arrange that Right is

always �rst to 
hop a green edge. So o(G+H) = L , and this shows that G
and H have unequal values.

5.3 Values

If G and H are partizan games, then we write

G = H if o(G+X) = o(H +X) for all X.

Here X ranges over all short partizan games (that is, all elements of G̃). In

parti
ular, suppose G and H are Ha
kenbush positions. Then X ranges

over all Ha
kenbush positions, but also over games that are not ne
essarily

representable in Ha
kenbush. This is deliberate: the universal quanti�er

is essential in order to get a good theory, and as we'll see in a moment it

provides a 
ommon language for identifying shared stru
ture in 
ombinatorial

games.

The game value of G is its equivalen
e 
lass modulo equality. The idea

is that the given an arbitrary sum

G = G1 +G2 + · · ·+Gk,

the value, and hen
e the out
ome, of G 
an be 
omputed from the values of

ea
h Gi. The set of game values is denoted by G.
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◦
◦
◦

= .

Figure 21: A nontrivial identity between Ha
kenbush and Domineering.

Figure 21 gives a nontrivial example of two games with the same value.

The out
ome 
lasses are naturally partially-ordered by favorability to Left :

L

P N

R

This indu
es a partial order of G:

G ≥ H if o(G+X) ≥ o(H +X) for every all X.

If G ≥ H , then Left will be satis�ed to repla
e the 
omponent H with G, in
any 
on
eivable sum of games. The basi
 theorems are as follows:

Theorem 2. o(G) ≥ P if and only if G ≥ 0, for all short games G.

Theorem 3. G is a partially-ordered Abelian group under disjun
tive sum,

with identity 0.

Note that o(G) ≥ P if and only if Left 
an for
e a win on G as se
ond

player. So Theorem 2 implies that every se
ond-player win is equal to 0.
This dire
tly generalizes the impartial theory, in whi
h every se
ond-player

win has nim value 0.
We'll also writeG ∼= H to mean thatG andH are identi
al (isomorphi
)

games. Certainly G ∼= H implies G = H , but G = H does not imply G ∼= H
(sin
e in parti
ular, if G is any se
ond-player win, then G = 0).
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5.4 Simplest Forms

The 
entral result of the partizan theory is the Simplest Form Theorem:

every game value has a unique simplest representative. The Simplest Form

Theorem is obtained through the following expli
it 
onstru
tion.

For a given G, we identify several types of �extraneous� options:

� A Left option GL1
is dominated (by GL2

) if GL2 ≥ GL1
for some other

Left option GL2
.

� A Right option GR1
is dominated (by GR2

) if GR2 ≤ GR1
for some

other Right option GR2
.

� A Left option GL1
is reversible (through GL1R1

) if GL1R1 ≤ G for

some Right option GL1R1
.

� A Right option GR1
is reversible (through GR1L1

) if GR1L1 ≥ G for

some Left option GR1L1
.

Dominated options 
an be removed from G without a�e
ting its value: in

any sum G +X from whi
h Left would like to move to GL1 +X (with GL1

dominated by GL2
), she is equally satis�ed to play GL2 +X instead.

Reversible options are a bit more subtle. IfGL1
is reversible throughGL1R1

,

then GL1

an be repla
ed with the set of all GL1R1L

, without a�e
ting the

value of G. Symboli
ally:

G =
{

GL1R1L, GL′
∣

∣ GR
}

,

with GL′

ranging over all Left options of G ex
ept GL1
. This operation is

known as bypassing the reversible move GL1
(through GL1R1

).

Any game G 
an be simpli�ed by repeatedly eliminating dominated op-

tions and bypassing reversible ones. Ea
h su
h operation stri
tly redu
es the

number of edges in the game tree of G, so this pro
ess ne
essarily produ
es

a game K with no dominated or reversible options, and su
h that K = G.
Su
h K is 
alled the 
anoni
al form or simplest form of G, and the

following theorem shows that it is unique.

Theorem 4 (Simplest Form Theorem). Suppose that G = H, and neither

G nor H has any dominated or reversible options. Then G ∼= H.

The Simplest Form Theorem follows immediately by indu
tive appli
ation

of the following lemma:

31



Lemma 1. Suppose that G = H, and neither G nor H has any dominated

or reversible options. Then for every HL
, there is a GL

su
h that GL = HL
,

and vi
e versa; and likewise for Right options.

Proof. Consider a Left option HL
. Sin
e G − H ≥ 0, Left must have a

winning response to Right's opening move G − HL
. In parti
ular, either

GL − HL ≥ 0 for some GL
, or else G − HLR ≥ 0 for some HLR

. But the

latter would imply

H = G ≥ HLR,


ontradi
ting the assumption thatH has no reversible options. So ne
essarily

GL ≥ HL
for some GL

. An identi
al argument now shows that HL′ ≥ GL

for some HL′

, so that

HL′ ≥ GL ≥ HL.

But H has no dominated options, so none of the inequalities 
an be stri
t,

and in parti
ular GL = HL
. Proofs of the other 
ases are the same.

5.5 Numbers

Consider a single blue Ha
kenbush stalk, from whi
h Left 
an move to 0,
and Right has no move at all:

◦
=
{

∣

∣

∣

}

= {0 | }

This game is denoted by 1, sin
e it behaves like one spare move for Left. Sin
e

1 > 0, it generates a subgroup of G isomorphi
 to Z, and it is 
ustomary to

identify this subgroup with Z. In parti
ular we have

2 = 1 + 1 = {1 | }, 3 = 2 + 1 = {2 | }, . . .

and in general n+ 1 = {n | }, and −(n + 1) = { | −n}.
In Figure 22 we see various other numbers, for example

1

2
=

◦
◦

=

{
∣

∣

∣

∣

◦ }

= {0 | 1}.

The identity

1

2
+ 1

2
= 1 is easily veri�ed by showing that the di�eren
e game

1

2
+ 1

2
− 1
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◦
◦

◦
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◦
◦

◦ ◦
◦
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◦
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(a) (b) (
) (d)

Figure 22: Ha
kenbush positions: (a)

1

2
; (b)

1

2
+ 1

2
− 1; (
) 1

4
; (d)

1
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Figure 23: The Number Tree (with birthdays labeled on the right).

is a se
ond-player win. Larger denominators 
an be similarly 
onstru
ted:

1

2n+1
=

{

0

∣

∣

∣

∣

1

2n

}

and su
h numbers generate a subgroup of G isomorphi
 to D, the group of

dyadi
 rationals:

D =
{

q ∈ Q : 2nq ∈ Z for some n ≥ 0
}

.

The 
anoni
al form of m/2n (in lowest terms) is given by

m

2n
=

{

m− 1

2n

∣

∣

∣

∣

m+ 1

2n

}

.

The indu
tive stru
ture of numbers is neatly visualized in Figure 23. For

ea
h n ≥ 0, there are 2n numbers with birthday exa
tly n.
Now if x is a number, then it is a disadvantage to move on x, in the sense

that

xL < x < xR
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for every xL
and xR

. Remarkably, this 
riterion 
hara
terizes the dyadi


rationals.

Theorem 5. Let x be a short game, and suppose that yL < y < yR for every

subposition y of x and every yL and yR. Then x ∈ D.

This observation has several fundamental 
onsequen
es.

Theorem 6 (Number Avoidan
e Theorem). Suppose that x is equal to a

number but G is not. If Left (resp. Right) has a winning move on G + x,
then she 
an win by playing on G.

Theorem 7 (Number Translation Theorem). Suppose that x is equal to a

number but G is not. Then

G + x =
{

GL + x
∣

∣ GR + x
}

.

5.6 In�nitesimals

Numbers provide a natural metri
 against whi
h other games 
an be 
ali-

brated. In parti
ular, there is a vast hierar
hy of games that are in�nitesi-

mal in the sense that

x > G > −x

for all positive numbers x.
The simplest nonzero in�nitesimal is the game ∗ (pronoun
ed �star�), from

whi
h either player 
an move to 0:

∗ = {0 | 0} =
◦

It's easily 
he
ked that ∗ is an in�nitesimal, sin
e on the sum

∗+ 1

2n
=

◦ ◦
◦
◦
◦

Left 
an win easily by playing preferentially on ∗, independent of the value
of n.
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Note that ∗ is isomorphi
 to a nim-heap of size 1. In the partizan 
ontext,
a nim-heap of size m is denoted by ∗m (pronoun
ed �star m�). Symboli
ally:

∗m = {0, ∗, ∗2, . . . , ∗(m−1) | 0, ∗, ∗2, . . . , ∗(m−1)}.

Ea
h ∗m (for m ≥ 1) is a �rst-player win, and so is 
onfused with 0. The
simplest signed in�nitesimals are

↑ = {0 | ∗} (�up�) and ↓ = −↑ = {∗ | 0} (�down�)

Certainly ↑ > 0, sin
e Left 
an win no matter who moves �rst. But ↑ is

in�nitesimal, by the same argument used for ∗: on ↓ + 2−n
(say), Left 
an

win by playing preferentially on ↓.

5.7 Stops and the Mean Value

If G is not a number, then its 
onfusion interval is given by

C(G) = {x ∈ D : G 6≷ x}.

The reader is invited to 
he
k the following examples:

� C(∗) = {0}, a singleton.

� C(↑) = ∅.

� C({3 | −3}) is the 
losed interval [−3, 3].

� C({3 + ∗ | −3}) is the half-open interval [−3, 3).

The endpoints of C(G) are fundamental invariants ofG, known as the Left
stop L(G) and Right stop R(G) of G. Between them lies a third invariant,

the mean value m(G), whi
h has the following remarkable properties:

m(G +H) = m(G) +m(H) for all G and H ;

and for all G, the di�eren
e
(

n ·G
)

−
(

n ·m(G)
)

is bounded by a 
onstant independent of n. Therefore m(G) is a number

that 
losely approximates the limiting behavior of many 
opies of G.
One 
an think of G as vibrating between its Left and Right stops in su
h

a way that its �
enter of gravity� lies at m(G).
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6 Misère Play

We now return to the subje
t of impartial games, but 
onsidered under the

misère play 
onvention, in whi
h the player who makes the last move loses.

The misère theory was introdu
ed by Plambe
k and Siegel [Pla05, PS08℄; see

[Sie13℄ for a 
on
ise overview.

The Fundamental Theorem works in misère play too, with the same proof,

so that every impartial gameG has amisère out
ome (N or P) in addition

to its normal out
ome. The misère out
ome of G is denoted by o−(G).
The motivating question in misère impartial games is this: What is the

misère analogue of the Sprague�Grundy Theory? There are several reason-

able answers to this question, ea
h relevant in a di�erent set of 
ir
umstan
es.

6.1 Misère Nim Value

LetG be aNim position, with heaps of sizes a1, . . . , ak. Re
all that o(G) = P

if and only if a1 ⊕ · · · ⊕ ak = 0. A similar rule works in misère play, but it is

slightly more 
ompli
ated.

Theorem 8 (Bouton). The Nim position G with heaps a1, . . . , ak is a misère

P-position if and only if

a1 ⊕ · · · ⊕ ak = 0,

unless every ai = 0 or 1. In that 
ase, G is a P-position if and only if

a1 ⊕ · · · ⊕ ak = 1.

In parti
ular, note that ∗ is a misère P-position, but ∗m is an N -position

for all m 6= 1. This motivates the following misère analogue of nim values.

Re
all that the (normal) nim value of G is given re
ursively by

G (G) =

{

0 if G ∼= 0;

mex
G′∈G

G (G′) otherwise.

The misère nim value is similarly de�ned, but with a di�erent base 
ase:

G
−(G) =

{

1 if G ∼= 0;

mex
G′∈G

G (G′) otherwise.

The misère nim value of G determines its out
ome. In fa
t we 
an say

something slightly stronger:
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Theorem 9. G −(G) is the unique value of m su
h that o−(G + ∗m) = P.

In parti
ular, G is a misère P-position if and only if G −(G) = 0.

The problem with misère nim values is that they're not well-behaved in

sums. For example, let G = ∗ and H = ∗2 + ∗2. Then G and H are both

P-positions (by Theorem 8), so

G
−(G) = G

−(H) = 0.

However it's not hard to show (using Theorem 9, say) that

G
−(G+ ∗2) = 3, but G

−(H + ∗2) = 2.

So the misère nim value of a sum of games 
an't be determined from the nim

values of its 
omponents.

6.2 Genus Theory

The genus of G (plural genera), denoted by G
±(G), is obtained by 
onjoin-

ing its normal and misère nim values:

G
±(G) =

(

G (G),G−(G)
)

.

For brevity it's 
ustomary to write G ±(G) = ab in pla
e of G ±(G) = (a, b).
Remarkably, genus values are well-behaved in sums, but only for a par-

ti
ular 
lass of games known as tame games. First note that one 
an easily


lassify all the genera that arise in misère Nim:

� If G has no heaps of size ≥ 2, then G ±(G) = 01 or 10, depending on

the parity of the number of heaps of size 1.

� Otherwise, G
±(G) = aa, where a = G (G). (This follows from Theorems

8 and 9.)

So the only genera in misère Nim are 01, 10, and those of the form aa for
some a ≥ 0. An arbitrary game G is tame if all its subpositions have genus

values drawn from this ensemble.

The nim-addition operator ⊕ extends to tame genera a

ording to the

following addition table:

01 ⊕ 01 = 01 aa ⊕ 01 = aa

01 ⊕ 10 = 10 aa ⊕ 10 = (a⊕ 1)a⊕1

10 ⊕ 10 = 01 aa ⊕ bb = (a⊕ b)a⊕b

The main theorem is the following:
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Theorem 10 (Conway). If G and H are tame, then so is G + H, and

moreover

G
±(G+H) = G

±(G)⊕ G
±(H).

This provides a reasonably straightforward extension of the theory of

misère Nim to arbitrary tame games. In parti
ular, any tame game 
an be

treated as a Nim position in sums involving other tame games.

For example, let G = ∗ and H = ∗2+ ∗2. We noted above that G −(G) =
G

−(H) = 0, but G + ∗2 and H + ∗2 have distin
t misère nim values. This

is explained by the fa
t that G±(G) = 10, but G ±(H) = 00. There are two
fundamentally di�erent types of tame games with G −

-value 0, 
orresponding
to the two 
ases in the statement of Theorem 8.

Likewise, 
onsider J = ∗2 and K = ∗2+ ∗2+ ∗2. Here we have G ±(J) =
G

±(K) = 22. Sin
e J and K have the same genus, Theorem 10 implies that

o−(J +X) = o−(K +X) for any tame X . However, 
onsider the game

X = {0, ∗2 + ∗3}

whose options are 0 and ∗2 + ∗3. X is not tame (sin
e its genus is 20), and
indeed it's not hard to 
he
k that

o−(J +X) = N , whereas o−(K +X) = P.

So even though J and K are both tame and have the same genus, they

nonetheless behave di�erently in sums with a suitable wild game. The ques-

tion of how best to extend the genus theory to wild games is an ongoing

resear
h problem; the rest of this se
tion will des
ribe the (
onsiderable)

advan
es that have been made in this dire
tion.

6.3 Misère Canoni
al Form

The most straightforward idea is simply to de�nemisère equality for impartial

games, the same way we de�ned equality for partizan games in Se
tion 5:

G = H if o−(G+X) = o−(H +X) for all X,

with X ranging over all impartial games. Then the misère game value

of G is its equivalen
e 
lass modulo misère equality. This obviously works, in

the sense that misère game value is automati
ally well-behaved in sums. The
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entral problem with misère nim values (and genus values for wild games) is

therefore de�nitionally 
ir
umvented.

But misère game values su�er from a di�erent problem, whi
h is that

there are rather a lot of them. If G is an impartial game, then an option

G′ ∈ G is said to be (misère) reversible if there is some G′′ ∈ G′
su
h that

G′′ = G. Obviously if G is misère reversible, then it is equal to a simpler

game, namely G′′
, so this is a sort of analogue of partizan reversible moves

from Se
tion 5. The following theorem of Conway is one of the 
rowning

results of the misère theory.

Theorem 11 (Conway). Suppose that G = H, and neither G nor H has

any reversible moves. Then G ∼= H.

Theorem 11 says that reversible moves are only type of redu
tion available

for impartial games. This is true in both normal and misère play: the �=�
sign in Theorem 11 
an be interpreted to mean either normal or misère

equality (provided the 
orresponding notion of �reversible� is also used). In

normal play, it's essentially a restatement of the Sprague�Grundy Theorem,

so here we have a quite 
lear analogue of the normal-play theory.

Sadly, reversible moves in misère play are ex
eedingly rare. Consider the

set of game values with birthday ≤ 6. In normal play, there are just seven of

them:

0, ∗, ∗2, . . . , ∗6.
Conversely, in misère play Conway has shown that there are more than

24171779. In this sense misère game values spe
ta
ularly fail to yield a 
o-

herent theory.

6.4 Misère Quotients

The above results suggest that genus values preserve too little information,

whereas misère game values preserve too mu
h. The theory of misère quo-

tients o�ers a third approa
h: rather than aim for a single, fully general

extension of the Sprague�Grundy theory, we instead a

ept a multipli
ity of

lo
al analogues.

Re
all the de�nition of misère equality:

G = H if o−(G+X) = o−(H +X) for all X.
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In de�ning misère game values, we allowed X to range over all impartial

games. If instead G, H and X are restri
ted to range over tame games, then

the resulting equivalen
e 
lasses 
orrespond one-to-one with genus values

(and in fa
t this is just a restatement of the genus theory). So genus values


an be viewed as the stru
ture obtained when misère equivalen
e is lo
alized

to the set of tame games.

Along these lines, let A be any nonempty set of impartial games that is


losed in the following sense:

� If G,H ∈ A , then G+H ∈ A (additive 
losure); and

� If G ∈ A and G′ ∈ G, then G′ ∈ A (hereditary 
losure).

Then de�ne

G ≡ H (mod A ) if o−(G+X) = o−(H +X) for all X ∈ A .

Let Q be the 
orresponding set of equivalen
e 
lasses. The 
losure assump-

tions on A imply that Q is a 
ommutative monoid, and there is a surje
tive

homomorphism

Φ : A → Q.

Denote by P ⊂ Q the subset 
orresponding to P-positions from A :

P = {Φ(G) : G ∈ A , o−(G) = P}.

The stru
ture (Q,P) is themisère quotient of A , and is denoted by Q(A ).
It serves as a lo
alized analogue of the Sprague�Grundy theory, in the follow-

ing sense. Suppose that we wish to study a game G ∈ A that de
omposes

in A :

G = G1 +G2 + · · ·+Gk, ea
h Gi ∈ A .

Given the Φ-values of ea
h Gi, say xi = Φ(Gi), then we 
an multiply them

out in the arithmeti
 of Q to determine Φ(G):

Φ(G) = x = x1x2 · · ·xk

and then 
he
k whether x ∈ P. So far we haven't said anything terribly

profound. What's surprising (and what makes misère quotients so powerful)

is that the monoid Q often turns out to be �nite, even when A is in�nite,

and even when A 
ontains some wild games. In su
h 
ases, the problem
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Q ∼= 〈a, b, c, d, e, f, g | a2 = 1, b3 = b, bc2 = b, c3 = c, bd = bc,
cd = b2, d3 = d, be = bc, ce = b2,
e2 = de, bf = ab, cf = ab2c, d2f = f,
f 2 = b2, b2g = g, c2g = g, dg = cg,
eg = cg, fg = ag, g2 = b2〉

P = {a, b2, ac, ac2, d, ad2, e, ade, adf}

Figure 24: The misère quotient of Kayles.

of determining the out
ome of the sum G redu
es to a small number of

operations on the �nite multipli
ation table Q.

For a simple example, let A 
onsist of all sums involving ∗ and ∗2. Then
every element of A is tame, so the elements of Q 
orrespond to genera of

games in A , whi
h are restri
ted to the six possibilities

01, 10, 00, 11, 22, 33.

The stru
ture of the 
orresponding monoid follows dire
tly from the addition

table for genus values:

Q ∼= 〈a, b : a2 = 1, b3 = b〉,

with P = {a, b2}, 
orresponding to genera 10 and 00.
A fairly typi
al misère quotient is shown in Figure 24. It's the quotient of

the set of positions in the game Kayles, and therefore su

in
tly des
ribes

the winning strategy for misère Kayles. It's worth noting that the original

solution to misèreKayles ran forty-three pages long. A streamlined proof in

Winning Ways redu
ed this to �just� �ve pages. That the entire proof 
an be

en
oded by the su

in
t monoid presentation in Figure 24 ni
ely illustrates

the power of the quotient theory.

7 Constraint Logi


While 
ombinatorial game theory seeks e�
ient algorithms for games, often

no e�
ient algorithm exists. Then, we seek instead to show hardness. In re-


ent years a new tool has emerged for proving hardness of games: 
onstraint

logi
 [DH08, HD09℄. With 
onstraint logi
, the games we 
onsider are both
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more spe
ialized and more general than what is traditionally addressed by


lassi
al game theory. More spe
ialized, be
ause we are 
on
erned only with

determining the winner of a game, and not with other issues su
h as max-

imizing payo�, 
ooperative strategies, et
. More general, be
ause 
lassi
al

game theory is 
on
erned only with the intera
tions of two or more players,

whereas 
onstraint logi
 addresses, in addition, games with only one player

(puzzles) and even with no players at all (simulations). Constraint logi
 of-

fers, for a variety of types of game, a simple path to hardness redu
tions;

generally a small number of 
onstraint logi
 �gadgets� must be built out of


omponents of the target game.

The starting point of 
onstraint logi
 is the perspe
tive that games model


omputation. Di�erent types of game model di�erent types of 
omputation.

For example, the idea of nondeterministi
 
omputation ni
ely mat
hes the

feature of puzzles that a player must 
hoose a sequen
e of moves or pie
e

pla
ements to satisfy some global property. Thus, puzzles are often NP-


omplete (see se
tion 2.1). Even more striking is the 
orresponden
e between

alternation, the natural extension to nondeterminism, and two-player games.

Constraint logi
 is a family of games (played on dire
ted graphs) whi
h model


omputation ranging from that of monotone Boolean 
ir
uits (P-
omplete)

all the way to unrestri
ted Turing ma
hines (unde
idable). For any game to

be analyzed, the 
ategory of game will suggest a potential 
omplexity, whi
h

may be proved by a redu
tion from the 
orresponding type of 
onstraint

logi
. The entire range of 
onstraint-logi
 games and 
omplexities is shown

in Table 1.

The 
hief advantage in showing a game hard by a redu
tion from 
on-

straint logi
, rather than from a standard problem su
h as SAT or QBF, is

that 
onstraint logi
 is very similar in nature to many a
tual games, often

making redu
tions extremely simple. For example, essentially the entire proof

that sliding-blo
k puzzles are PSPACE-
omplete is 
ontained in Figure 30

[HD05℄. This problem, originally posed by Martin Gardner [Gar64℄, had

One player

(puzzle)

Two player Team, imperfect

information

Unbounded

length PSPACE

NP

EXPTIME

PSPACE

Undecidable

NEXPTIME

PSPACE

Zero player

(simulation)

PBounded

length

Table 1: Game 
ategories and their natural 
omplexities. Constraint Logi


is 
omplete in ea
h 
lass.
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been open for nearly 40 years. Other games and puzzles shown hard via 
on-

straint logi
 in
lude TipOver [Hea06a℄, sliding tokens (a dynami
 ver-

sion of Independent Set) [HD05℄, River Crossing [Hea04℄, Triangu-

lar Rush Hour [HD09℄, Push-2-F [DHH02℄, Amazons [Hea09℄, Konane

[Hea09℄, Cross Purposes [Hea09℄, Hitori [HD09℄, and Wriggle puz-

zles [Max07℄. Some games and puzzles with existing hardness proofs have

also been shown hard via 
onstraint logi
, with simpler 
onstru
tions (in some


ases, also strengthening the existing results), in
luding Sokoban [HD05℄,

Rush Hour [HD05℄, and the Warehouseman's Problem [HD05℄. Fi-

nally, 
onstraint logi
 has also been applied to several problems outside the

domain of games proper, in
luding showing unde
idability of some de
ision

problems for multi-port �nite-state ma
hines [Hie10℄.

7.1 The Constraint-Logi
 Framework

The general model of games we develop is based on the idea of a 
onstraint

graph; the rules de�ning legal moves on su
h graphs are 
alled 
onstraint

logi
. In later se
tions the graphs and the rules will be spe
ialized to produ
e

one-player, two-player, et
. games.

2

A game played on a 
onstraint graph is

a 
omputation of a sort, and simultaneously serves as a useful problem to

redu
e to other games to show their hardness.

A 
onstraint graph is a dire
ted graph with edge weights among {1, 2}.
An edge is then 
alled red or blue, respe
tively. The in�ow at ea
h vertex

is the sum of the weights on inward-dire
ted edges. Ea
h vertex has a non-

negative minimum in�ow. A legal 
on�guration of a 
onstraint graph

has an in�ow of at least the minimum in�ow at ea
h vertex; these are the


onstraints. A legal move on a 
onstraint graph is the reversal of the

dire
tion of a single edge that results in a legal 
on�guration. Generally, in

any game, the goal will be to reverse a given edge by exe
uting a sequen
e of

(legal) moves. In multiplayer games, ea
h edge is 
ontrolled by an individual

player, and ea
h player has his own goal edge. In deterministi
 games, a

unique sequen
e of moves is for
ed. For the bounded games, ea
h edge may

only reverse on
e.

It is natural to view a game played on a 
onstraint graph as a 
om-

putation. Depending on the nature of the game, it 
an be a deterministi


2

In the interest of spa
e, we omit some of the de�nitions�and all dis
ussion of zero-

player games (Deterministi
 Constraint Logi
)� and refer the reader to [Hea06b℄,

[DH08℄, or [HD09℄.
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A B

C

(a) AND vertex. Edge C may be dire
ted

outward if and only if edges A and B are

both dire
ted inward.

A B

C

(b) OR vertex. Edge C may be dire
ted

outward if and only if either edge A or

edge B is dire
ted inward.

Figure 25: AND and OR verti
es. Red (light gray, thinner) edges have weight

1, blue (dark gray, thi
ker) edges have weight 2, and verti
es have a minimum

in-�ow 
onstraint of 2.


omputation, or a nondeterministi
 
omputation, or an alternating 
ompu-

tation, et
. The 
onstraint graph then a

epts the 
omputation just when

the game 
an be won.

AND/OR Constraint Graphs; Planarity. Certain vertex 
on�gurations

in 
onstraint graphs are of parti
ular interest. An AND vertex (Figure 25(a))

has minimum in�ow 
onstraint 2 and in
ident edge weights of 1, 1, and 2.
It behaves as a logi
al AND in the following sense: the weight-2 (blue) edge

may be dire
ted outward if and only if both weight-1 (red) edges are dire
ted
inward. Otherwise, the minimum in�ow 
onstraint of 2 would not be met.

An OR vertex (Figure 25(b)) has minimum in�ow 
onstraint 2 and in
ident

edge weights of 2, 2, and 2. It behaves as a logi
al OR: a given edge may be

dire
ted outward if and only if at least one of the other two edges is dire
ted

inward.

It turns out that for all the game 
ategories, it will su�
e to 
onsider


onstraint graphs 
ontaining only AND and OR verti
es. For some of the

game 
ategories, there 
an be many subtypes of AND and OR vertex, be-


ause ea
h edge may have a distinguishing initial orientation (in the 
ase of

bounded games), and a distin
t 
ontrolling player (when there is more than

one player). In some 
ases there are alternate vertex �basis sets� that enable

simpler redu
tions to other problems than do the 
omplete set of ANDs and

ORs.

For all but the bounded zero-player 
ase, it also su�
es to only 
onsider

planar 
onstraint graphs. In pra
ti
e this makes for mu
h easier hardness

redu
tions; often, 
rossover gadgets are the most di�
ult pie
es of a redu
tion
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to 
onstru
t. With 
onstraint logi
, we get them for free. The most 
ommon

problem used to show NP-hardness is 3SAT, but in many instan
es this

planarity property makes 
onstraint logi
 redu
tions simpler.

Dire
tionality; Fanout. As implied above, although it is natural to think

of AND and OR verti
es as having inputs and outputs, there is nothing enfor
-

ing this interpretation. A sequen
e of edge reversals 
ould �rst dire
t both

red edges into an AND vertex, and then dire
t its blue edge outward; in this


ase, we 
ould say that its �inputs� have �a
tivated�, enabling its �output� to

�a
tivate�. But the reverse sequen
e 
ould equally well o

ur. In this 
ase

we 
ould view the AND vertex as a splitter, or FANOUT gate: dire
ting the

blue edge inward allows both red edges to be dire
ted outward, e�e
tively

splitting a signal.

In the 
ase of OR verti
es, again, we 
an speak of an a
tive input enabling

an output to a
tivate. However, here the 
hoi
e of input and output is entirely

arbitrary, be
ause OR verti
es are symmetri
.

7.2 One-Player Games

The one-player version of 
onstraint logi
 is 
alledNondeterministi
 Con-

straint Logi
 (NCL). The rules are simply that on a turn the player re-

verses a single edge that results in a legal 
on�guration. The goal is to reverse

a parti
ular edge.

7.2.1 Bounded Games

Bounded Nondeterministi
 Constraint Logi
 (Bounded NCL) is

formally de�ned as follows:

BOUNDED NONDETERMINISTIC CONSTRAINT

LOGIC (BOUNDED NCL)

INSTANCE: Constraint graph G, edge e in G.

QUESTION: Is there a sequen
e of moves on G that eventually

reverses e, su
h that ea
h edge is reversed at most on
e?

Bounded NCL is NP-
omplete (redu
tion from 3SAT). It remains NP-


omplete when the graph G is required to be a planar graph whi
h uses
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(a) CHOICE (b) AND (
) FANOUT (d) OR

Figure 26: Basis verti
es for Bounded NCL.

only the vertex types shown in Figure 26.

3

It also turns out to be useful

to redu
e from graphs that have the property that only a single edge 
an

initially reverse; this problem is also NP-
omplete.

A related problem is Constraint Graph Satisfiability:

CONSTRAINT GRAPH SATISFIABILITY

INSTANCE: Unoriented planar 
onstraint graph G using only AND

and OR verti
es.

QUESTION: Does G have a 
on�guration that satis�es all the 
on-

straints?

Properly, this problem is not a 
onstraint-logi
 game, be
ause the moves

(assignments of edge orientations) are not reversals from one legal 
on�gu-

ration to another. But it is similar in spirit, and 
an prove useful for re-

du
tions. Constraint Graph Satisfiability is NP-
omplete (redu
tion

from 3SAT). Note that for Constraint Graph Satisfiability, unlike

proper Bounded NCL, only two types of vertex are needed.

Sample Appli
ation: Hitori. Hitori was popularized by Japanese

publisher Nikoli, along with its more-famous sibling Sudoku, and several

other �pen
il-and-paper� puzzles. In Hitori, we are given a grid with ea
h

square labeled with an integer, and the goal is to paint a subset of the squares

so that (1) no row or 
olumn has a repeated unpainted label (similar to Su-

doku), (2) painted squares are never adja
ent, and (3) the unpainted squares

are all 
onne
ted. A simple Hitori puzzle and its solution are shown in Fig-

ure 27. We give a redu
tion from Constraint Graph Satisfiability

3

Here we show the initial, �ina
tivated� orientation of the edges. In an AND, the blue

edge may reverse if the red edges �rst reverse; in a FANOUT, the red edges may reverse

if the blue edge �rst reverses.
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(b) Solution

Figure 27: A simple Hitori puzzle and its solution.
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(
) AND

Figure 28: Hitori gadgets.

(Se
tion 7.2) showing that it is NP-
omplete to determine whether a given

n× n Hitori puzzle has a solution [HD09℄.

Wiring. We represent graph edge orientation with wires, or strings of adja-


ent squares, 
onsisting of integers x1, x1, x2, x2, ..., xn−1, xn−1, xn, xn, where

the xi are distin
t. If the �rst x1 is unpainted, then the next must be painted

(by rule 1 above), for
ing the �rst x2 to be unpainted (by rule 2), et
.; thus

the last xn must be painted. If the �rst x1 is painted, the last xn may be

painted or unpainted: we 
ould (for example) have the se
ond x1 and the

�rst x2 both unpainted without violating the rules.

Wires may be turned, as in Figure 28(a): if the bottom a is unpainted,

then the right d must be painted. (We assume that the unlabeled squares all


ontain distin
t integers not otherwise used in the gadgets.)

OR Vertex / Parity Gadget. In Figure 28(b), �rst 
onsider the ds. At
most one 
an be unpainted, but no two adja
ent may be painted. Therefore,
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both the lower and the upper one must be painted, and e must be unpainted.
If both the left a and the right b are unpainted, then the right a and the

left b must be painted. As an unpainted square, e must be 
onne
ted to the

other unpainted squares (rule 3); the lower c is the only way out. Therefore,

the lower c is unpainted, and the upper one painted. But if either the left

a or the right b is painted, then the other a or b will be unpainted, allowing
another way out for e. Then the lower c may be painted, and the upper c
unpainted. These are the same 
onstraints an OR vertex has, again with an

unpainted �port� square (left a, right b, top c) 
orresponding to an outward-

dire
ted edge, and a painted port square 
orresponding to an inward-dire
ted

edge.

This gadget 
an also serve to alter the positional parity in wiring, so that

the various gadgets 
an be 
onne
ted arbitrarily, by using only one input,

and blo
king the other one (for example, by adding another b to the right of
the right one).

AND Vertex. Similar but simpler reasoning as above shows that the gadget

in Figure 28(
) satis�es the same 
onstraints as an AND vertex, with the lower

a and b (�inputs�) 
orresponding to the red edges, and the upper c (�output�)
to the blue edge: the output square may be unpainted if and only if both

input squares are painted.

Assembly. Given a planar AND / OR 
onstraint graph, we 
onstru
t a

Hitori puzzle by 
onne
ting together AND and OR vertex gadgets with wires,

adjusting positional parity as needed. If the graph has a legal 
on�guration,

then every wire 
an be painted so as to satisfy all the Hitori 
onstraints, as

des
ribed. Similarly, if the Hitori puzzle 
an be solved, then a legal graph


on�guration 
an be read o� the wires.

7.2.2 Unbounded Games

Nondeterministi
 Constraint Logi
 (NCL) is the 
anoni
al form of


onstraint logi
:

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

INSTANCE: Constraint graph G, edge e in G.

QUESTION: Is there a sequen
e of moves on G that eventually

reverses e?
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(a) AND (b) OR

Figure 30: Constraint-logi
 gadgets showing PSPACE-
ompleteness of Slid-

ing Blo
ks.

NCL is PSPACE-
omplete (redu
tion from QBF), and remains PSPACE-


omplete when the graph G is required to be a planar graph whi
h uses only

AND and OR verti
es (Figure 25). NCL redu
tions are often very straightfor-

ward, for two reasons. First, only two gadgets must be 
onstru
ted. Se
ond,

one-player games (puzzles) are generally easier to redu
e to than multi-player

games. For these reasons, and be
ause there is a large supply of 
andidate

puzzles to analyze, NCL redu
tions form the largest set of existing 
onstraint-

logi
 redu
tions.

Figure 29: Dad's Puzzle.

Sample Appli
ation: Sliding Blo
ks. In

the usual kind of sliding-blo
k puzzle, one is given

a box 
ontaining a set of re
tangular pie
es, and

the goal is to slide the blo
ks around so that a

parti
ular pie
e winds up in a parti
ular pla
e. A

popular example is Dad's Puzzle, shown in Fig-

ure 29; it takes 59 moves to slide the large square

to the bottom left. We outline a redu
tion from

Nondeterministi
 Constraint Logi
 (Se
-

tion 7.2) showing that it is PSPACE-
omplete to determine whether a given

sliding-blo
k puzzle in an n×n box has a solution. For a formal proof (whi
h

is also stronger, using only 1× 2 blo
ks), see [HD05℄ or [HD09℄.

AND Vertex. The gadget shown in Figure 30(a) satis�es the same 
on-

straints as an AND vertex. Assume that the outer, dark-
olored �wall� blo
ks

are �xed. Then, the only way the top �signal� (light-
olored) blo
k may slide
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Figure 31: Sliding-blo
k gadget assembly.

down is if the left signal blo
k �rst slides left, and bottom signal blo
k slides

down. This allows the other signal blo
ks to move out of the way.

OR Vertex. Similarly, the gadget shown in Figure 30(b) satis�es the same


onstraints as an OR vertex�the top signal blo
k may slide down if and only

if either the left or the right signal blo
k �rst slides out.

Assembly. To use these gadgets to represent arbitrary planar AND / OR


onstraint graphs, we assemble them as shown in Figure 31. The wall blo
ks

are shared between adja
ent verti
es, as are the signal blo
ks that a
t as

graph edges. We put a grid of the gadgets inside a box. This keeps the wall

blo
ks from moving, as required. The goal is to slide the parti
ular signal

blo
k that 
orresponds to the target edge in the input 
onstraint graph.

Then, the puzzle 
an be solved just when the 
onstraint-logi
 problem is

solvable.

7.3 Two-Player Games

The two-player version of 
onstraint logi
,Two-Player Constraint Logi


(2CL), is de�ned as follows. To 
reate di�erent moves for the two players,

Bla
k and White, we label ea
h 
onstraint graph edge as either Bla
k or

White. (This is independent of the red/blue 
oloration, whi
h is simply a

shorthand for edge weight.) Bla
k (White) is allowed to reverse only Bla
k
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(a) CHOICE (b) AND (
) FANOUT (d) OR

(e) VARIABLE

Figure 32: Basis verti
es for Bounded 2CL.

(White) edges. As before, a move must reverse exa
tly one edge and result in

a valid 
on�guration. Ea
h player has a target edge he is trying to reverse.

4

(We omit the formal de�nitions here.)

Bounded games. The bounded 
ase permits ea
h edge to reverse at most

on
e. Bounded 2CL is PSPACE-
omplete (redu
tion from Gpos(POS CNF),

a variant of QBF [S
h78℄). It remains PSPACE-
omplete when the 
onstraint

graph is a planar graph using only the vertex types shown in Figure 32.

Indeed, the a
tual redu
tion showing Bounded 2CL PSPACE-
omplete is

almost trivial, and the main bene�t of using Bounded 2CL for game redu
-

tions, rather than simply using one of the many QBF variants, is that when

redu
ing from Bounded 2CL one does not have to build a 
rossover gad-

get. The 
omplexity of Amazons remained open for several years, despite

some e�ort by the game-
omplexity 
ommunity; its 
onstraint-logi
 redu
tion

showing PSPACE-
ompleteness is straightforward [HD09℄.

The vertex set in Figure 32 is a
tually almost the same as that for

Bounded NCL (Figure 26); the only addition is a single vertex type allowing

for player intera
tion. Most of the gadgets 
an be single-player 
onstru
tions.

Unbounded games. The unbounded 
ase simply removes the restri
tion

of edges reversing at most on
e. 2CL is EXPTIME-
omplete (redu
tion from

G6, one of the several Boolean formula games shown EXPTIME-
omplete by

4

In 
ombinatorial game theory, it is normal to de�ne the loser as the �rst player unable

to move. This de�nition would work perfe
tly well for 2CL, rather than using target

edges to determine the winner; the hardness redu
tion would not be substantially altered.

However, the given de�nition is more 
onsistent with the other varieties of 
onstraint logi
:

always, the goal is to reverse a given edge.
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(a) White AND (b) White OR (
) Bla
k AND

(d) Multiplayer AND 1 (e) Multiplayer AND 2

(f) Bla
k-White

Figure 33: Basis verti
es for 2CL.

[SC79℄). 2CL remains EXPTIME-
omplete when the graph is a planar graph

using only the verti
es shown in Figure 33. In prin
iple, this should enable

mu
h simpler redu
tions to a
tual games than the standard redu
tions from

Boolean formula games. The existing Chess [FL81℄, Che
kers [Rob84b℄,

and Go [Rob83℄ hardness results are all quite 
ompli
ated; there 
ould be

simpler redu
tions from 2CL. However, su
h redu
tions have not yet been

found. Enfor
ing the ne
essary 
onstraints in a two-player game gadget is

mu
h more di�
ult than in a one-player game.

7.4 Team Games

The natural team private-information 
onstraint logi
 (TPCL) assigns to

ea
h player a set of edges he 
an reverse, and a set of edges whose orientation

he 
an see, in addition to the target edge he aims to reverse. There are two

teams, Bla
k and White; a team wins when a player on that team reverses

his target edge. (We omit the formal de�nitions here.)

Bounded games. As usual for bounded games, with Bounded Team

Private Constraint Logi
 we allow ea
h edge to reverse at most on
e.

Bounded TPCL is NEXPTIME-
omplete (redu
tion from theDependen
y

QBF problem introdu
ed in [PR79℄). It remains NEXPTIME-
omplete, even
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for planar graphs whi
h use only AND and OR verti
es, and when there is only

one Bla
k player and two White players. (Unlike other forms of 
onstraint

logi
, here we don't enumerate a spe
i�
 smaller set of basis verti
es; note

that there are several di�erent types of AND and OR verti
es, depending on


ontrolling player, initial edge orientation, and edge visibility.)

Unbounded games. To enable a simpler redu
tion to an unbounded form

of team 
onstraint logi
, we allow ea
h player to reverse up to some given


onstant k edges on his turn, rather than just one, and leave the 
ase of k = 1
as an open problem. TPCL is unde
idable (shown by a series of redu
tions

beginning with a

eptan
e of a Turing ma
hine on an empty input). It

remains unde
idable even for planar graphs whi
h use only AND and OR

verti
es. As with Bounded TPCL, several di�erent AND- and OR-subtypes

are used in the redu
tion, whi
h we do not enumerate.

The unde
idability here is rather striking, given that this is a game played

with a �nite number of positions! Essentially, this means that the games with

a bounded amount of state 
an simulate any unbounded Turing 
omputation.

The ability for a player to reverse multiple edges on a turn, and the la
k of

a small set of basis verti
es, would seem to make TPCL a 
hallenging problem

to redu
e from to show other problems unde
idable. However, TPCL has

already been applied to show some de
ision problems for multi-port �nite-

state ma
hines unde
idable [Hie10℄.

8 Con
lusion

We have now forged a trail from Nim to Chess and Go. In se
tion 2 we

dealt with 
lassi
al a
y
li
 impartial games. We then presented a polynomial

theory of 
y
li
 games in se
tion 3. In se
tion 4 we added intera
tions between

tokens. Next we ta
kled partizan games in se
tion 5, and misère play in

se
tion 6. All of these � 
y
les, token intera
tions, misère play � are absent

from Nim but very mu
h present in Chess and Go. This trail is still rather

thin: token intera
tion was restri
ted to annihilation. Most of the other

intera
tions lead to intra
table games. Similarly for partizan games. Misère

play was portrayed in the Introdu
tion as a spe
ial 
ase of �Termination Set�,

general 
ases of whi
h o

ur in Chess and Go. In this sense we listed misère

play as a road step towards Chess and Go.
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Game intra
tability results, besides their intrinsi
 value, serve as trail

guides: They indi
ate the boundary beyond whi
h polynomial strategies are

unlikely to exist, where we have to resort to analysis of restri
ted or spe
ial


ases. Se
tion 7 provides a modern 
onvenient tool for proving intra
tabil-

ity, though it doesn't seem to work for all 
ases. Intra
table games, in the

te
hni
al meaning of intra
tability, though it's only an asymptoti
 result �

for n×n boards as n goes to in�nity � are rather unlikely to have a tra
table

strategy for a �nite a
tual board. In fa
t, we do not know of any su
h 
ase.

Therefore only spe
ial 
ases are likely to be analysable. For misère play this

was done by restri
ting the universe of the games. For Chess and Go it was

done by treating endgames.

Thus we have arrived at Chess and Go from two dire
tions: The for-

mer has been showed to be EXPTIME-
omplete [FL81℄, whi
h is a prov-

able intra
tability, and the latter even EXPSPACE-
omplete, under 
ertain

game-rules of Go [Rob84a℄; and there are some 
onstru
tive results for their

endgames. Elkies [Elk96℄, [Elk06℄ has some results about Chess endgames,

and Berlekamp and his students have some spe
ta
ular results about Go

endgames [Ber91℄, [BW94℄. Go play tends to break up into almost indepen-

dent subgames at the end, so the strong tool of game-sums 
an be unleashed

to atta
k them. This is not quite the 
ase for Chess, partly be
ause some of

the pie
es are so strong that they dominate mu
h of the entire board, rather

than only lo
ally.

How 
an we broaden this still rather thin trail? One dire
tion 
ould be to

extend the misère play theory to more general termination sets, as exist for

Chess and Go. Another is to broaden the �edgling theory of s
oring games,

where s
ores are a

umulated during play. These were and are indepen-

dently studied by John Milnor, Mark Ettinger, Fraser Stewart, Will Johnson

and Carlos Santos. Related avenues in
lude 
ompetitive au
tions, in
entives

(Elwyn Berlekamp), bidding games (Sam Payne) and, more generally, 
on-

ne
tions between 
ombinatorial games and 
lassi
al games with appli
ations

to e
onomi
s. In quite a di�erent dire
tion, the yearned for emergen
e of

quantum and biologi
al 
omputing are potential brute for
e tools to bridge

the 
omplexity gap between polynomial and non-polynomial games.
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