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We thought that paying true tribute to the memory of Professor Solomon
W. Golomb, would be to highlight a gem contribution of his on two-player
games [1], which has not received the attention and respect it deserves, even
among game experts. In this paper Sol analyzed two-player take-away games.
We hope that this discourse will do justice to commemorating Sol’s fruitful
activities in a little-known direction, and, concurrently, illuminating an im-
portant yet neglected games corner.

A very simple take-away game is Nim. Given a number of positive inte-
gers, say 1, 2, 5, 13, the two players alternate in choosing one of the integers
and reducing it, but so that the remaining integer is still nonnegative. The
player who first reduced all integers to 0 is called the winner , the opponent
the loser. There is a well-known winning strategy: express each integer in
binary, and add them up in binary, but without carry. For the above case,

0 0 0 1 1
0 0 1 0 2
0 1 0 1 5
1 1 0 1 13
1 0 1 1 11

Alice wants to make this Nim-sum 0, by reducing a single row. In this
case 13 → 6 will do the trick. However Bob now moves (reducing a single
row), the resulting Nim-sum will be nonzero, and Alice can always reduce
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it to 0 by reducing a single row, until eventually arriving at all columns 0.
Alice won since she made the last move.

In this missive, we always adopt the convention that the player making
the last move wins (normal play). There are always precisely two players.

Sol began with an even simpler game than Nim, yet succeeded in using
it, sleight of hand, as a catalyst to generate a class of much more sophis-
ticated games – formulating and solving them. But before formulating the
simpler catalyst game, let’s jump ahead and present two examples of Sol’s
achievements in this direction. This can be done without yet disclosing the
catalyst.

Notation. Denote by N the winning positions of the N ext player, the
player who moves from the current position. Also denote by P the win-
ning positions of the Previous player, the player who moved to the current
position.

Notice that any end position u is in P , since the next player cannot move
from u. Every position v that has u as a direct follower is in N , though v
may have other direct followers in N or P . In general, a position w is in N
if and only if it has at least one direct follower in P , whereas w ∈ P if and
only if all of its direct followers are in N .

I. Let V = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, . . . , } the set of primes,
with 1 adjoined, be the permitted moves. Sol claims that then P = {4n : n ≥
0}. Quite surprising! Usually for take-away games, the move-set is rather
regular, such as all of N, offsets of arithmetic sequences, subsets of residues
mod T for some integer T , etc, because only for those a winning strategy
was found – not the set of primes! Moreover, notice the seemingly unlikely
connection between the set of multiples of 4 and the set of all primes.

Illustrating the present case, suppose all positions < 8 are labeled accord-
ing to Sol’s claim. We have to show that 8 ∈ P . It suffices to show that all
direct followers of 8 are in N . So suppose that Alice begins to move 8 → 7
by subtracting 1. Now 7 ∈ N , since Bob can counter 7→ 0, winning. Simi-
larly, if Alice moves to 5, 3, by subtracting 3, 5, respectively, then Bob can
counter by moving to 0, winning. But Alice can move to 6 (by subtracting
2), which we have to show is in N . Indeed, Bob moves 6− 2 = 4 ∈ P . This
confirms that 8 ∈ P : Alice lost. Now 9, 10, 11 are in N by subtracting 1, 2, 3
respectively. We leave it to the reader to show 12 ∈ P .

II. Let V = {1, 2, 4, 8, 16, 32, 64, 128, . . . , } the set of nonnegative powers
of 2 be the permitted moves. Sol claims that then P = {3n : n ≥ 0}. Again
rather unexpected!
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Illustration. Suppose we already know that all positions < 11 behave
according to Sol’s claim. We have to show that 11 ∈ N . Indeed, Alice moves
11→ 3 ∈ P by subtracting 8. Bob can now only move to either 1 or 2, from
each of which Alice can move to 0. Alice won. It is now easy to show 12 ∈ P ,
13, 14 ∈ N , 15 ∈ P .

Sol derived these and other results by beginning with the following simple
catalyst game, dubbed Gk (k ≥ 1).

Let Tk = {1, 2, 3, . . . , k}, where the permitted moves are to diminish the
initial position by any positive integer ≤ k. It is easy to see that P(Tk) =
{(k + 1)n : n ≥ 0}.

For example, if Tk = T8 and the initial position is 50, then Alice will
move 50 → 45 = 5 × 9. Hereafter, Alice can always maintain a multiple of
9, whereas Bob never can. So eventually Alice will reach 0× 9 = 0, winning.

Sol formulated and proved the following theorem, which demonstrates the
connection between the above two sample games and the catalyst Gk.

Theorem Let V ⊂ N, and Uk := Tk ∪ V. Then P(Uk) = P(Tk) if and
only if V is disjoint from P(Tk).

For the above ”Primes” game, V is the set of all primes (and 1), Tk =
T3 = {1, 2, 3}, so P(T3) = {4n : n ≥ 0}, which is disjoint from V . Hence
P(U3) = {4n : n ≥ 0}. But U3 = V , since T3 ⊂ V . Thus P(V ) = {4n : n ≥
0}.

For the ”2-powers” game V is the set of all nonnegative powers of 2, Tk =
T2 = 1, 2, so P(T2) = {3n : n ≥ 0}, which is disjoint from V . Analogously
to the primes case, we get P = {3n : n ≥ 0}. The paper [1] contains
considerably more sophisticated theorems and examples.

Actually Sol considered vector take-away games, where both positions and
moves maintain nonnegative integer components throughout. But most of his
effort in [1] is devoted to the 1-dimensional case, or to a multi-dimensional
game, where only one component can be reduced at every move (such as
Nim).

We have neglected to do justice to a very important aspect of [1], namely
shift registers [3]. Here Sol fused together his talents in both electrical engi-
neering and math to construct P sets for take-away games. A shift register
is a linear sequence of cells connected together electronically, finite or infi-
nite, depending on the size of the set V of permissible moves. Engineers
of computer hardware or communication equipment are well-familiar with
finite shift registers. The cells typically contain binary bits (0 or 1) and at
each time interval are shifted right by one cell. The right-most bit is lost,
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and a new bit enters on the left. There are ”feedback-taps” on the cells that
correspond to V , the set of all moves. The contents of these cells are fed into
an appropriate array of gates, whose output determines the bit that enters
on the left. This procedure constructs the set P of V for take-away games.

Incidentally, shift register sequences are used in a broad range of applica-
tions, particularly in random number generation, multiple access and polling
techniques, secure and privacy communication systems, error detecting and
correcting codes, and synchronization pattern generation, as well as in mod-
ern cryptographic systems. Many of these were discovered and disseminated
by Sol.

We attempted to adhere to Sol’s original notation, but replaced just a
little of it by modern nomenclature for game concepts, when we felt it would
be more comprehensible to current readers.

* * *

Professor Solomon W. Golomb loved puzzles – one person games: SOLo
games. The most famous of these are polyominoes , which are plane configu-
rations made up of unit squares, joined together by full edge to edge contact.
Sol has made them very ubiquitous [2] by analysing them and demonstrating
their usefulness in many diverse fields; Martin Gardner popularized them in
one of his Scientific American columns and Dr Google is full of them. Like
many puzzles in recreational mathematics, polyominoes raise many combina-
torial problems. The most basic is enumerating polyominoes of a given size.
No formula has been found except for special classes of polyominoes. A num-
ber of estimates are known, and there are algorithms for calculating them.
In statistical physics, the study of polyominoes and their higher-dimensional
analogs (which are often referred to as lattice animals in this literature) is
applied to problems in physics and chemistry. Polyominoes have been used
as models of branched polymers and of percolation clusters.

* * *

In his talks and writings, Sol succeeded in making just the right compro-
mise between two competing goals: math rigor and reader-friendliness: His
statements and proofs are clear-cut rigorous, but he had a natural feeling
for when they were beyond the grasp of the average reader; he filled the
gap with explicit comprehensible examples, that provided the intuition and
demonstrated what was going on, thus contributing huge reader-friendliness.
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I encountered Sol first when I had just metamorphosed from an electric
engineering Phd to a math Phd student at UCLA, where, inter alia, Sol
was teaching. His lucid, luminous lectures were important ingredients in
providing me with enthusiastic appreciation for mathematics.
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