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Abstract

Analys of:
1. A paper of Ron Graham, whose memory we commemorate in

this volume.
2. Beatty sequences and their iterates, also prompted by that paper

of Ron.

We are interested in families of Beatty sequences: {bnαi + βic}mi=1, where
αi > 0, β are reals, n = 1, 2, . . . .

It is well-known (e.g., see [10], [5], [7]) that for α1, α2 positive irrationals
satisfying α−11 + α−12 = 1, the sequences {bnα1c}, {bnα2c}, n = 1, 2, . . . are
complementary , that is, every positive integer appears exactly once, in ex-
actly one of the sequences.

This doesn’t work for rational α1, α2, say 5/3, 5/2, since 3 × 5/3 = 2 ×
5/2 = 5. However for the inhomogeneous case, where also offsets βi are
permitted, complementary sequences bnαi + βic, exist for any reals αi >
0, βi. For example, b5n/3c , b5n/2− 1/2c are complementary, as is verified
easily. Also for integers there are inhomogeneous complementary sequences,
namely arithmetic sequences, such as 2n, 2n− 1; 2n, 4n− 1, 4n− 3.

Families in which all the αi are integers, are denoted Exactly Covering
Congruences (ECC); others where the αi are either integers, or non-integer
rationals or irrationals, are termed Exactly Covering Families (ECF); but,
when necessary, we will qualify: rational ECF, irrational ECF, etc.

We quote from Graham [6] (with slight changes of wording): ”It is easily
seen that if {bnai + bic}mi=1 is an ECC, and so is {bna′i + b′ic}m

′
i=1, and if

{bnα1 + β1c , bnα2 + β2c} is an irrational ECF, then their composition
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{
m⋃
i=1

bnaiα1 + biα1 + β1c

}
∪

{
m′⋃
i=1

⌊
na′iα2 + b′iα2 + β2

⌋}
(1)

is an ECF.
The following is then stated in [6].

Theorem 1. Any ECF with α1, α2 irrational must be of the form (1).

If we write (1) in the form{
m⋃
i=1

b(nai + bi)α1 + β1c

}
∪

{
m′⋃
i=1

⌊
(na′i + b′i)α2 + β2

⌋}
, (2)

it becomes perhaps clearer what is done: replacing the multiplier n of α1

by the union (nai + bi), which is an ECC. But there is no reason to restrict
ourselves to ECC.

In fact, we show, contrariwise to Theorem 1,

Theorem 2. If bnγ1 + δ1c , bnγ2 + δ2c is an irrational ECF, then any ECF
admits the form (3),

{
m⋃
i=1

bbnαi + βic γ1 + δ1c

}
∪

{
m′⋃
i=1

⌊⌊
nα′i + β′i

⌋
γ2 + δ2

⌋}
, (3)

where {bnαi + βic : 1 6 i 6 m} is any ECF, and so is {bnα′i + β′ic : 1 6 i 6
m′} (not necessarily ECC), m,m′ > 2, n = 1, 2, . . ..

Proof. Since b(nγ1 + δ1)c , b(nγ2 + δ2)c n = 1, 2, . . . is an ECF, every posi-
tive integer appears exactly once in this ECF. Also bnαi + βic, 1 6 i 6 m
is an ECF, so it can replace the multiplier n of b(nγ1 + δ1)c. We have
fragmented (=partitioned) the multiplier n into m mutually ECF.

Notation 1. We may sometimes write ’fragment a Beatty sequence’ instead
of the more cumbersome ’fragment the multiplier n of a Beatty sequence’.

Example 1. Let a > 1 be any integer. By direct computation it is easily
verified that the irrationals α1, α2 defined by the equation{

α1 =
2− a+

√
a2 + 4

2
, α2 = α1 + a

}
, (4)
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satisfy α−11 + α−12 = 1.
For a = 1, α1 = (1 +

√
5)/2, α2 = (3 +

√
5)/2.

For a = 2, α3 =
√

2, α4 =
√

2 + 2.
We also consider the non-integer rational system with α5 = 5/3, α6 =

5/2, β6 = −1/2.
Illustrate: fragment the sequence bnα3c =

⌊
n
√

2
⌋

by the complementary
rational sequences bnα5c = b5n/3c , bnα6c = b(5n− 1)/2c; and fragment the
sequence bnα4c =

⌊
n(
√

2 + 2)
⌋

by the complementary irrational sequences

bnα1c =
⌊
n(1 +

√
5)/2

⌋
, bnα2c =

⌊
n(3 +

√
5)/2

⌋
. In Table (1), the non-

fragmented sequences are in the two rightmost columns.

n bbnα5cα3c bbnα6cα3c bbnα1cα4c bbnα2cα4c bnα3c bnα4c
1 1 2 3 6 1 3
2 4 5 10 17 2 6
3 7 9 13 23 4 10
4 8 12 20 34 5 13
5 11 16 27 44 7 17
6 14 19 30 51 8 20
7 15 24 37 61 9 23
8 18 26 40 68 11 27
9 21 31 47 78 12 30
10 22 33 54 88 14 34
11 25 38 58 95 15 37
12 28 41 64 105 16 40
13 29 45 71 116 18 44
14 32 48 75 122 19 47
15 35 52 81 133 21 51

Table 1: Fragmenting the irrational sequence with α3 =
√

2, by the rational
ECF bnα5c = b5n/3c , bnα6c = b5n/2− 1/2c; and the irrational sequence
with α4 =

√
2 + 2 by the irrational ECF bnα1c =

⌊
n(1 +

√
5)/2

⌋
, bnα2c =⌊

n(3 +
√

5)/2
⌋
.

Observe, e.g., that all numbers in the bnα3c column are distributed
among the 2 adjacent columns containing α3.

We now study the behavior of complementary Beatty sequences and their
iterates, clearly revealing their nature.

We begin with the sequence of the positive integers, n = 1, 2, . . .. Next,
this sequence is fragmented into two pieces, called Beatty Iterates or simply
iterates for short – by two complementary Beatty sequences, T1, T2. The two
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iterates fit together perfectly, like a jigsaw puzzle, because T1, T2 are com-
plementary. Example: the 2 rightmost irrational sequences bnα3c , bnα4c
in Table 1. Next we can fragment one of the 2 iterates into 2 additional
perfectly fitting jigsaw iterates by 2 more complementary Beatty sequences,
such as the iterate bnα3c. We fragment it by the 2 rational complementary
sequences bnα5c, bnα6c in Table 1. We can also fragment the other iterate,
say by an irrational ECF, which is done in Table 1. So we have now a jigsaw
puzzle consisting of 6 perfectly fitting iterates. As we mentioned, each of
them is called a Beatty Iterate, BI.

There is no reason to stop here. Take, for example, a = 3 in Equation 4.
Then α7 = (−1 +

√
13)/2, α8 = (5 +

√
13)/2. We use them to further

fragment bnα3c.

n bbbnα7cα5cα3c bbbnα8cα5cα3c bbnα6cα3c bnα7c bnα8c bnα3c bnα4c
1 1 8 2 1 4 1 3
2 4 18 5 2 8 2 6
3 7 28 9 3 12 4 10
4 11 39 12 5 17 5 13
5 14 49 16 6 21 7 17
6 15 57 19 7 25 8 20
7 21 24 24 9 30 9 23
8 22 26 26 10 34 11 27
9 25 31 31 11 38 12 30
10 29 33 33 13 43 14 34
11 32 38 38 14 47 15 37
12 35 41 41 15 51 16 40
13 36 45 45 16 55 18 44
14 42 48 48 18 60 19 47
15 43 52 52 19 64 21 51

Table 2: Fragmenting the multiplier
⌊
n
√

5
⌋

(see Table 1) of the irrational

sequence with α3 =
√

2 by the irrational ECF bnα7c , bnα8c.

Thus we have produced a BI of degree G = 3 of
⌊
n
√

2
⌋

of degree G = 1.
In general we get iterates BIG of degree G > 1. A regular Beatty sequence
is an iterate of degree G = 1. BI is independent from ECF. Of course we
can join suitable BI into an ECF. For example in Table 2, adjoining bnα4c
to the 3 columns containing α3, results in an ECF.

We have proved:
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Theorem 3. Any BIG (G > 1) can be fragmented further into any BI of
degree > G. Joining BI appropriately together produces ECF consisting of
BI of arbitrary large degree.

Thus, any ECF can produce other ECF by fragmentation!
We have fragmented ECF locally, and obtained bigger united ECF glob-

ally! The result is also more comprehensive, since we replaced ECC multi-
pliers by general ECF multipliers.

In an attempt to salvage Theorem 1 of [6], perhaps every ECF fragmen-
tation can also be fragmented by an ECC?

Now there are two ways of interpreting Theorem 1.
(1) Inclusive: Fragment by ECC but possibly also by ECF. We have

shown that, in fact, it can always be fragmented into ECF. If this would be
the interpretation of [6], then it would have to be stated in the form: Any
ECF in which some αi is irrational, can be fragmented by either ECC or
ECF. [6]. Since this is not the case, the interpretation must be

(2) Exclusive: Fragment only by ECC, no other fragmentations are pos-
sible (which would anyway be the choice of ”the man in the street”). But we
have ECF counterexamples. Now the multiplier n of each counterexample
can again be fragmented into ECC, thus possibly validating [6]. But they
can also again be fragmented into ECF, thus violating exclusivity.

Thus, in any case, Theorem 1 appears to be invalid.
It is further stated in ([6]: ”A theorem by Davenport, Mirsky and New-

man asserts that in any ECC system, m > 2, the two largest α must be
equal. This result and [6] then yielded the final

Corollary 1. If bnαi + βic , 1 6 i 6 m,m > 3 and the αi irrational, then
αi = αj for some i 6= j.

But the seeming invalidity of Theorem 1 implies that the corollary has
not been proved. The corollary always seemed to provide a boost to FC. It
is quite conceivable, however, that the corollary’s statement is valid, since
it is consistent with FC.

Epilogue Regarding this missive, I wrote to Ron Graham the following
letter on June 26.

From: Aviezri S Fraenkel
Sent: Friday, June 26, 2020 6:24 AM
To: graham@ucsd.edu
Subject: ECF
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Dear Ron,
How are you and yours doing during these pandemic times? Still joggling

with ℵ2 balls?
Re your slick 1973 Note, “Covering the positive integers . . . ”, your main

result is that any irrational ECF must be of the form (1) in your Note,
i.e., fragmenting (= partitioning) a 2-term irrational ECF by ECC (exact
covering congruences).

It seems to me, we can fragment the multiplying integer n of an ECF
sequence S by any ECF (ECC, EFC rational or irrational), which induces a
fragmentation of S.

The unnumbered formula in the attached missive displays a generic ir-
rational ECF (depending on a): alpha and beta are obviously irrational in
the formula, and they satisfy 1/alpha+1/beta=1.

In Table 1, the irrational ECF is the case a = 2 of the formula: The part√
2 is fragmented by the rational ECF 5n/3, (5n− 1)/2. The part

√
2 + 2 is

fragmented by case 1 of the formula.
In Table 2, an irrational ECF (case 2) is fragmented by another irrational

ECF (case 1). The β2 is not fragmented.
If the above is correct, then the theorem and climaxing final corollary

of the Note are invalid. My hunch is they can be salvaged in the extended
form. If so, then αi in both can also be rational, even when the rational ECF
has distinct moduli αi as in my 1973 paper (which prompted your Note, I
believe).

Perhaps you can show me easily that I get Fraenkel # minus infty, if all
I wrote is nonsense. Or should I once more get Fraenkel # 0? Or Graham
# 1? If the middle option, I may not have the energy to muster the proofs,
but will write up an extended version of the attached missive.

Pls keep safe and healthy! Cheers, Aviezri.

Very sadly, Ron left us 10 days later, on July 6.

FC stands for Fraenkel conjecture (e.g., [3], [9]), stating that there is
only a certain unique ECF with distinct αi (which turns out to be a rational
ECF).
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