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a b s t r a c t

In this paper, we study four games, they are all restrictions of (s, t)-Wythoff’s game
which was introduced by A.S. Fraenkel. The first one is a modular type restriction of
(s, t)-Wythoff’s game, where a player is restricted to remove a multiple of K tokens in
each move (K is a fixed positive integer). The others we called rook type restrictions of
(s, t)-Wythoff’s game, including Odd-Arbitrary-Nim (s, t)-Wythoff’s Game, Odd–Odd-Nim
(s, t)-Wythoff’s Game and Odd–Even-Nim (s, t)-Wythoff’s Game. In these three games,
the restrictions are only made on horizontal and vertical moves, but not on the extended
diagonal moves. For any K , s, t ≥ 1, the sets of P-positions of our games are given in both
normal and misère play.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Introduced by A.S. Fraenkel in [6], (s, t)-Wythoff’s game is a well-known 2-player combinatorial game involving two
piles of finitely many tokens. Given two integers s, t ≥ 1, a player may either remove any positive number of tokens from
a single pile or remove tokens from both piles, k > 0 from one pile and ℓ > 0 from the other, say ℓ ≥ k, constrained by

0 ≤ ℓ − k < (s − 1)k + t. (1)
In normal play, the player first unable to move loses; while in misère play that player wins.

The special case s = t = 1 is the classical Wythoff game, while the case s = 1, t ≥ 1 is Generalized Wythoff [4].
More variants of Wythoff’s game and (s, t)-Wythoff’s game can be found in [2,3,11,12,14,15]. For more theory of general
combinatorial games, see [1,7,8,10].

By (a, b) we denote a game position with the two piles of sizes a and b. A position is called an N-position (known as
winning position) from which the Next player can win. Otherwise, it is a P-position (known as losing position) from which
the Previous player has a winning strategy. We denote by P and N the set of all P-positions of a game and the set of all its
N-positions respectively. By Z0 and Z+ we denote the set of nonnegative integers and positive integers respectively.

Given any game, we notice that the set of all its P-positions constitutes an independent set, and the main goal is to find
characterizations of the sequence of P positions. For example, in [6], the author gave all P-positions of (s, t)-Wythoff’ game
in normal play:

P =

∞
n=0

{(A′

n, B
′

n)}, A′

n = mex {A′

i, B
′

i | 0 ≤ i < n}, B′

n = sA′

n + tn, (2)
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where mex S = min(Z0
\ S). In particular, mex ∅ = 0. In misère play, the set of all P-positions of (s, t)-Wythoff’s game was

determined in [13].
All four games in this paper are 2-player games played on two piles of finitely many tokens. Let

K ∈ Z+, MK = {nK | n ∈ Z0
}.

Now we define the first game which is a modular type restriction of (s, t)-Wythoff’s game, denoted by ΓK : Let K , s, t ∈ Z+,
a player may either

I. remove k tokens, with 0 < k ∈ MK , from a single pile, or
II. remove from both piles, k tokens from one pile with 0 < k ∈ MK and ℓ from the other with 0 < ℓ ∈ MK , subject to the

constraint (1).

Notice that the case K = 1 is exactly (s, t)-Wythoff’s game, while for K = 2, it is the ‘‘Even Even’’ case studied in [12].
The remaining three games are called Odd-Arbitrary-Nim (s, t)-Wythoff’s game, Odd–Odd-Nim (s, t)-Wythoff’s game

andOdd–Even-Nim (s, t)-Wythoff’s game. These games are rook type restrictions of (s, t)-Wythoff’s game,which are denoted
by ΓOA, ΓOO, ΓOE , respectively. Throughout play of each of these three games, one pile is ‘‘first pile’’ and the other ‘‘second
pile’’. In general, we denote by (x, y) a game position where x and y are the numbers of tokens in the first and the second
pile, respectively.

(1) In ΓOA, a player may either remove an odd number k > 0 of tokens from the first pile or an arbitrary number of tokens
from the second pile, or move from both piles as in (s, t)-Wythoff’s game.

(2) In ΓOO, a player may only remove an odd number k > 0 of tokens when moving from a single pile (either the first or the
second), while the move rule when moving from both piles is the same as that of (s, t)-Wythoff’s game.

(3) In ΓOE , a player may either remove an odd number k > 0 of tokens from the first pile or an even number ℓ > 0 of tokens
from the second, or move from both piles as in (s, t)-Wythoff’s game.

Notice that in these three games no restriction is imposed on the diagonal move, while for ΓK and the games defined
in [12] also the diagonal move is constrained.

Section 2 provides methods for finding the P-positions of a game and its winning strategy. In Section 3, all P-positions of
ΓK are given recursively in terms of the mex function in both normal andmisère play (Theorems 3 and 6). Moreover, a poly-
time winning strategy for ΓK in normal play is provided by exhibiting a relationship between ΓK and (s, t)-Wythoff’s game
(Theorem 4 and Corollary 5), together with a special numeration system.While inmisère play, a poly-timewinning strategy
for ΓK is provided when s = 1 (Theorem 7 and Corollary 8). All P-positions of ΓOA, ΓOO, ΓOE in both normal and misère play
are given in Section 4 (Theorems 9–16), based on algebraic structures, which provide polynomial time strategies. The final
Section 5 lists several far-reaching relevant open problems.

2. Preliminaries

It follows from the definition of P- and N-positions that from any N-position there always exists a move to a P-position
and from a P-position a player can only move to an N-position (i.e., there can never be a move from a P-position to another
P-position). These properties can be used to check whether a given position (a, b) is a P-position or not. By F(u) we denote
the followers of u, i.e., all positions that can be reached from u in one legal move. Symmetry of the game rules of ΓK implies
that both (a, b) and (b, a) are P-positions (or N-positions). For convenience, however, we agree to write (a, b) with a ≤ b
throughout.

Example 1. For K = s = 2 and t = 1, considerΓK in normal play.We proceed according to the following steps to determine
the first few P- and N-positions:

Step 1 P-positions: Clearly, (0, 0), (0, 1), (1, 1) ∈ P , since the next player has no legal move from them and loses, that
is, the previous player wins by default.

Step 2 N-positions: For (0,m), (1,m), (m,m), (m,m+ 1), (m,m+ 2) withm ≥ 2 and (m,m+ 3) withm positive even,
it is easy to check that from each of them a legal move of type I or II can result in a position in {(0, 0), (0, 1), (1, 1)}, thus
they are all N-positions.

Step 3 P-positions: F(2, 6) = {(0, 2), (0, 4), (0, 6), (2, 2), (2, 4)}. It follows from Step 2 that each position of F(2, 6) is
an N-position. Thus (2, 6) ∈ P . In the same manner, we can obtain that (2, 7), (3, 6), (3, 7) ∈ P .

By repeating Steps 2 and 3, we can get more P-positions and N-positions of ΓK .

3. Modular type restriction of (s, t)-Wythoff’s game

We denote by ⌊x⌋ the largest integer ≤ x and ⌈x⌉ the smallest integer ≥ x. By Z≥m we denote the set of all integers not
less thanm.
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Definition 1. (i) For any set E and any elementw, we define E +w = {e+w | e ∈ E}. In particular, E = ∅ H⇒ E +w = ∅.
(ii) Let K , s, t ∈ Z+, and ΩK = {0, 1, 2, . . . , K − 1}. We define two sequences An and Bn, for n ∈ Z0:

An = mex {{Ai | 0 ≤ i < n} + α, {Bi | 0 ≤ i < n} + β}, where α, β ∈ ΩK ,
Bn = sAn + ⌈t/K⌉Kn. (3)

Notice that for K = 1, An = A′
n, Bn = B′

n, where A′
n, B

′
n were defined in Eq. (2).

Lemma 2. Let {An}
∞

n=0 and {Bn}
∞

n=0 be defined by Eq. (3). We have the following properties:

(a) An, Bn ∈ MK , for n ∈ Z0.
(b) For every m and n, with n > m ≥ 0, we have Bn > An > Am.
(c) Let A =


∞

n=1{An} + α and B =


∞

n=1{Bn} + β , where α, β ∈ ΩK , with ΩK being defined in Definition 1(ii). Then A and B
are complementary with respect to Z≥K , i.e., A ∪ B = Z≥K and A ∩ B = ∅.

(d) An − An−1 ∈ {K , 2K}.
(e) Bn − Bn−1 ∈ {sK + ⌈t/K⌉K , 2sK + ⌈t/K⌉K}. Moreover, Bn − Bn−1 = sK + ⌈t/K⌉K if and only if An − An−1 = K;

Bn − Bn−1 = 2sK + ⌈t/K⌉K if and only if An − An−1 = 2K.

Proof. (a) Induction on n. Obviously, A0 = B0 = 0, A1 = K and B1 = sA1 + ⌈t/K⌉K ∈ MK . Suppose Aj, Bj ∈ MK holds for all
j < n. We now show that An ∈ MK , and so Bn = sAn + ⌈t/K⌉Kn ∈ MK .

Indeed, suppose that there exists some q ∈ Z0 such that An = qK + γ with 0 < γ ∈ ΩK . Let S = {{Ai | 0 ≤ i <
n} + α, {Bi | 0 ≤ i < n} + β} with α, β ∈ ΩK . Then we have qK + γ = mex S. This implies that qK + γ ∉ S and
qK = An − γ ∈ S. If there exist i0 < n and α, β ∈ ΩK such that qK = Ai0 + α or qK = Bi0 + β , then by assumption
Ai0 , Bi0 ∈ MK implying that α = β = 0. Hence qK + γ = Ai0 + γ ∈ S or qK + γ = Bi0 + γ ∈ S, giving a contradiction.

(b) An and Bn are strictly increasing sequences, which is obvious from their definition, and Bn = sAn + ⌈t/K⌉Kn ≥

An + Kn > An > Am, for any n > m ≥ 0.
(c) It is easy to see that A ∪ B = Z≥K . Suppose A ∩ B ≠ ∅. It follows from (a) that Am + α′

≠ Bn and Am ≠ Bn + β ′ with
α′ > 0, β ′ > 0, thus the only possibility is Am = Bn for some integersm, n ∈ Z+. Ifm > n, then Am is mex of a set containing
Bn = Am, a contradiction. Ifm ≤ n, then by (b) we have Bn = sAn +⌈t/K⌉Kn ≥ sAm +⌈t/K⌉Km > Am, another contradiction.

(d) By (a) and (b), 0 < An−An−1 ∈ MK . Assume that An−An−1 ≥ 3K , then An−1 < An−1+K < An−1+2K < An−1+3K ≤

An. By (c), An−1 + ω ∈ S with 1 ≤ ω ≤ 3K − 1. Further, the only possibility is that An−1 + ω ∈ B. Since An, Bn ∈ MK , there
exists some j < n such that An−1 +K = Bj and An−1 +2K = Bj+1. Hence, we get K = Bj+1 −Bj = s(Aj+1 −Aj)+⌈t/K⌉K > K ,
a contradiction.

(e) Directly from the definition of Bn and (d). �

Theorem 3. Let K , s, t ∈ Z+. For ΓK in normal play,

P =

∞
n=0

{(An + α, Bn + β) | α, β ∈ ΩK },

where An and Bn are defined in Eq. (3) and ΩK in Definition 1(ii).

Proof. It evidently suffices to show two things:
Fact I. (stability property). No followers of a position in P can be in P .
Fact II. (absorbing property). From every position not in P there is a move to a position in P .

Proof of Fact I. Let (x, y)with x ≤ y be a position in P . Clearly for (x, y) ∈ ΩK ×ΩK , withΩK being defined in Definition 1.
For x, y ≥ K , it follows from Lemma 2(c) that there exist some n ∈ Z+ and α, β ∈ ΩK such that (x, y) = (An + α, Bn + β).

It is obvious that a type I move from (x, y) leads to a position not in P . Suppose that (x, y) → (x′, y′) ∈ P by a type
II move. By Lemma 2(a) and (b), there exists m (< n) such that k = An − Am ∈ MK and ℓ = Bn − Bm ∈ MK . Note that
⌈t/K⌉K ≥ t for any K , t ∈ Z+, thus 0 < k ≤ ℓ = s(An − Am) + ⌈t/K⌉K(n − m) ≥ sk + t , which contradicts Eq. (1).

Proof of Fact II. Let (x, y) with x ≤ y be a position not in P . If x ∈ ΩK , let y = qK + β , q ∈ Z+ and β ∈ ΩK , then move
y → β . If x ≥ K , from Lemma 2(c), we have either x = Bn + β or x = An + α for some n ∈ Z+ and α, β ∈ ΩK .

Case (i) x = Bn + β . Let y = qK + α, q ∈ Z0 and α ∈ ΩK , we move y → An + α, since y ≥ x = Bn + β ≥ Bn > An + α
and y − An − α ∈ MK .

Case (ii) x = An + α. In this case, let y = qK + β , q ∈ Z0, β ∈ ΩK . We proceed by distinguishing three subcases:
(ii.1) y > Bn + K − 1, (ii.2) x ≤ y < sAn + ⌈t/K⌉K , (ii.3) sAn + ⌈t/K⌉K ≤ y < Bn.

(ii.1) y > Bn + K − 1. Then move y → Bn + β .
(ii.2) x ≤ y < sAn+⌈t/K⌉K .Wemove (x, y) → (α, β). Thismove is legal: (a) 0 < k = An ∈ MK , (b) 0 < ℓ = y−β ∈ MK ,

(c) ℓ − k = y − β − An ≤ (s − 1)An + ⌈t/K⌉K − K < (s − 1)k + t .
(ii.3) sAn + ⌈t/K⌉K ≤ y < Bn. Putm = ⌊(y − sAn − β)/(⌈t/K⌉K)⌋. Then move (x, y) → (Am + α, Bm + β). This move is

legal:
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Table 1
The first few P-generators of Γ3 .

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
An 0 3 6 9 15 18 21 27 30 33 39 42 45 48
Bn 0 12 24 36 54 66 78 96 108 120 138 150 162 174

Table 2
The first few P-positions of the associated Γ .

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
A′
n 0 1 2 3 5 6 7 9 10 11 13 14 15 16

B′
n 0 4 8 12 18 22 26 32 36 40 46 50 54 58

(a) 0 < k ∈ MK . We first prove 0 ≤ m < n. Since y − sAn ≥ ⌈t/K⌉K ≥ K > β , then (y − sAn − β)/(⌈t/K⌉K) > 0,
and so m = ⌊(y − sAn − β)/(⌈t/K⌉K)⌋ ≥ 0. On the other hand, y − sAn − β < Bn − sAn = ⌈t/K⌉Kn, thus
m = ⌊(y − sAn − β)/(⌈t/K⌉K)⌋ ≤ (y − sAn − β)/(⌈t/K⌉K) < n. Hence k = An − Am > 0.

(b) 0 < ℓ ∈ MK . We knowm ≤ (y−sAn−β)/(⌈t/K⌉K), it follows that y ≥ ⌈t/K⌉Km+sAn+β = Bm+β +s(An−Am) >
Bm + β . Thus ℓ = y − Bm − β > 0 and clearly ℓ ∈ MK .

(c) k ≤ ℓ < sk+ t . By the definition ofm, we havem > (y− sAn −β)/(⌈t/K⌉K)−1, then y < ⌈t/K⌉K(m+1)+ sAn +β .
Thus y− Bm − β < s(An − Am) + ⌈t/K⌉K . Further, y− Bm − β ≤ s(An − Am) + ⌈t/K⌉K − K < s(An − Am) + t . On the other
hand, by (b), y − Bm − β ≥ s(An − Am) ≥ An − Am. �

Theorem 3 provides a recursive winning strategy which is exponential in the input size log xy of any game position
(x, y) ∈ Z0

× Z0.
For every n ∈ Z0, the pair (An, Bn) is called a P-generator of P-positions, since the pair generates the set {(An+α, Bn+β) |

α, β ∈ ΩK } of P-positions, with ΩK being defined in Definition 1(ii).
Now the original (s, t)-Wythoff’s game with parameters s, t ∈ Z+ is the case K = 1 of ΓK . Its P-positions are exactly

those in Eq. (2). With ΓK , K > 1, we associate an (s, t ′)-Wythoff game

Γ := Γ1

with parameters s(Γ ) = s(ΓK ), t ′(Γ ) = ⌈t/K⌉, K as in ΓK .
In order to provide a poly-time winning strategy for ΓK , we next exhibit a simple relationship between the P-generators

of ΓK and the P-positions of the associated Γ , which are those of (2), but with t replaced by t ′:

Theorem 4. A′
n = An/K, B′

n = Bn/K, where {(An, Bn)}n≥0 and {(A′
n, B

′
n)}n≥0 are the P-generators of ΓK and the P-positions of

Γ respectively.

Example 2. For K = 3, s = 2, t ∈ {4, 5, 6}, we display the first few P-generators of Γ3 and the first few P-positions of the
associated Γ in Tables 1 and 2. Notice the divisibility enunciated by Theorem 4.

Proof. From Lemma 2, for all n ≥ 0: (i) An, Bn ∈ MK , (ii) An+1−An ∈ {K , 2K}, (iii) Bn+1−Bn ∈ {sK+⌈t/K⌉K , 2sK+⌈t/K⌉K}.
We see, in particular, that An/K , Bn/K are nonnegative integers.
From the proof of Theorem 3.1 of [6] we have: (i)′ A′

n+1 − A′
n ∈ {1, 2}, (ii)′ B′

n+1 − B′
n ∈ {s + t ′, 2s + t ′}.

(i)′, (ii)′ follow from (ii), (iii) respectively by dividing byK . But the theorem is not yet proved: it could presumably happen,
for example, that for some n ≥ 0, An+1 − An = 2K , yet A′

n+1 − A′
n = 1 rather than 2. We now show, however, by induction

on n, that

(An+1 − An)/K = A′

n+1 − A′

n, (Bn+1 − Bn)/K = B′

n+1 − B′

n (4)

for all n ≥ 0. The theorem’s assertion clearly holds for n = 0. Further, from the definition of An, Bn we get: A1 = K ,
B1 = sK + ⌈t/K⌉K ; and from the definition of A′

n, B
′
n: A

′

1 = 1, B′

1 = s + t ′. Thus Eq. (4) holds for n = 0. Suppose
(Aj+1 − Aj)/K = A′

j+1 − A′

j, (Bj+1 − Bj)/K = B′

j+1 − B′

j hold for all j < n. If An+1 = An + K , it follows from the mex function
and the induction hypothesis that A′

n+1 = A′
n + 1. Similarly, An+1 = An + 2K implies A′

n+1 = A′
n + 2. Also Bn+1, B′

n+1 are
uniquely determined by An+1, A′

n+1 respectively. Thus, again by the induction hypothesis (on An, A′
n), Eq. (4) is established,

so the theorem’s assertion follows. �

Corollary 5. In normal play, (x, y) is a P-position of ΓK if and only if (⌊x/K⌋, ⌊y/K⌋) is a P-position of Γ .

Proof. If (x, y) is a P-position of ΓK with its P-generator being (Ai0 , Bi0), i0 ∈ Z0, then by Theorem 4, (⌊x/K⌋, ⌊y/K⌋) =

(A′

i0
, B′

i0
), and vice versa. �
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Table 3
Representations R(N) over U.

14 4 1 N

1 1
2 2
3 3

1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13

1 0 0 14
1 0 1 15
1 0 2 16
1 0 3 17
1 1 0 18
1 1 1 19
1 1 2 20

We now show how Theorem 4 leads to a poly-time winning strategy for ΓK . Let u−1 = 1/s, u0 = 1, un = (s + t ′ −

1)un−1 + sun−2 (n ≥ 1). Denote by U the numeration system with bases u0, u1, . . . and digits di ∈ {0, . . . , s + t ′ − 1} such
that di+1 = s + t ′ − 1 H⇒ di < s (i ≥ 0). In [6] it was shown (as a special case of a somewhat more general numeration
system) that every positive integer N has a unique representation R(N) over U.

The vile numbers are those whose representations R(N) end in an even number of 0s, and the dopey numbers are those
whose representations end in an odd number of 0s. (For an explanation/etymology of the terms vile, dopey, see [9].) Also, y
is a left shift of x, if R(y) is obtained from R(x) by adjoining 0 to the right end of R(x). Thus, in binary, the decimal number 6
is a left shift of the decimal 3, since R(6) = 110, R(3) = 11; 3 is vile since R(3) ends in an even number (zero) of 0s and 6 is
dopey.

In [6] it was proved that (x, y) ∈ Γ with x ≤ y is a P-position of Γ if and only if x is vile and y is a left shift of x (so it is
dopey). The fact that the ui grow exponentially, together with Theorem 4 clearly provides a poly-time winning strategy for
ΓK . For K = 2 this provides a poly-time winning strategy for the ‘‘Even Even’’ case, which remained elusive in [12].

Notice that if s, t are the parameters of ΓK , then s, t ′ are the parameters of Γ , where t ′ = ⌈t/K⌉.

Example 3. Consider Γ3 of Example 2, where K = 3, s = 2, t ∈ {4, 5, 6}. Then the corresponding game Γ has values
s = t ′ = 2. Thus, u−1 = 1/2, u0 = 1, u1 = 4, u2 = 14, u3 = 50, . . . . The representations R(N) over U of the first few
positive integers N appear in Table 3. Consider the position (4, 17) ∈ Γ3. By Corollary 5, we check (⌊4/3⌋, ⌊17/3⌋) = (1, 5)
and their representations (1, 11). Since 11 is not a left shift of 1 (but 1 ends in an even number of 0s), (1, 5) is an N-position
in Γ , hence (4, 17) is an N-position in Γ3. Now consider (11, 37) ∈ Γ3, so (⌊11/3⌋, ⌊37/3⌋) = (3, 12), with representations
(3, 30). Since 3 ends in an even number of 0s and 30 is a left shift of 3, (3, 30) is a P-position in Γ , hence (11, 37) is a
P-position in Γ3.

Theorem 6. Let K , s, t ∈ Z+. For ΓK in misère play, P =


∞

n=0{(En + α,Hn + β) | α, β ∈ ΩK }, where ΩK is defined
in Definition 1(ii), En and Hn are determined by two cases:
(A) If s > 1 or t > K, then for n ∈ Z0,

En = mex {{Ei | 0 ≤ i < n} + α, {Hi | 0 ≤ i < n} + β},
Hn = sEn + ⌈t/K⌉Kn + K .

(5)

(B) If s = 1 and t ≤ K , then E0 = H0 = 2K and for n ∈ Z+,
En = mex {{Ei | 0 ≤ i < n} + α, {Hi | 0 ≤ i < n} + β},
Hn = En + Kn. (6)

Example 4. For K = 3, s = 2, t ∈ {4, 5, 6}, we display the first few P-generators of ΓK in Table 4, which shows us how to
determine P by using Eq. (5).

Proof. Let E =


∞

n=0{En} + α and H =


∞

n=0{Hn} + β with α, β ∈ ΩK . We firstly claim the following facts:
Fact A Suppose s > 1 or t > K .

I. Similar to Lemma 2(a) and (b), En,Hn ∈ MK and it is easy to see that both En and Hn are strictly increasing sequences, for
n ∈ Z0.
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Table 4
The first few P-generators of ΓK for K = 3, s = 2, t ∈ {4, 5, 6}.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
En 0 6 9 12 15 18 24 27 30 36 39 42 48
Hn 3 21 33 45 57 69 87 99 111 129 141 153 171

II. E ∪ H = Z0 and E ∩ H = ∅. In fact, E ∪ H = Z0 follows from the definition of mex. Now suppose E ∩ H ≠ ∅. It follows
Fact A.I that Em + α′

≠ Hn and Em ≠ Hn + β ′ with α′ > 0, β ′ > 0, thus the only possibility is Em = Hn for two integers
m, n ∈ Z+. If m > n then Em = mex {Ei + α,Hi + β | 0 ≤ i < m, α, β ∈ ΩK }, which contradicts Em = Hn; if m ≤ n
then Hn ≥ sEm + ⌈t/K⌉Kn + K > Em, also contradicting Em = Hn.

Fact B Suppose s = 1 and t ≤ K .

I. En,Hn ∈ MK for n ∈ Z0 and En,Hn are strictly increasing sequences for n ∈ Z+.
II. E ∪ H = Z0 and E ∩ H = {2K}. Its proof is similar to that of Fact A.II.

Proof of Fact I. Let (x, y) with x ≤ y be a position in P . There exist some n ∈ Z0 and α, β ∈ ΩK such that (x, y) =

(En + α,Hn + β).
It is easy to check that no move of type I from (x, y) can terminate in P . Then suppose (x, y) → (x′, y′) ∈ P by a type II

move, and there exists somem such that (x′, y′) = (Em+α,Hm+β). Thus for both cases (A) and (B),we have k = En−Em > 0,
ℓ = Hn − Hm and 0 < k ≤ ℓ = s(En − Em) + ⌈t/K⌉K(n − m) ≥ sk + t , which contradicts Eq. (1).

Proof of Fact II. Let (x, y) with x ≤ y be a position not in P . By Facts A.II and B.II, we have either x = Hn + β or x = En + α,
for some n ∈ Z0 and α, β ∈ ΩK .

Case (i) x = Hn + β . Now y ≥ En + K . Let y = qK + α, q ∈ Z0, and α ∈ ΩK . Then move y → En + α, since
0 < y − En − α ∈ MK .

Case (ii) x = En + α. In this case, we have y > Hn + K − 1 or x ≤ y < Hn. Let y = qK + β , where q ∈ Z0, and β ∈ ΩK . If
y > Hn + K − 1, then move y → Hn + β , since 0 < y−Hn − β ∈ MK . If x ≤ y < Hn, we consider two subcases: (ii-A) s > 1
or t > K ; (ii-B) s = 1 and t ≤ K .

(ii-A) s > 1 or t > K .
For n = 0, we have x ≤ y < K = H0, the next player wins without doing anything.
For n ≥ 1. If x ≤ y < sEn + ⌈t/K⌉K + K , move (x, y) → (α, K + β). This is a legal move, since k = En, ℓ = y − K − β ,

and 0 ≤ ℓ − k < sEn + ⌈t/K⌉K − β − En ≤ (s − 1)En + ⌈t/K⌉K − K < (s − 1)k + t . If sEn + ⌈t/K⌉K + K ≤ y < Hn, put
m = ⌊(y − sEn − K − β)/(⌈t/K⌉K)⌋ and move (x, y) → (Em + α,Hm + β). This move is legal:

(a) 0 < k ∈ MK . Clearly k = En−Em ∈ MK . It suffices to prove that 0 ≤ m < n. Note that y−sEn−K ≥ ⌈t/K⌉K ≥ K > β ,
so (y − sEn − K − β)/(⌈t/K⌉K) > 0, thusm = ⌊(y − sEn − K − β)/(⌈t/K⌉K)⌋ ≥ 0. On the other hand, y − sEn − K − β <
Hn − sEn − K = ⌈t/K⌉Kn, and so m = ⌊(y − sEn − K − β)/(⌈t/K⌉K)⌋ ≤ (y − sEn − K − β)/(⌈t/K⌉K) < n.

(b) 0 < ℓ ∈ MK . It is obvious that ℓ = y − Hm − β = qK − Hm ∈ MK . Now m ≤ (y − sEn − K − β)/(⌈t/K⌉K), So
y ≥ ⌈t/K⌉Km + sEn + K + β = Hm + β + s(En − Em) > Hm + β .

(c) k ≤ ℓ < sk + t . By above, m > (y − sEn − K − β)/(⌈t/K⌉K) − 1, i.e., y < ⌈t/K⌉K(m + 1) + sEn + K + β . So
y−Hm − β < s(En − Em) + ⌈t/K⌉K , thus we have ℓ = y−Hm − β ≤ s(En − Em) + ⌈t/K⌉K − K < s(En − Em) + t = sk+ t .
On the other hand, by (b), ℓ = y − Hm − β ≥ s(En − Em) ≥ En − Em = k.

(ii-B) s = 1 and t ≤ K .
If n = 0, then 2K + α = x ≤ y < H0 = 2K is impossible; if n = 1 then 0 ≤ x ≤ y ≤ K − 1, thus the next player wins

without doing anything. It remains to consider the case n ≥ 2:
Put m = ⌊(y − En − β)/K⌋ and move (x, y) → (Em + α,Hm + β). This move is legal: (a) 0 < k = En − Em ∈ MK . As

above, we only need to prove that 0 ≤ m < n. Since y ≥ En + β , then m = ⌊(y − En − β)/K⌋ ≥ 0. On the other hand,
y − En − β < Hn − En = Kn, and som = ⌊(y − En − β)/K⌋ ≤ (y − En − β)/K < n.

(b) 0 < ℓ ∈ MK . Obviously, ℓ = y − Hm − β = qK − Hm ∈ MK . Now m ≤ (y − En − β)/K . Thus we have
y ≥ Km + En + β = Hm + β + En − Em > Hm + β .

(c) k ≤ ℓ < k + t . On the one hand, m > (y − En − β)/K − 1, i.e., y < K(m + 1) + En + β . Thus ℓ = y − Hm − β <
K(m+1)+En−Em−Km = En−Em+K . Note that both y−Hm−β and En−Em+K are inMK , so ℓ = y−Hm−β ≤ En−Em < k+t .
On the other hand, by (b), ℓ = y − Hm − β ≥ En − Em = k. �

Theorem 6 provides a recursive winning strategy for ΓK in misère play, which is exponential. We now examine whether
ΓK has a poly-time winning strategy or not.

In Section 7 of [5], three characterizations, recursive, algebraic and arithmetic, are given for the P-positions of Generalized
Wythoff in misère play, which is the case K = s = 1 of ΓK . Take the recursive and algebraic characterizations for example,
denote by {(E ′

n,H
′
n)}n≥0 the P-positions of Generalized Wythoff with parameter t ∈ Z+, we have

(i) Recursive characterization
For t = 1 : (E ′

0,H
′

0) = (2, 2), E ′
n = mex {E ′

i ,H
′

i | 0 ≤ i < n},H ′
n = E ′

n + n (n ≥ 1).
For t > 1 : E ′

n = mex {E ′

i ,H
′

i | 0 ≤ i < n},H ′
n = E ′

n + tn + 1 (n ≥ 0).
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(ii) Algebraic characterization
For t = 1: (E ′

0,H
′

0) = (2, 2), (E ′

1,H
′

1) = (0, 1),

E ′

n = ⌊nφ⌋, H ′

n = ⌊nφ2
⌋(n ≥ 2), where φ = (1 +

√
5)/2.

For t > 1 : E ′
n = ⌊nα + γ ⌋,H ′

n = ⌊nβ + δ⌋ (n ≥ 0), where α = (2 − t +
√
t2 + 4)/2, β = α + t, γ = 1/α, δ = γ + 1.

For the arithmetic winning strategy, which involves a continued fraction and two numeration systems, p-system and
q-system, we refer the reader to Section 7 of [5]. It was pointed out there that the first one strategy is exponential while the
last two provide poly-time strategies for Generalized Wythoff. Now there exists a connection between ΓK with parameters
K , s, t ∈ Z+ and Generalized Wythoff but with parameter t ′ = ⌈t/K⌉, t, K as in ΓK .

Theorem 7. Let s = 1. E ′
n = En/K , H ′

n = Hn/K, where {(En,Hn)}n≥0 and {(E ′
n,H

′
n)}n≥0 the P-generators of ΓK and the

P-positions of Generalized Wythoff.

Proof. This follows by the same method as in the proof of Theorem 4. �

Corollary 8. In misère play, (x, y) is a P-position of ΓK (s = 1) if and only if (⌊x/K⌋, ⌊y/K⌋) is a P-position of Generalized
Wythoff.

Proof. Directly follows from Theorem 7. �

Now based on this simple connection, together with the poly-time winning strategy for Generalized Wythoff, ΓK has a
poly-time winning strategy for s = 1. However, for s > 1, there is no poly-time winning strategy yet.

4. Rook type restrictions of (s, t)-Wythoff’s game

In this section, let Zeven
= {2n | n ∈ Z0

}, Zodd
= {2n + 1 | n ∈ Z0

}. Let

δn =


0, if n is even,
1, if n is odd.

4.1. The P-positions of ΓOA

In ΓOA, asymmetry of the game rules implies that (a, b) is not necessarily identical to (b, a).

Theorem 9. Let s, t ∈ Z+. For ΓOA in normal play,
(1) If s = t = 1, then P =


∞

n=0{(2n, 0), (2n + 1, 2)}.
(2) If s + t > 2, then P =


∞

n=0{(An, Bn)}, where An = n, Bn = δn(sn + (n + 1)t/2).

Proof. (1) Clearly for the stability property of P . Suppose (a, b) is a position not in P . If a = 2n for some n ∈ Z0, move
(a, b) → (2n, 0). If a = 2n + 1 for some n ∈ Z0, then b ∈ {0, 1} or b ≥ 3. For the former, we move (a, b) → (2n, 0).
Otherwise, move (a, b) → (2n + 1, 2).

(2)

Proof of Fact I. Given (An, Bn) ∈ P . Suppose that (An, Bn) → (Am, Bm) ∈ P . Then n ∈ Zeven cannot happen, since
Bn = 0 < Bm. Thuswe have n ∈ Zodd. Ifm is also odd, then k = n−m ≥ 2, thus ℓ = Bn−Bm = s(n−m)+(n−m)t/2 ≥ sk+t ,
which contradicts the condition 0 < k ≤ ℓ < sk + t . But if m is even, then we have k = n − m > 0 and
ℓ = Bn = sn + (n + 1)t/2 ≥ sk + t , another contradiction.

Proof of Fact II. Let (x, y) be a position not in P . If x is even, then move y → 0. If x is odd, there exists some n such that
x = An = n and we have either y > Bn or 0 ≤ y < Bn. If y > Bn, then move y → Bn. If 0 ≤ y < Bn we distinguish the
following four cases:

• y = 0. Then move (x, y) → (x − 1, 0).
• 1 ≤ y < x. We move (x, y) → (x − y − δy + 1, 0) ∈ P on account of x − y − δy + 1 ∈ Zeven. This move is legal, since

k = y + δy − 1 > 0, ℓ = y > 0, and 0 ≤ ℓ − k ≤ 1 < (s − 1)k + t .
• x ≤ y < sx + t . Then move (x, y) → (0, 0), which satisfies the condition Eq. (1) with k = An, ℓ = y.
• sx + t ≤ y < Bn. Put m = 2⌊(y − sx − t)/t⌋ + 1 and move (x, y) → (Am, Bm). This move is legal, since (a) m < n, (b)

y > Bm, (c) An − Am ≤ y − Bm < s(An − Am) + t . Indeed,
(a) y − sx − t < Bn − sx − t = (n − 1)t/2, so m ≤ 2(y − sx − t)/t + 1 < n;
(b)m ≤ 2(y − sx − t)/t + 1, so y ≥ (m − 1)t/2 + sx + t = Bm + s(n − m) > Bm;
(c) m > 2((y − sx − t)/t − 1) + 1 = 2(y − sx − t)/t − 1, so y < (m + 1)t/2 + sx + t = sn + (m + 3)t/2; by (b),

y − Bm ≥ n − m = An − Am, hence,

An − Am ≤ y − Bm < sn + (m + 3)t/2 − sm − (m + 1)t/2 = s(An − Am) + t.

Thus Eq. (1) is satisfied. �
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Theorem 10. Put s, t ∈ Z+. For ΓOA in misère play,
(1) If s = t = 1, then P = (0, 1) ∪


∞

n=0{(2n + 1, 0), (2n + 2, 2)}.
(2) If s + t > 2, then P =


∞

n=0{(En,Hn)}, where En = n, Hn = (1 − δn)(sn + tn/2 + 1).

Proof. (1) Both stability and absorbing properties of P when s = t = 1 are simple. The details are left to the reader.
(2)

Proof of Fact I. Suppose a move from (En,Hn) produces another position of the form (Em,Hm). It is easy to see that the only
possibility is that n is even. Ifm is also even, this implies k = n−m ≥ 2, then ℓ = Hn−Hm = s(n−m)+t(n−m)/2 ≥ sk+t ,
which contradicts Eq. (1). If n is even butm is odd, then k = n−m > 0, thus ℓ = Hn−Hm = sn+tn/2+1 ≥ s(n−m)+tn/2 ≥

sk + t , another contradiction.

Proof of Fact II. Let (x, y) be a position not in P . We will show that there exists a legal move such that (x, y) → (En,Hn).
Put x = En = n for some n ∈ Z+. If x = 0, then (E0,H0) = (0, 1). For (0, 0), the next player wins without doing anything;
for y > 1, we only need to move y → 1. If x is odd, then move y → 0 = Hn. If x is even, this implies y > Hn or 0 ≤ y < Hn.
For the former, we move y → Hn; while for the latter, we distinguish the following four cases:

• y = 0. Then move (x, y) → (En − 1, 0) ∈ P .
• 1 ≤ y ≤ x. In this case, move (x, y) → (x − y − δy + 1, 0) ∈ P , since x − y − δy + 1 > 0 is odd. This move is legal:

(a) k = y − 1 + δy > 0, (b) ℓ = y > 0, (c) 0 ≤ ℓ − k ≤ 1 < (s − 1)k + t .
• x < y < sx + t + 1. we move (x, y) → (E0,H0) = (0, 1), which satisfies Eq. (1) with k = x, ℓ = y − 1 < sx + t .
• sx + t + 1 ≤ y < Hn. Put m = 2⌊(y − sx − 1)/t⌋ and move (x, y) → (Em,Hm). This is a legal move, since (a) m < n,

(b) y > Hm, and (c) En − Em ≤ y − Hm < s(En − Em) + t . Indeed,
(a) y − sx − 1 < Hn − sn − 1 = nt/2, som = 2⌊(y − sx − 1)/t⌋ ≤ 2(y − sx − 1)/t < n;
(b)m ≤ 2(y − sx − 1)/t , so y ≥ mt/2 + sx + 1 = Hm + s(n − m) > Hm;
(c)m > 2(y − sx − 1)/t − 2, thus y < sn + (m + 2)t/2 + 1; by (b), y − Hm ≥ n − m = En − Em.
Therefore, En − Em ≤ y − Hm < sn + mt/2 + t + 1 − sm − mt/2 − 1 = s(En − Em) + t , thus Eq. (1) is satisfied. �

4.2. The P-positions of ΓOO

Obviously, the game rules of ΓOO are symmetrical, so we say (a, b) is a P-position, meaning that (b, a) is also a P-position.

Theorem 11. Given s, t ∈ Z+. For ΓOO in normal play, P =


∞

n=0{(0, 2n)}.

Proof. A move from (0, 2n) clearly leads to a position not in P . Let (x, y) with x ≤ y be a position not in P . If x = 0 and y
is odd, only move y → y − 1. Consider x > 0. If x, y ∈ Zodd or x, y ∈ Zeven, then move (x, y) → (0, y − x) ∈ P . Otherwise,
we take the entire pile with an odd number of tokens. �

Theorem 12. Given s, t ∈ Z+. For ΓOO in misère play,

P =


{(0, 2n + 1), (2, 2n) | n ∈ Z+

}, if s = t = 1,
{(0, 2n + 1) | n ∈ Z+

}, if s + t > 2.

Proof. The stability property of P is straightforward. Let (x, y) with x ≤ y be a position not in P . It suffices to show that
from (x, y) there is a move terminating in P . Consider three cases:

• x = 0. Clearly for y = 0. If y > 0, then y is even and move y → y − 1.
• x = 1. Then move (1, y) → (0, y − 1 + δy) ∈ P , since y − 1 + δy is odd.
• x ≥ 2. For s = t = 1. If x = 2, thenmove (x, y) → (2, y−1); if x ≥ 3,wemove (x, y) → (2−2δy−x, y−x−2δy−x+2) by

taking x+2δy−x−2 > 0 tokens frombothpiles. Note that if y−x is odd,wehave (2−2δy−x, y−x−2δy−x+2) = (0, y−x) ∈ P;
if y − x is even, then (2 − 2δy−x, y − x − 2δy−x + 2) = (2, y − x + 2) ∈ P .

For s+ t > 2, we move (x, y) → (0, y− x− δy−x + 1) ∈ P , since y− x− δy−x + 1 is odd. This is a legal move, since: (a)
k = x − 1 + δy−x > 0, (b) ℓ = x, and (c) 0 ≤ ℓ − k = 1 − δy−x ≤ 1 < s + t − 1 ≤ (s − 1)k + t . �

4.3. The P-positions of ΓOE

In ΓOE , (a, b) is not necessarily identical to (b, a) because of asymmetry.

Theorem 13. Let s = t = 1. For ΓOE in normal play,

P =

∞
n=0

{(2n, 0), (2n, 1), (2n + 1, 4n + 3), (2n + 1, 4n + 4)}.

Proof. The proof of the stability property of P is simple, we leave the details to the reader. Now we prove the absorbing
property of P . Let (x, y) be a position not in P .

If x is even, then move (x, y) → (x, δy).
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Table 5
The first few P-positions of ΓOE for s = 2, t = 3 in normal play.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
An 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bn 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85
B′
n 0 6 0 18 0 30 0 42 0 50 0 66 0 78 0

If x = 2n + 1 for n ∈ Z0. Then y ≥ 4n + 5 or 0 ≤ y ≤ 4n + 2. For the former, we move (x, y) → (2n + 1, 4n + 4 − δy).
For the latter, if y = 0, then move (x, y) → (2n, 0); if 1 ≤ y ≤ x+ 1, then move (x, y) → (x− y− δy + 1, 1− δy) by taking
y+δy−1 > 0 tokens from both piles. Since x−y−δy+1 is even and 1−δy ∈ {0, 1}, thus (x−y−δy+1, 1−δy) ∈ P . Finally,
if x+ 2 ≤ y ≤ 4n+ 2. Then we move (x, y) → (y+ δy − x− 2, 2y+ δy − 2x− 2) by taking 2x− y− δy + 2 (≥ 2− δy > 0)
tokens from both piles. The proof is completed by showing that (y + δy − x − 2, 2y + δy − 2x − 2) ∈ P:

Let y + δy − x − 2 = φ. Then 2y + δy − 2x − 2 = 2φ + 2 − δy ∈ {2φ + 1, 2φ + 2}. Since y + δy is even, x is odd, we get
φ is odd. It is easy to see that (φ, 2φ + 1), (φ, 2φ + 2) ∈ P . �

Theorem 14. Let s + t > 2. For ΓOE in normal play, P =


∞

n=0{(An, Bn), (An, B′
n)}, where for n ≥ 0,An = n,

Bn = (s + t + 1)An + 1,
B′

n = δn(Bn − 1).

Example 5. For s = 2, t = 3, we display the first few P-positions of ΓOE in Table 5.

Proof. Proof of Fact I. Given (An, Bn) ∈ P . Suppose that (An, Bn) → (Am, Bm) ∈ P . Then we have k = n − m > 0, and
ℓ = (s + t + 1)(n − m) > sk + t , which contradicts Eq. (1).

Suppose that (An, Bn) → (Am, B′
m) ∈ P . In this case, we have k = n − m > 0, and

ℓ = Bn − B′

m =


(s + t + 1)(n − m) + 1 ifm ∈ Zodd

(s + t + 1)n + 1 if m ∈ Zeven

> (s + t + 1)k > sk + t,

also contradicting Eq. (1).
Given (An, B′

n) ∈ P . Notice that if n is even and so B′
n = 0, then any move from (An, 0) cannot lead to a position

in P . Now suppose n is odd and so B′
n = Bn − 1. If (An, B′

n) → (Am, Bm) ∈ P , then we have k = n − m > 0, and
ℓ = Bn − Bm − 1 = (s + t + 1)(n − m) − 1 = (s + t + 1)k − 1 ≥ sk + t , a contradiction; if (An, B′

n) → (Am, B′
m) ∈ P , then

we get k = n − m > 0, and

ℓ = Bn − 1 − B′

m =


(s + t + 1)(n − m) ifm ∈ Zodd

(s + t + 1)n ifm ∈ Zeven

≥ (s + t + 1)k > sk + t,

another contradiction.

Proof of Fact II. Let (x, y) be a position not in P . We show that there exists a legal move such that (x, y) → (An, Bn) or
(An, B′

n).
Put x = An for some n ∈ Z0. We distinguish two cases: (i) x is even; (ii) x is odd.
Case (i) x = An = n is even.
In this case, note first that Bn = (s+ t +1)n+1 is odd and B′

n = 0. The fact (x, y) ∉ P implies that y > Bn or 0 < y < Bn.
For y > Bn, if y is even, thenmove y → B′

n; if y is odd, wemove y → Bn. For 0 < y < Bn, we proceed by distinguishing three
subcases:

• 1 ≤ y < x. Then move (x, y) → (x − y − δy, 0) ∈ P . This move is legal, since (a) k = y ≥ 1, (b) ℓ = y + δy ≥ 2,
(c) 0 ≤ ℓ − k = δy ≤ 1 < (s − 1)k + t .

• x ≤ y ≤ Bn − 2. In this subcase, putm = ⌊(y − x)/(s + t)⌋ and move (x, y) → (Am, Bm). This move is legal:
(a) 0 ≤ m < n. Indeed, 0 ≤ y−x ≤ Bn−x−2 = (s+t)n−1 < (s+t)n, so 0 ≤ m = ⌊(y−x)/(s+t)⌋ ≤ (y−x)/(s+t) < n.
(b) By the definition ofm, we have (y − x)/(s + t) − 1 < m ≤ (y − x)/(s + t), i.e.,

(s + t)m ≤ y − x < (s + t)(m + 1). (7)

Thus, y ≥ (s + t)m + x = Bm + (An − Am) − 1 ≥ Bm by virtue of An − Am ≥ 1.
If y = Bm then An − Am = 1. This is a legal move only from the first pile.
If y− Bm ≥ 1, then it follows from Eq. (7) that |(y− Bm)− (x− Am)| = |y− x− (s+ t)m− 1| < s+ t − 1 ≤ (s− 1)λ+ t ,

where λ := {An − Am, y − Bm} ≥ 1.
• y = Bn − 1. Then move y → 0 by taking y ∈ Zeven tokens from the second pile.
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Table 6
The first few P-positions of ΓOE for s = t = 3 in misère play.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
En 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Hn 2 0 9 15 20 25 30 35 40 45 50 55 60 65 70
H ′

n 3 1 10 0 19 0 29 0 39 0 49 0 59 0 64

Case (ii) x = An = n is odd.
In this case, B′

n = Bn − 1, then y > Bn or 0 ≤ y ≤ Bn − 2. For y > Bn. we see Bn = (s + t + 1)n + 1 is odd if s + t is odd,
or Bn is even if s + t is even. Thus if (y, s + t ∈ Zodd) or (y, s + t ∈ Zeven), then we move y → Bn; if (y ∈ Zeven, s + t ∈ Zodd)
or (y ∈ Zodd, s + t ∈ Zeven), we move y → B′

n. For 0 ≤ y ≤ Bn − 2. We consider the following three subcases:
• y = 0. We just move (x, y) → (An − 1, 0) ∈ P .
• 1 ≤ y < x. In this subcase, we move (x, y) → (x − y − 1 + δy, 0) ∈ P . This is a legal move, since (a) k = y > 0,

(b) ℓ = y + 1 − δy > 0, (c) 0 ≤ ℓ − k = δy ≤ 1 < (s − 1)k + t .
• x ≤ y ≤ Bn − 2. We move (x, y) → (Am, Bm) with m = ⌊(y − x)/(s + t)⌋. This follows from the same method as in

case (i). �

Theorem 15. Let s = t = 1. For ΓOE in misère play,

P = {(0, 2), (0, 3), (2, 3), (2, 6)} ∪

∞
n=0


(2n + 1, 0), (2n + 1, 1),
(2n + 4, 4n + 9), (2n + 4, 4n + 10)


.

Proof. The stability property of P is simple. We are left with the task of proving the absorbing property of P . It is easy to
check that (0, 2), (0, 3), (2, 3), (2, 6) are all P-positions by the knowledge of Example 1 in Section 2. If x = 2n+ 1 for some
n ∈ Z0, then move (x, y) → (x, δy). If x = 2n + 4 for some n ∈ Z0, then y > 4n + 10 or 0 ≤ y < 4n + 9. For the former, we
move (x, y) → (2n + 4, 4n + 9) (if y is odd) or (x, y) → (2n + 4, 4n + 10) (if y is even). For the latter, we consider three
cases:

• 0 ≤ y ≤ x. If y = 0, then move x → 2n + 1, or else, we move (x, y) → (x − y − δy + 1, 0) ∈ P , which satisfies Eq. (1)
with k = y + δy − 1 and ℓ = y.

• x < y ≤ x+4. If y ∈ {x+1, x+4}, then remove x−2 tokens fromboth piles leading to (2, 3) or (2, 6); if y ∈ {x+2, x+3},
remove x tokens from both piles leading to (0, 2) or (0, 3).

• x + 5 ≤ y < 4n + 9. Then move (x, y) → (y − x − 2 + δy, 2y − 2x − 2 + δy) by taking 2x − y + 2 − δy tokens from
both piles. Let y − x − 2 + δy = φ. Clearly φ is even and because of φ ≥ 3 + δy, then φ ≥ 4. Thus there exists some n ∈ Z0

such that φ = 2n + 4. Furthermore, 2y − 2x − 2 + δy = 2φ + 2 − δy ∈ {2φ + 1, 2φ + 2} = {4n + 9, 4n + 10}. Hence,
(y − x − 2 + δy, 2y − 2x − 2 + δy) ∈ P . �

Theorem 16. Let s + t > 2. For ΓOE in misère play, P =


∞

n=0{(En,Hn), (En,H ′
n)}, where for n ∈ {0, 1, 2},

n 0 1 2
En 0 1 2
Hn 2 0 2s+ t +3
H ′

n 3 1 2s+ t +4

and for n ≥ 3, En = n,
Hn = (s + t + 1)En + 2 − δs − t,
H ′

n = (1 − δn)(Hn − 1).
(8)

Example 6. For s = t = 3, we display the first few P-positions of ΓOE in Table 6.

Proof. The proof is tedious. We first prove the stability property of P . Given a position (En,Hn) (or (En,H ′
n)) in P , if n < 3,

we leave it to the reader to verify that a legal move from (En,Hn) (or (En,H ′
n)) leads to a position not in P . For n ≥ 3, it is

easy to check that a legal move from (En,Hn) (or (En,H ′
n)) cannot land in


i<3{(Ei,Hi), (Ei,H ′

i )}. Letm ≥ 3.
Now suppose (En,Hn) → (Em,Hm), then k = n − m > 0 and ℓ = Hn − Hm = (s + t + 1)(n − m) > sk + t , which

contradicts Eq. (1).
Suppose that (En,Hn) → (Em,H ′

m), then k = n − m > 0. And if m is odd, ℓ = Hn − 0 = (s + t + 1)n + 2 − δs − t >
(n − m)s + (n − 1)t > sk + t; if m is even, then ℓ = Hn − (Hm − 1) = (s + t + 1)(n − m) + 1 > sk + t . Both contradict
Eq. (1).
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Next suppose (En,H ′
n) → (Em,Hm). It is impossible that n is odd. Indeed, if so, it follows by the definition of δn that

H ′
n = 0 < Hm. Ifn is even, thenwehaveH ′

n = Hn−1 and k = n−m > 0, but ℓ = (Hn−1)−Hm = (s+t+1)(n−m)−1 ≥ sk+t ,
another contradiction.

Finally, suppose that (En,H ′
n) → (Em,H ′

m). As above, n is even. If m is also even, then ℓ = (Hn − 1) − (Hm − 1) =

(s+t+1)(n−m) > sk+t; if n is even butm is odd, then ℓ = Hn−1 = (s+t+1)n+1−δs−t > (n−m)s+(n−1)t > sk+t .
In a word, this move is also illegal.

We next prove the absorbing property of P . Let (x, y) be a position not in P . Put x = En = n for some n ∈ Z0.
If x = 0, then y ∈ {0, 1} or y ≥ 4. Obviously, (0, 0) and (0, 1) areN-positions. For y ≥ 4, thenmove (0, y) → (0, 2+δy) ∈

P .
If x = 1, then y ≥ 2, move (1, y) → (1, δy) ∈ P .
If x = 2, we have either y > 2s + t + 4 or 0 ≤ y < 2s + t + 3.
Case (i) y > 2s + t + 4. If (y ∈ Zodd and t ∈ Zeven) or (y ∈ Zeven and t ∈ Zodd), we move (2, y) → (2, 2s + t + 3) ∈ P

since ℓ = y − 2s − t − 3 > 0 is even; if (y, t ∈ Zodd) or (y, t ∈ Zeven), then we move (2, y) → (2, 2s + t + 4) ∈ P because
y − 2s − t − 4 is always even.

Case (ii) 0 ≤ y < 2s+ t + 3. If y = 0, we move (2, 0) → (1, 0); if y ∈ {1, 2, 3}, we move (2, y) → (1, 1); if y = 4, move
(2, 4) → (0, 2), if 5 ≤ y < 2s + t + 3, then move (2, y) → (0, 3), which satisfies Eq. (1) with k = 2 and ℓ = y − 3.

If x ≥ 3, we proceed by distinguish two cases:
Case (iii) x = n is odd.
In this case, H ′

n = 0 and so y > Hn or 0 < y < Hn. For y > Hn, if y is even, wemove y → 0; if y is odd, thenmove y → Hn
as ℓ = y−Hn = y− (n−1)(s+ t)− (s− δs)−n+2 is even. The case 0 < y < Hn is rebarbative. With patience we proceed
by distinguishing seven subcases:

• 0 < y < x. If y is even, we move y → H ′
n = 0; if y is odd, we move (x, y) → (x − y − 1, 0) since x − y − 1 is odd.

Obviously this move satisfies Eq. (1) with k = y and ℓ = y + 1.
• y ∈ {x, x + 1}. Then move (x, y) → (1, 1).
• x + 2 ≤ y ≤ x + 2s + t . We move (x, y) → (0, 3), which is legal, since (a) k = x > 0, (b) ℓ = y − 3 ≥ x − 1 > 0,

(c) |ℓ − k| ≤ 2s + t − 3 < 2(s − 1) + t ≤ (s − 1)λ + t , where λ := min{x, y − 3} ≥ 2.
• y = x + 2s + t + 1. We move (x, y) → (2, 2s + t + 3) ∈ P by removing x − 2 > 0 tokens from both piles.
• x+ 2s+ t + 2 ≤ y ≤ x+ 3s+ 2t . Then move (x, y) → (2, 2s+ t + 4) ∈ P . This move is legal, since (a) k = x− 2 > 0,

(b) ℓ = y − (2s + t + 4) ≥ x − 2 > 0, (c) |ℓ − k| ≤ s + t − 2 < s + t − 1 ≤ (s − 1)k + t .
• x + 3s + 2t + 1 ≤ y < Hn − 1. Putm = ⌊(y − x + t − 1 + δs)/(s + t)⌋ and move (x, y) → (Em,Hm). This move is also

legal, since
(a) n > m ≥ 3. Indeed, y−x+t−1+δs < Hn−x+t−2+δs = (s+t)n, thuswe havem ≤ (y−x+t−1+δs)/(s+t) < n.

On the other hand, y − x + t − 1 + δs ≥ x + 3s + 2t + 1 − (x − t + 1 − δs) ≥ 3(s + t). som ≥ 3 and k = n − m > 0.
(b) y ≥ Hm. By the definition ofm, (y − x − s − 1 + δs)/(s + t) < m ≤ (y − x + t − 1 + δs)/(s + t), i.e.,

(s + t)m − t + 1 − δs ≤ y − x < (s + t)m + s + 1 − δs. (9)

Thus y ≥ (s + t)m + x − t + 1 − δs = Hm + (En − Em) − 1 ≥ Hm by virtue of En − Em ≥ 1.
If y = Hm, then En − Em = 1. This is a legal move only from the first pile.
If y−Hm ≥ 1, then it follows fromEq. (9) that |(y−Hm)−(x−Em)| = |y−x−(s+t)m−2+t+δs| < s+t−1 ≤ (s−1)λ+t ,

where λ := min{En − Em, y − Hm} ≥ 1.
• y = Hn − 1. Note that Hn − 1 = (n − 1)(s + t) + (s − δs) + n + 1 is even on account of n ∈ Zodd and s − δs ∈ Zeven.

Thus we move simply y → H ′
n = 0.

Case (iv) x = n is even.
In this case, H ′

n = Hn − 1 and so we have either y > Hn or 0 ≤ y ≤ Hn − 2.
For y > Hn. It is worth to note that if s + t is odd, then t + δs is also odd, thereby Hn = (s + t + 1)n + 2 − t − δs is odd;

if s + t is even, meaning that t + δs is also even, and so Hn is even. Therefore, if (y, s + t ∈ Zodd) or (y, s + t ∈ Zeven), then
we move y → Hn since y − Hn is even; if (y ∈ Zodd and s + t ∈ Zeven) or (y ∈ Zeven and s + t ∈ Zodd), then we move y → H ′

n
because y − H ′

n = y − Hn + 1 is still even.
For 0 ≤ y ≤ Hn − 2. If y = 0, we move (x, 0) → (x− 1, 0). If 1 ≤ y ≤ x− 1, we move (x, y) → (x− y− 1+ δy, 0) ∈ P

with x− y− 1+ δy being odd, which satisfies Eq. (1) with k = y and ℓ = y+ 1− δy. Otherwise, analysis for x ≤ y ≤ Hn − 2
is the same as the proof of case (iii), more details are left to the reader. �

Remark 1. Similar to ΓOE , maybe we can define ΓEO, Even–Odd-Nim (s, t)-Wythoff’s game: A player chooses the first pile
and takes even k > 0 tokens, or chooses the second pile and takes odd ℓ > 0 tokens, the move rules are the same with
(s, t)-Wythoff’s Game when moving from both piles. The move rules of these two games imply that (x, y) is a P-position of
ΓEO if and only if (y, x) is a P-position of ΓOE . Thus the P-positions of ΓEO are easily obtained by Theorems 13–16 with (x, y)
replaced by (y, x).
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5. Conclusion

In this paper, the game ΓK is defined and completely solved for any K , s, t ∈ Z+ in both normal and misère play. It is
a generalization of both the original (s, t)-Wythoff’s game and EEW investigated in [12]. Both exponential and polynomial
winning strategies for ΓK are given in both normal and misère play. However, in misère play, whether ΓK has a polynomial
time winning strategy or not is still open for all s > 1.

Following this,ΓOA,ΓOO, andΓOE are investigated. Under both normal andmisère play conventions, the sets of P-positions
of these three games are given algebraically for all s, t ≥ 1. Motivated by these games, we may associate additional
interesting games, for instance:

Open problem. Define ΓEE (Even–Even-Nim (s, t)-Wythoff’s game): a player may only remove an even (> 0) number of
tokens when moving from a single pile, and the move rules remain unchanged when moving from both piles. This game is
also a rook type restriction of (s, t)-Wythoff’s game. Determine the P-positions of ΓEE .

Further, what are the P-positions if a player can remove a multiple of K (∈ Z+) tokens when moving from one
pile (a generalization of ΓEE)? And what if a player is restricted to take k tokens, with k ∈ {nK + 1 : n ∈ Z+

} (or
k ∈ {nK + K − 1 : n ∈ Z+

}), when moving from one pile (a generalization of ΓOO, which is precisely the case K = 2)?
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